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Abstract

Advances in cryo-electron microscopy (cryo-EM) have revolutionized the structural investigation 

of large macromolecular assemblies. In this review, we first provide a broad overview of modeling 

methods used for flexible fitting of molecular models into cryo-EM density maps. We give special 

attention to approaches rooted in molecular simulations – atomistic molecular dynamics and 

Monte Carlo. Concise descriptions of the methods are given along with discussion of their 

advantages, limitations and most popular alternatives. We also describe recent extensions of the 

widely used molecular dynamics flexible fitting (MDFF) method and discuss how different model 

building techniques could be incorporated into new hybrid modeling schemes and simulation 

workflows. Finally, we provide two illustrative examples of model building and refinement 

strategies employing MDFF, cascade MDFF and RosettaCM. These examples come from recent 

cryo-EM studies that elucidated transcription preinitiation complexes and shed light on the 

functional roles of these assemblies in gene expression and gene regulation.
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Introduction

Macromolecular assemblies and their diverse functions underlie all of biology. Critical 

cellular activities - genome duplication and maintenance, gene expression and gene 

regulation, protein synthesis, chromosome segregation, cell differentiation and development 

among many others - depend primarily on intricately assembled macromolecular machines 

rather than individual macromolecules. At present, structural biology is undergoing a 

revolutionary transition, shifting its focus from structural determination of isolated proteins 

and small complexes toward the study of enormous biological assemblies and subcellular 

components. For decades the most successful structural techniques had been X-ray 

crystallography and nuclear magnetic resonance (NMR). Both techniques are limited by the 

size of macromolecular complexes that can be studied. In addition, a prerequisite for a 

successful crystallographic determination is that the complex of interest must be 

crystallized. For large complexes and macromolecular machines this requirement can be 

prohibitive, given their considerable flexibility and inherent conformational variability. Yet 

another complication in crystallography, is the possibility of artificially induced structures 

due to crystal packing effects. In contrast, NMR may solve true solution-phase structures as 

well as yield information on flexible complexes and protein dynamics. However, NMR is 

limited to complexes with small molecular weights, typically below 40–50 kDa.1

In recent years, cryo-electron microscopy (cryo-EM) has emerged as the most promising 

technique for the elucidation of large biological structures2. Advances in detector technology 

and image-processing3 have eliminated long-standing limits on cryo-EM resolution and 

enabled high-resolution EM structures not only for complexes with high symmetry and 

stability4–6 but also routinely for a wide range of large, asymmetric or conformationally 

diverse biological complexes7–9. Prominent examples of this ‘resolution revolution’ in cryo-

EM are listed as follows. In 2013, the structure of the mammalian TRP channel (TRPV1) 

was determined at 3.4 Å resolution10–11 and marked the first cryo-EM experiment to break 

the side-chain resolution barrier without the need for crystallization. In 2014, notable 

successes of cryo-EM included the solved 3 – 5 Å resolution structures of β-galactosidase12, 

membrane proteins13–15 and ribosomal machineries16. In 2015, Campbell and colleagues 

achieved a 2.8-Å resolution cryo-EM reconstruction of the Thermoplasma acidophilum 20S 

proteasome17. Also in 2015, the Subramaniam group refined β-galactosidase to an 

unprecedented 2.2-Å resolution18. More recently, structures of the human and yeast 

transcription machineries were determined at near-atomic resolution19–23.

Apart from tremendously improved resolution, cryo-EM has certain fundamental advantages 

over traditional X-ray crystallography. First, cryo-EM does not require crystallization and, 

therefore, smaller amounts of the protein/macromolecular complex may prove adequate for 

structure determination. Samples are prepared by cryogenic freezing in ‘vitreous ice’ - a 
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frozen, hydrated state on an EM grid. This allows cryo-EM to visualize biological 

complexes closer to in vivo conditions24, thus avoiding potential artifacts from 

crystallization. Finally, cryo-EM is superior to crystallography in its ability to uncover the 

conformational variability of complex biological systems. Single-particle image 

classification in EM typically leads to multiple classes of conformations simultaneously 

preset in the sample, thus capturing biological complexes in multiple functional states25–28. 

Further advances of cryo-EM analysis along this direction, hold the promise of visualizing 

the native dynamics of complex molecular machinery or obtaining direct experimental 

insight into the free energy landscapes that govern conformational changes upon protein 

association, ligand binding or ATP-hydrolysis. Finally, parallel advances in cryo-electron 

tomography (cryo-ET) and cryo-ET focused-ion-beam milling are likely to push the 

resolution of this imaging technique to levels where it becomes compatible with single-

particle cryo-EM29–30. Bridging the resolution gap between cryo-ET and cryo-EM could 

open a new window into cell biology, allowing the creation of structural models of 

subcellular components at unprecedented near-atomic structural detail.

As a technique, Cryo-EM relies on extensive data processing to produce a 3-D atomistic 

model from the original single-particle data. The last stage in this data processing involves 

the creation of atomistic models that best conform to the experimental cryo-EM density. 

Model generation is where cryo-EM analysis converges with the field of molecular modeling 

as most of the techniques for model fitting have their origins in the molecular modeling 

field. Molecular modeling has a long history of addressing the structures, flexibility and 

microscopic dynamics of molecular complexes while also uncovering the rugged free energy 

landscapes that underly conformational change in biological systems. Furthermore, hybrid 

and integrative modeling is an emergent area that brings together experimental data from 

diverse biophysical techniques to shed light on biological complexes not amenable to routine 

structural methods31–32. From the above, it is clear that molecular modeling has many points 

of intersection with the field cryo-EM and the synergy between the two areas of inquiry goes 

well beyond the issue of model fitting into cryo-EM maps.

This review aims to provide a broad overview of modeling methods used for flexible fitting 

into cryo-EM envelopes. We then give special focus on approaches rooted in molecular 

simulations – atomistic MD and Monte Carlo. We describe recent extensions of the widely 

used molecular dynamics flexible fitting (MDFF) method33–34. Finally, we present two non-

trivial applications of the method to transcription preinitiation complexes while emphasizing 

the important aspects of model validation.

Overview of methods for rigid and flexible fitting

The simplest way to generate models from a 3D cryo-EM reconstruction is by rigid body 

fitting of components of the biological complex, e.g. known high-resolution structures of 

protein subunits or domains. Homology modeling can be applied when suitable structures 

with high sequence conservation to the target protein are available in the Protein Data Bank. 

When neither structures nor structural homologs are available, the EM map can still be used 

to identify and position secondary structure elements via computational tools like 

SSHunter35, ab initio protein modeling using EM-fold36 and de novo protein structure 
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prediction using RosettaCM37–38. Automated rigid-body docking performs an exhaustive 

search over a 6-dimensional space (encompassing all translational and rotational degrees of 

freedom) to maximize the cross-correlation between the cryo-EM map and a density map 

simulated from the atomic model39–40. Fast Fourier Transform (FFT) can reduce the 

complexity of this 6-D search by transforming the translational degrees of freedom to 

Fourier space, leaving only the rotational degrees of freedom to be evaluated in real space41. 

Over the years, improvements were added to rigid-body docking, including local cross-

correlation score (LLC)42, core-weighted (CW)43 cross-correlation score, vector 

quantization and geometric hashing44. These were introduced in order to either customize 

the docking process or improve computational efficiency. By now rigid body docking is 

considered routine and has been made readily available in packages like Situs41 or in 

visualization software such as UCSF Chimera45. We briefly mention rigid body docking in 

this review only because it constitutes a necessary initial step before more sophisticated 

flexible fitting protocols could be applied.

Flexible fitting allows conformational variation to occur in the model during the fitting 

procedure, thus greatly increasing the correlation between the cryo-EM map and the 

modeled structure. A variety of flexible fitting methods have been proposed, including real-

space refinement upon segmented rigid-body docking46, normal-mode calculation based on 

optimization of the correlation between structure and map47, coarse-grained model fitting 

based on vector quantization48. Other methodologies have implemented external forces that 

are applied in conjunction with molecular dynamics (MD) simulations to drive the atoms 

along the gradient of the EM map33 or the cross-correlation coefficient of the structure and 

the EM map49–50.

High-resolution cryo-EM maps pose particular challenges to traditional map-guided 

structure determination techniques as the interpretation of such maps requires extremely 

precise model building and validation protocols51. Specifically, high-resolution maps contain 

an extraordinary amount of structural detail resulting in many sharp features that could 

potentially confound gradient search fitting methods by trapping the conformation into local 

minima. Additionally, high resolution EM maps reveal conformations of protein sidechains 

in the core of the complex, which are more flexible than the backbone. As a result, new 

structure determination techniques must now be able to precisely model protein dihedral 

angles up to the Cβ atoms while also respecting the boundaries of the EM map52. In order to 

produce atomic models with correct backbone and sidechain geometries, as well as 

minimum potential energy, a variety of methods have been proposed. Automated model-

building protocols, which rely heavily on geometric optimization, include Buccaneer53, 

ARP/wARP54 and Moulder55. Similar to PHENIX46, 56 and COOT57, these tools were 

designed for X-ray crystallography but have also proven useful in cryo-EM. More recently, 

Monte Carlo simulation-based segment building and refinement protocols with heuristic 

force fields were introduced in the Rosetta package51. Building on the capabilities of 

flexible fitting approaches, Flex-EM58 combines a Monte Carlo search with conjugate 

gradient minimization and simulated annealing MD, while DireX59 employs a deformed 

elastic network to flexibly fit models into high-resolution EM maps.
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Molecular dynamics flexible fitting

In 2008, Trabuco et al. proposed the use of molecular dynamics (MD) simulations to 

flexibly fit atomic structures into EM maps33. Since its inception, the molecular dynamics 

flexible fitting method (MDFF) has gained increasing popularity due to its automated setup, 

which has been integrated into the visualization package VMD60, as well as its success in 

generating pseudoatomic models from varying quality EM maps (Figure 1). MDFF brings 

together the most desirable features of several existing methods. First, MDFF takes into 

account all information contained within the cryo-EM map and thus avoids the use of 

reduced representations or global similarity measures to drive the fitting. Since the external 

force is applied locally, it is possible to fit some of the components of the macromolecule 

even when the structure of the remaining components is not known. Importantly, the degree 

of success is expected to be independent of system size, which proves advantageous over 

optimization and Monte-Carlo methods that rely on global-optimization criteria33.

In MDFF, an external potential is derived from the 3D cryo-EM map and incorporated into 

the MD simulation by adding two terms to the MD potential energy function,

UMDFF =   UMD +   UEM +   USS (1)

UMD is the MD potential energy function (or force field) that describes the interactions 

between all atoms in the system. During MD simulations, the forces experienced by the 

atoms are obtained from UMD and used to iteratively solve the Newtonian equations of 

motion. When coupled with flexible fitting, UMD maintains the stereochemical quality of the 

structure, ensuring that it does not stray into non-physical states. UEM is the potential 

derived from the experimental EM map and USS preserves the secondary structure of the 

protein or nucleic acid. The EM potential term takes the form,

UEM R = ∑j wjV EM rj (2)

where R is the set of Cartesian coordinates of all atoms in the system and VEM is defined as,

V EM R =
ξ 1 −   Φ r   −   Φtℎr

Φmax   −   Φtℎr
if   Φ r ≥   Φtℎr

ξ   if   Φ r <   Φtℎr

(3)

Here, Φ(r) is the EM density at position r, Φmax is the maximum value of all voxels in the 

EM map, Φthr is the threshold value used to discard data not corresponding to the 

biomolecule, ξ, is an arbitrary scaling factor, wj is a weight that can be varied according to 

the atomic mass of the atom type and rj is the position of atom j. Typically, the threshold 

value, Φthr, is selected based on minimum value between density peaks in the EM density 

histogram. The higher peaks correspond to the solvent’s contribution to the EM density and 

can be ignored during fitting. Given the equation for the EM potential (UEM), the force 

applied to each atom inside the EM map is,
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fi
EM =   − ∂

∂ri
UEM R =   − wi

∂
∂ri

V ri (4)

Thus, the external forces drive the system along the negative gradient of EM density, 

effectively steering atoms away from low-density regions and into higher-density regions. 

The external forces, fi
EM, can be tuned via the scaling factor ξ, which is applied uniformly. 

Additionally, one can adjust wi on a per-atom basis. Due to the large external forces the 

structure experiences during MDFF, it becomes necessary to maintain the integrity of the 

secondary structure elements through harmonic restraints,

USS = ∑μ kμ Xμ − Xμ
0 2

(5)

In equation 5, the restraints Xμ represent the protein dihedral angles φ and ψ, RNA/DNA 

dihedral angles α, β, γ, δ, ε, ζ, χ and interatomic distances d1 and d2, which describe the 

hydrogen-bonding between base pairs. Equilibrium values, Xμ
0, are generally taken from the 

initial atomic structure, although these can be set to a different value.

Generally, the fitting procedure is carried out in a multistep fashion, varying parameters at 

every step, such that the atomic structure gradually converges into the EM map. Prior to 

running MDFF, the atomic structure is docked into the EM map through rigid-body fitting. 

Following this, multiple MDFF steps are executed with decreasing values for the scaling 

factor, ξ (typically 0.3 – 0.1 kcal/mol). At the end of every step, convergence is evaluated 

through a goodness measure, either by the stabilization of root-mean-square deviation 

(RMSD) or the cross-correlation between the trajectory and the EM map. For cross-

correlation, the Pearson’s correlation coefficient (cross-correlation coefficient) is computed 

between the original EM map and a simulated map, generated from the MDFF trajectory,

ρSE =   (S − S )(E − E )
σSσE

(6)

In the above equation, S  and E  denote the average voxel values of the simulated and 

experimental maps, while σS and σE corresponds to their standard deviation. Typically, 

cross-correlation coefficients should be computed considering only voxels inside the 

molecular envelope of the simulated map (local correlation)61. The global correlation, which 

is commonly reported in the EM literature, is sensitive to the box size arbitrarily selected in 

the electron microscopy experiment. Larger boxes result in artificially higher correlation 

values, leading to overestimation of the quality of fit.

Cascade MDFF

The weakness of the original MDFF implementation lies in the method’s reliance on the MD 

engine to sample the conformational space confined to the EM map potential (VEM). The 

equilibrium structure obtained from MD simulations represents a global minimum in VEM. 

This is not an issue for normal MDFF and low-resolution maps (6 – 15 Å), where the global 

minimum is broad and can accommodate an ensemble of conformations defined by the 
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overall shape of the macromolecule33, 50. However, at higher resolution (< 4 Å), the 

landscape of VEM becomes very rugged and features multiple proximal local minima 

corresponding to recurring spatial patterns within a macromolecule (i.e. helices, β-sheets). 

The energetic barriers separating such potential minima are typically twice as high as those 

in low-resolution maps, which allows the fitted structure to become “trapped” within 

undesired local minima instead of reaching the global minimum of VEM. Consequently, 

relying on normal MDFF alone will likely yield structurally poor or functionally irrelevant 

models with high-resolution EM maps.

In cascade MDFF (cMDFF), the initial structure is sequentially fitted to a series of density 

maps filtered to lower resolution from the original EM map (Figure 1). The protocol starts at 

the lowest resolution level and proceeds in order of increasing resolution ending with the 

original EM map (Figure 1b). Fitting at lower resolution allows model fitting to be guided 

first by the largest scale features of the EM density. This is followed by smaller-scale 

refinements performed with the higher-resolution densities. This enables an efficient 

conformational search that avoids entrapment into local minima and allows accurate 

modeling of both the global and local features of the EM density. The assumption in cMDFF 

is that the original map can be expressed as a sum of Gaussians,

V EM = ∑n cnG r; r′n, sn (7)

Here, cn, is a weight, G(r; r’n, sn) is a Gaussian function centered at r’n with half-width sn 

and evaluated at r. New maps are obtained by applying a Gaussian blur of width   σi ≥   0 Å 

to the original EM map, where i is the ith map in a series of potential maps of length L. 

Given equation 7, the result of a Gaussian blur on V EM with half-width σi is,

V σi r =   ∑n cnG r; r′n, sn2 +   σi2 (8)

Equation 8 reveals that the half-width σi allows one to tune the characteristic width of the 

EM map through the half-widths of its component Gaussians sn2 +   σi2. Thus, initial fitting 

starts with a large σ1, corresponding to a smoother potential that allows more structure 

mobility. Decreasing values of σi correspond to narrower potentials with steeper gradients, 

permitting the structure to the gradually settle into the original EM map, which is 

characterized by σL ≥ 0 Å. In practice, optimal values for σ1 and the change in σi from one 

map to another are case-dependent. Generally, initial structures far from the ideal 

conformation benefit from a large σi (> 5 Å) so as to better explore the conformational 

space. On the other hand, if the original map has a high resolution, small changes in σi (< 1 

Å) would allow a gradual convergence required to avoid being trapped in local potential 

minima.

Resolution exchange MDFF

Resolution exchange MDFF combines the advantages of cascade MDFF with the efficient 

sampling of the replica exchange MD method (REMD)62 (Figure 1). Briefly, REMD is an 
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enhanced sampling method that explores conformational space separated by energetic 

barriers too high to be sampled by conventional MD. Multiple simulations (replicas) are 

executed in parallel at increasing temperatures (T1 < T2 < T3…), where the lowest 

temperature (T1) is the temperature of interest. At regular time intervals, the instantaneous 

conformations of neighboring replicas are compared in terms of their energy. Exchange of 

configuration between neighboring replicas are then permitted according to the Metropolis 

criterion. Under the REMD paradigm, the highest temperature replicas overcome the 

energetic barriers between conformational intermediates. Applying the Metropolis criterion 

guarantees that the lowest temperature replica is Boltzmann-distributed and ergodic. An 

important generalization of REMD is Hamiltonian REMD (H-REMD)63, in which the force 

field or Hamiltonian of the system (in addition to the temperature) could be used as a 

replica-coordinate. Analogously, resolution exchange MDFF (ReMDFF) builds upon the H-

REMD ideas by defining neighboring replicas in terms of their EM map half-widths, σi, 

instead of temperature. By increasing the characteristic width of the original EM map 

(σ1 <   σ2 <   σ3…), ReMDFF can be thought of as a fully automated variant of cMDFF. 

Specifically, for ReMDFF the Metropolis acceptance probability is,

p xi,   σi,   xj,   σj = min 1, exp −E xi, σj − E xj, σi + E xi, σi + E xj, σj
kBT (9)

Here, kB is the Boltzmann constant, E x, σ  is the total energy of configuration x within a 

fitting potential map of blur width σ. Based on equation 9, exchanges occur between a 

poorly-fitted model at a high resolution with a well-fitted model at low resolution leading to 

stepwise improvements in the overall fit. The well-fitted model is further refined against the 

high-resolution map until exchanges between the chosen resolution ceases and convergence 

is reached. In terms of efficiency and automation, ReMDFF has advantages over normal 

MDFF and cMDFF as it can take advantage of massively-parallel computer architectures 

and the powerful and adaptive interface of NAMD64.

Pipelines and hybrid modeling schemes

While the MDFF protocols have been highly successful at the refinement of models from 

low- to high-resolution cryo-EM data, they typically use as starting points high quality 

homology models, which may not always be available. In cases where the resolution is 

sufficiently high (2 – 5 Å), de novo modeling may be employed to construct a primary 

sequence directly into the density without a structural template65. However, as resolution 

decreases, sequence registration and overall topology become more ambiguous and 

additional structural information is required to build a de novo model. Most de novo 
techniques employ a hierarchical approach and build up the structure beginning with 

predefined secondary structure elements within the density35, 66. Following this, a Cα trace 

is constructed, either through pathwalking67 or other pattern recognition strategies68–69. A 

fully atomistic model, including unresolved loop segments and side-chains, can then be 

derived and optimized from the Cα trace using density-guided model building as 

implemented for instance in the Rosetta package51. Briefly, Rosetta iteratively assembles the 

protein backbone into the EM density using small fragments from a PDB-generated 
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fragment library. Fragments are selected based on local sequence homology and Monte 

Carlo sampling is employed with an empirical force field to assemble and optimize each 

fragment. Throughout the Monte Carlo trajectory trial moves replace poorly fitted regions of 

the model with backbone fragments from the PDB that have been pre-minimized to fit the 

density. During the minimization step, proper peptide bond geometry at the fragment 

endpoints is maintained through coordinate constraints while backbone and sidechain 

geometry is maintained through Ramachandran and rotameric constraints. Due to the 

variable resolution observed in most EM maps, the Rosetta package alternates between 

refinement of atomic B factors and model rebuilding to maximize real-space correlation 

between model and map. Collectively, this approach enables the progression from a poor-

quality starting model to a highly accurate atomic model and has a substantially better radius 

of convergence than MDFF51. However, as resolution decreases ( > 5 Å) the limited 

structural information from the EM map constrains Rosetta’s ability to correctly position 

fragments from large protein segments51. To alleviate this constraint, DiMaio and co-

workers introduced RosettaES70. Building on the previous fragment-assembly approach, 

RosettaES utilizes fragment ensembles that are pruned in a “beam search” fashion. This 

approach was shown to accurately and automatically model missing segments up to 100 

residues from cryo-EM maps in the absence of a template structure.

Generally, the construction of accurate atomic models from high-resolution cryo-EM data 

will require the combination of several methodologies in a pipeline or hybrid modeling 

scheme. For example, Rosetta has been combined with MDFF in an iterative protocol71 to 

refine starting models generated from EM-Fold36. Guided by the cryo-EM map, the iterative 

MDFF-Rosetta method cycles between rounds of MDFF, to refine secondary structure, and 

Rosetta, to refine sidechains and loops regions. In a similar fashion, homology modeling has 

been combined with iterative MDFF-Rosetta to build conformers of the 26S proteasome at 

less than 5 Å resolution72. Another recent study combined a wide range of modeling tools 

and MD simulations to derive atomic models for the AMPA receptor-TARP in closed, active 

and desensitized states73. Arguably, the most automated and sophisticated pipeline to date is 

CryoFold74, which was recently proposed by Singharoy and co-workers. CryoFold is an 

atomistic-physical algorithm that combines three different refinement methodologies 

(discussed below) to derive structures from EM data in a fully automated fashion (Figure 2). 

In CryoFold, search models are constructed de novo using Modeling Employing Limited 

Data (MELD)75–76 simulations guided by backbone traces generated from MAINchain 

Model tracing from Spanning Tree (MAINMAST)69. These models are then refined in the 

EM density with ReMDFF to produce an accurate atomic model.

MELD incorporates empirical data into MD simulations through a Bayesian inference 

approach. The first step in the CryoFold pipeline constructs the Bayesian likelihood from 

secondary structure prediction (PSIPRED) of the target sequence. A 70% confidence is 

employed, which has been shown to be an optimal condition for MELD to recover from 

uncertainties in secondary structure prediction77. Additionally, MELD extracts information 

for the Bayesian prior from the MD force field. Following this, Cartesian restraints are 

derived for any region that was determined with high accuracy. These restraints are imposed 

on the Cα atoms during MELD simulations which allows already resolved residues to 

fluctuate around their initial position. Distance restraints are then derived through the 
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application of MAINMAST, a de novo modeling program that directly builds main-chain 

structures from EM maps. Briefly, MAINMAST recognizes and identifies local dense points 

(LDPs) in the EM map through the mean shifting algorithm. Once identified, LDPs are 

connected through a minimum spanning tree (MST). The MST is then iteratively refined 

with the tabu search algorithm which attempts to explore a large search space through a list 

of moves that were once considered and then forbidden. In the last step, the target sequence 

is aligned with the longest path of the refined MST. Combined with the Cartesian restraints, 

MAINMAST-derived distance restraints guide the sampling of the search model via flat-

bottom harmonic potentials.

In the next step of CryoFold a Hamiltonian and temperature replica exchange (H,T-REMD) 

protocol is employed to accelerate the sampling of the low-energy conformations in MELD. 

The Hamiltonian term is altered by modifying the force constant of the harmonic restraints 

derived from secondary structure prediction and MAINMAST. Under this paradigm, higher 

temperature simulations have vanishing force constants so that sampling is improved. In 

contrast, force constants are enforced at their maximum for lower temperature simulations. 

From the ensemble of structures generated by H,T-REMD, the model with the best cross-

correlation to the EM map is selected for subsequent refinement with ReMDFF. Although 

ReMDFF parameters may vary depending on the system, the authors report that 5 to 11 

blurred maps with an increasing half-width of σ = 0.5 Å seems sufficient to improve cross-

correlation and structural statistics. From ReMDFF, the model with the highest EMRinger52 

score is selected as the starting point for the next round of MELD-ReMDFF. This process 

continues iteratively until the change in cross-correlation between consecutive rounds is less 

than 0.1. During iterative refinement distance restraints from the ReMDFF model are 

updated and the pairs of residues present in those interactions are enforced at different 

accuracy levels.

CryoFold appears to be a promising technique for deriving macromolecular complexes from 

cryo-EM data. Nonetheless, success of the modeling strategy is largely dependent on the 

initial Cα trace generated by MAINMAST. Even with MELD accelerated MD it is not clear 

if the simulation could recover from a poorly determined mainchain trace. This highlights 

the fact that even the availability of sophisticated semi-automated modeling tools and 

pipelines may require intervention from an experienced molecular modeler. Success of the 

protocols and the quality of the final models for complicated cases critically depend on the 

quality of the experimental map, the variability of local resolution, potential difficulties in 

tracing the protein backbone through ambiguously resolved regions of the EM density. In all 

instances, careful evaluation and validation of the final models is required.

Model validation

In principle, data from single-particle cryo-EM is representative of a diverse ensemble of 

configurations present in solution26, 78. Yet, a single model representing the best fit to the 

EM density is usually reported. As a consequence, EM reconstructions even at high 

resolution feature poorly resolved regions from either conformational ensemble averaging or 

motion smearing. Thus, assessing the model quality and reliability has to encompass three 

distinct aspects: 1) quality of the EM map itself as represented by the local resolution; 2) the 
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extent of correspondence between the atomic model and the EM density (map-to-model fit); 

and 3) molecular geometry, including the stereochemical properties of the derived structure.

Global measures for map resolution, such as the Fourier shell correlation (FSC) procedure, 

cannot assess local variations in resolution (Figure 3a–c) which may be caused by sample 

heterogeneity or image-processing errors79. Additionally, FSC estimation of overall 

resolution (Figure 3d–f) relies on an arbitrary threshold (0.143 or 0.5)80–81 which has been 

subjected to various interpretations on its meaning82. Consequently, relying on a global 

assessment of map resolution can lead to over-fitting of the model to the EM data. To avoid 

over-fitting, tools like ResMap83 or Bsoft84 can identify regions of spatially variable 

resolution, thus, revealing local regions of reduced information that may affect model 

accuracy85–86. From a global perspective, over-fitting can be minimized by reducing the 

number of refined parameters, either through the use of secondary structure constraints, 

selective inclusion of certain atoms or by providing supplemental structural information via 

a physics-based force field87.

Although several metrics exist to measure the goodness-of-fit between the model and the 

experimental density88–89, the most commonly used metric is Pearson’s correlation 

coefficient (CC)61, 90. Calculated in real-space, the model-map CC can take both global 

(GCC) and local (LCC) forms. Additionally, reciprocal space metrics, such as integrated 

Fourier shell coefficients (iFSC) and estimated phase error51, can be employed to judge 

goodness-of-fit. Finally, EMRinger52 can assess both the stereochemical quality and the 

map-to-model fit for high resolution EM maps, wherein protein side chains have been 

resolved. Additionally, several cross-validation metrics have been proposed to identify over-

fitting to high-resolution EM maps51, 91–93. These metrics split the original EM data into 

multiple independent sets that are subsequently used for model construction, refinement and 

accuracy assessment.

MolProbity94 is a common structural biology tool for evaluating the integrity of 

biomolecular models. The package was originally developed for X-ray crystallography but 

has become the de-facto standard for analyzing of protein geometry in cryo-EM structures as 

well. By comparing a number of geometric properties of the model to statistics derived from 

the Protein Data Bank, MolProbity reveals geometric defects (bond, angle or torsion 

deviations), atomic clashes, Ramachandran and sidechain rotameric outliers post refinement. 

Recently, a comprehensive set of cryo-EM validation tools was integrated into the PHENIX 

software package46.

Application examples

Here we provide two illustrative examples of model building and refinement strategies that 

include MDFF or cascade MDFF. These examples come from recent studies that have 

focused on solving the structures of transcription preinitiation complexes (PICs) from cryo-

EM: 1) modeling RNA Polymerase I PIC in multiple functional states; and 2) integrative 

structural determination of RNA Polymerase II PIC, including the flexible transcription 

factor IIH (TFIIH) subcomplex. Transcription initiation complexes are large and amazingly 

dynamic macromolecular machines whose function and regulation underlie all of gene 
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expression. Their size, complexity and dynamic nature present non-trivial challenges for 

molecular modeling. PICs encompass numerous subunits in complex arrangements (>20 

protein chains, singe-stranded and double-stranded DNA and a DNA/RNA hybrid). The 

presence of flexible and unstructured regions interspersed into the assemblies complicates 

tracing of the protein backbone through the EM densities. Moreover, a degree of mobility for 

certain parts of the structure results in significant variation in the local EM resolution. For 

these reasons, the PIC systems present a more realistic modeling challenge as compared to 

structures typically used for benchmarking and assessment of EM modeling methods (e.g. 

TRVP or β-galactosidase), which are characterized by more uniform local resolution and 

high secondary structure content.

1. Modeling RNA polymerase I PIC

Eukaryotic RNA synthesis is catalyzed by three classes of RNA Polymerases (Pol I, II and 

III). RNA Polymerase I (Pol I) transcribes large ribosomal precursor RNA (pre-rRNA) and 

accounts for a major fraction of cellular RNA synthesis. Pol I function is highly regulated, 

and misregulation has been linked to many diseases including various types of cancer. The 

following regulatory factors - Rrn3, the Core Factor (CF), the TATA-box Binding Protein 

(TBP), and the Upstream Activation Factor (UAF) - are key for Pol I PIC assembly and 

function. Rrn3 ensures that Pol I adopts a monomeric initiation-competent form. CF recruits 

Pol I/Rrn3 to the ribosomal DNA promoter and plays a role in transcription bubble opening. 

While not strictly required, UAF and TBP play a stimulatory role in Pol I transcription. 

Despite extensive experimental studies, many aspects of Pol I PIC assembly and function 

remained enigmatic: (i) how Pol I PIC opens promoter DNA without any requirement for 

force generation through ATPase activity; (ii) what is the role of the Core Factor in promoter 

opening; (iii) how protein dynamics promotes the ordered transitions of the Pol I-CF 

assembly from a closed complex (CC), through initial transcribing complex (ITC) and 

eventually an elongation complex (EC)? Answering these questions requires detailed 

structural knowledge of the Pol I PIC.

Here we describe a recent study, which combined single-particle cryo-EM and 

computational modeling to determine structures of Pol I PIC in three distinct functional 

states visualized at 3.8 – 4.3 Å resolution95. The computational strategy employed homology 

modelling and de novo model building combined with molecular dynamics flexible fitting to 

the cryo-EM data. The analysis unveiled the modular architecture of the Pol I PIC, providing 

unique insights into the mechanism of transcription initiation. The overall modeling protocol 

involved five stages: 1) collecting all available experimental data, including sequences for all 

protein chains, existing structures and homologs; 2) using the GeneSilico metaserver to 

predict secondary structures for all protein chains and register the sequences; 3) building a 

homology model for Pol I or de novo models for the protein chains comprising CF; 4) 

applying MDFF fitting to the initial model of core Pol I; and 5) structure refinement after 

combining Pol I, CF and DNA.

Three protein chains come together to form Core Factor - Rrn6, Rrn7 and Rrn11 (Figure 4). 

Rrn6 contains a predicted WD40 β-propeller and a helical domain. Rrn7 is predicted to 

share sequence homology with TFIIB containing an N-terminal zinc ribbon domain, two 
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cyclin domains, and a C-terminal domain. Rrn11 contains a predicted tetratricopeptide 

repeat (TPR) domain. Due to lack of suitable templates for homology modeling the chains of 

CF were primarily built de novo. De novo model building requires map segmentation. The 

CF structure consists of intertwined subunits with hard to distinguish protein-protein 

interfaces, which made map segmentation difficult. Without proper segmentation, automatic 

de novo model building tools such as RosettaCM de novo model building or 

Phenix.map_to_model cannot be successfully employed. In this case, known homologues of 

Rrn6-WD40, the two cyclin folds from TFIIB, along with other structural elements were 

used to segment the CF density into three regions, corresponding to the three distinct protein 

chains of CF. Individual secondary structure fragments were then constructed and inserted 

into the segmented EM density. The main-chain trace was extended to connect the secondary 

structure fragments using the density-guided loop building functionality in PHENIX. 

Residues along the main-chain trace were then converted to the correct amino acid sequence 

and adjusted with COOT. The protocol also highlighted the advantages of using Rosetta for 

model building. Specifically, the Rrn6 WD40 β-propeller was constructed using the X-ray 

structure of the N-terminal domain of the human proto-oncogene Nup214 as a template. 

Density-guided homology modeling with RosettaCM was then employed. The agreement to 

the experimental EM density was assessed by Rosetta’s scoring function to select the best 

fitting models. The RosettaCM procedure was repeated iteratively until satisfactory 

agreement was achieved between the best model for the WD40 β-propeller and the 

corresponding EM density.

To model the core of the RNA Polymerase I (Figure 4), crystal structures of yeast Pol I and 

A49 tandem winged helix domain of Pol I were rigid body fit into the corresponding EM 

density for the three PIC functional states. The DNA-RNA hybrid structure of the yeast Pol I 

elongation complex was fit into the densities and modified to include the DNA bubble 

region. MDFF flexible fitting was then applied to adjust the initial conformation and ensure 

model conformance with the cryo-EM maps. In the last stage of the protocol, each atomic 

structure was visualized with UCSF Chimera in its corresponding density map and inspected 

with COOT.

The final models revealed numerous surprising new features of CF binding to Pol I and 

promoter DNA. Comparison of the three Pol I PIC functional states to the known structures 

of the Pol II PIC suggested that a ratcheting motion of CF with respect to upstream DNA 

facilitates promoter melting in an ATP-independent manner. Importantly, the study advanced 

a new Pol I initiation mechanism, in which the intrinsic mobility of DNA-bound CF drives 

promoter opening without any need for ATP hydrolysis. Collectively, the findings suggest 

distinct initiation mechanisms between Pol I and II PICs and provide novel insight into the 

mechanism of Pol I initiation.

2. Modeling RNA Polymerase II PIC and the general transcription factor IIH

Here we summarize an integrative structure determination and analysis of the RNA 

polymerase II (Pol II) transcription pre-initiation complex, including the flexible TFIIH 

general transcription factor96 (Figure 5). This study addressed a grand challenge for 

structural biology by providing the first essentially complete structural model of the human 

Dodd et al. Page 13

J Chem Inf Model. Author manuscript; available in PMC 2021 May 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Pol II PIC/TFIIH complex (holo-PIC) (Figure 6). It also afforded a comprehensive structural 

and dynamic characterization of the holo-PIC assembly appropriate for mechanistic 

understanding of its key biology. Pol II PIC encompasses Pol II in complex with general 

transcription factors (GTFs), which recognize and bind to promoter DNA97–98. TFIIH is the 

most complex of all GTFs, comprised of ten protein subunits. Recent cryo-EM studies had 

achieved near atomic visualization of core Pol II PICs19 (excluding the mobile TFIIH) in 

multiple states and enabled side-by-side comparison of the conformations leading to a 

competent elongation complex. Two subsequent EM structures showed the TFIIH both 

with20 and without core-PIC19. Yet, the models from these breakthrough studies were 

incomplete (>20% of residues unassigned in sequence or not modelled), preventing further 

detailed molecular modeling. To address this challenge, the new integrative study 

synthesized all available cryo-EM data (from multiple EM maps) to produce the most 

complete atomistic model of the human PIC to date96. The approach employed a 

combination of homology modeling, de novo structure building, flexible fitting with both 

conventional MDFF and cascade MDFF and real space refinement with the PHENIX 

package46, 56. Moreover, the quality of the hybrid PIC model revealed new atomic insights 

into the macromolecular assembly and proved to be an excellent starting point for 

subsequent MD simulations.

Initial model building was based on comparative analysis of cryo-EM densities for apo-

TFIIH (EMDB accession code: EMD-3802)22 and yeast core-PIC/TFIIH/DNA (EMDB 

accession code: EMD-3846)20. The protocol began with assessment of all available 

experimental data (available structures of domains or fragments, structures of suitable 

homologs, sequence data from NCBI, crosslinking data on TFIIH99). Secondary structure 

prediction was performed for all TFIIH protein chains using the GeneSilico metaserver100. 

The two EM density maps were inspected and visualized in Chimera and subsequently 

segmented into submaps guided by the available TFIIH subunit structures and the secondary 

structure prediction. The density corresponding to the very extended p62 TFIIH subunit was 

most conveniently visualized by eliminating the densities corresponding to the six 

neighboring TFIIH subunits.

A number of TFIIH structural elements had no close homologues in the PDB and, therefore, 

had to be built de novo. These included the XPB damage recognition domain (DRD), the 

XPB N-terminal extension domain (NTE), the p52 XPB binding domain, the p34 insertion, 

the p44 N-terminus and α-helix insertion, the MAT1 ARCH anchor and practically the 

entire p62 subunit. Using results obtained from consensus secondary structure prediction100, 

the sequence register was established in the EM density. Individual fragments were built 

using COOT57 to generate backbone-only models by tracing the protein chains through the 

EM densities. Polypeptide segments were then connected by extending the main-chain trace 

and side-chain orientations were built and manually corrected based on the EM density. 

Other missing regions in the apo-TFIIH structure were modeled either through rigid-body 

docking of a previously determined structure or by homology modeling followed by rigid-

body docking. Once a suitably complete initial apo-TFIIH model was established MDFF 

was used to flexibly adjust the conformation of the newly constructed XPB, XPD, p52, p62, 

p34, p44, p8 and MAT1 subunits into the human apo-TFIIH density.
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The next step was guiding the atoms from the initial TFIIH model into the holo-PIC EM 

density. This required the use of cascade MDFF34. First, the initial model was fitted to the 

density of yeast PIC-TFIIH using a series of Gaussian-blurred maps. Regions of the model 

where the human and yeast densities showed substantive differences were excluded from 

fitting by setting the corresponding atomic weights wj in MDFF to zero. Starting with a half-

width of σ = 3 Å, Gaussian-smoothed maps were generated using Chimera45, with the half-

width of each subsequent map decreasing by 1 Å. Including the original EM density, four 

maps were used for cMDFF. At each resolution, 4-ns MDFF simulations were performed 

until convergence.

To complete the holo-PIC assembly it was necessary to model the TFIIH – core-PIC 

interface. To this end, the C-terminal region of TFIIEα (α7/β5/α8/α9) was built by 

positioning the α7 helix between the TFIIEα winged-helix (WH) domain and the p62 BSD2 

domain. The β5/α8/α9 elements were docked into the human holo-PIC EM density. 

Positioning of the TFIIEα segments was validated from available cross-linking data99. 

TFIIH and core-PIC were separately flexibly fitted into the closed-state human holo-PIC 

density (EMDB accession code: EMD-3307)19 during 4-ns normal MDFF runs with a 

scaling factor ξ of 0.2 and then combined to assemble the full PIC/TFIIH/DNA complex. 

The final Pol II PIC-TFIIH model underwent 10 cycles of real space refinement in PHENIX, 

which as a rule always improves MolProbity statistics by removing atomic clashes and 

correcting Ramachandran and rotamer outliers. Final models were adjusted with COOT to 

correct accidental sidechain misplacements that may not have been fixed during the 

automated stages of refinement. Validation was performed using the integrated cryo-EM 

validation tools in the PHENIX package46.

The newly built models allowed extensive MD simulations to unveil the functional dynamics 

of Pol II holo- and core-PICs. To our knowledge, these were the first atomistic simulations 

of the human transcription initiation machinery. Modeling the above systems (comprised of 

>1,000,000 atoms) took advantage of the capabilities of Summit, the world’s fastest 

supercomputer. Importantly, the analysis unveiled the hierarchical organization of the PIC 

machinery into dynamic communities and explained how its interwoven structural elements 

function together to remodel the DNA substrate and facilitate promoter opening. Strikingly, 

mapping patient-derived TFIIH mutations onto the newly discovered interfaces and dynamic 

communities revealed that mutations cluster at critical junctures in the TFIIH dynamic 

network. Thus, the study was able to annotate and explain the role of 36 mutations linked to 

inherited genetic diseases. These findings provided foundational understanding for the 

etiology of three distinct genetically validated disorders associated with cancer, aging, and 

developmental defects – xeroderma pigmentosum (XP, cancer), trichothiodystrophy (TTD, 

aging) and XP/Cockayne syndrome (XP/CS, development) – by unveiling their three 

distinguishing molecular mechanisms. Notably, the approach serves as a roadmap for future 

biochemical and mutational experiments to understand the interplay between TFIIH 

mechanisms and disease phenotypes.
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Concluding remarks and outlook

Cryo-EM has emerged as a powerful tool for understanding large nucleoprotein complexes 

and molecular machines. To structurally define such inherently dynamic biological 

assemblies, cryo-EM data needs to be combined with computational methods for model 

building and refinement. Numerous techniques have been developed over the years to 

flexibly fit atomic models into density maps with variable local resolution. Despite recent 

dramatic improvements in cryo-EM map quality, the need for sophisticated model-building 

strategies is not likely to disappear. As cryo-EM advances to solve the structures of ever 

larger biological complexes, the issue of variable local resolution is likely to persist. Non-

specific crosslinking, introducing inactivating mutations, applying inhibitors or non-

hydrolysable ATP analogs are all techniques widely used in cryo-EM to drive the structural 

ensemble toward a single dominant conformation. Nonetheless, most EM maps do not 

achieve uniform local resolution. The situation reflects the expected conformational and 

dynamic variability of large biological complexes. The path forward in addressing the 

complexity of such assemblies is to apply integrative modeling methods. Known high-

resolution structures of constituents in these complexes are combined not only with the cryo-

EM maps but also with biochemical, mutational and crosslinking data to constrain the 

modeling and yield structures of the larger assemblies through integrative/hybrid 

computational protocols.

Looking forward, the molecular modeling field is poised to take advantage of the exciting 

advances in cryo-EM that have boosted resolution to near-atomic level. Importantly, single 

particle cryo-EM data could be combined with molecular simulations to characterize more 

fully the conformational ensembles of macromolecular assemblies rather than solving a 

single structure. A great advantage of cryo-EM compared to crystallography is the ability to 

capture biological assemblies in their natural state with all dynamic motions and multiple 

conformers represented in the ensemble. Through unbiased classification methods, cryo-EM 

could access some of the dominant states, which are often functionally relevant. 

Sophisticated path sampling and optimization techniques could be employed in conjunction 

with cryo-EM to connect the experimentally observable multiple functional states, define 

complete biological mechanisms and identify important intermediates in pathways for 

conformational transitions. An example could be a DNA helicase at various stages of its 

ATP-binding and hydrolysis cycle. Path optimization could be used to bridge the observed 

cryo-EM states and elucidate the mechanism by which the helicase translocates on DNA or 

separates the two DNA strands. Such close interplay of computation and cryo-EM 

experiments is needed for in-depth mechanistic and functional analyses in structural biology.
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Figure 1. Simulation-based methods for flexible fitting into cryo-EM maps.
a) Flowchart representing the popular MDFF, cascade MDFF and resolution exchange 

MDFF methods; b) A series of Gaussian-blurred EM maps and the original unfiltered cryo-

EM map used for cascade MDFF and resolution exchange MDFF. The maps illustrate the 

change in smoothness and level of detail of the resulting UEM potentials used for the 

intermediate stages of the fitting protocol.
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Figure 2. 
Schematic representation of the Cryo-fold fitting protocol.
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Figure 3. Variable local resolution as a major challenge for model building in cryo-EM.
a-c) Local resolution color mapped onto three example EM maps. The maps were chosen to 

showcase narrow, intermediate and wide range of local resolution; d-f) FSC curves are 

presented for each of the maps to illustrate how overall map resolution is determined. 

Notably, overall resolution of a cryo-EM map is a global property and may not be indicative 

of quality for specific region of the EM density.
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Figure 4. Structure of Pol I preinitiation complex from cryo-EM and integrative modeling.
a) Cryo-EM reconstruction of Pol I initial transcribing complex; b) Atomistic model of Pol I 

initial transcribing complex; c) Atomistic model of Core Factor. The Core Factor subunits 

are depicted in red (Rrn6), blue (Rrn7) and green (Rrn11). Modeled structural elements 

include NTD, N-terminal domain; HB, helical bundle; CyclinC/N, C/N-terminal Cyclin Fold 

domain and TPR, tetratricopeptide repeats; d) Interface between Rrn6 HB and Rrn6 WD40 

domains; e) Interface between Rrn6 WD40 and Rrn11 TPR domains; f) The two cyclin 

domains of Rrn7 are embedded in the Rrn6 HB protein chain.
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Figure 5. Structure of transcription factor IIH from cryo-EM and integrative modeling.
a) Overall fit of the apo-TFIIH structure to the apo-TFIIH density; b) Domain organization 

of the TFIIH subunits highlighting newly modeled regions (solid black lines); The structural 

motifs were labeled for each TFIIH subunit; c–f) Selected TFIIH subunits fitted into the EM 

density. Domains in each subunit are indicated with red dashed circles. c) XPB; d) p44; e) 

p52; f) p62; g) p34 and p44; h) XPB and p52.
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Figure 6. Structure of human Pol II preinitiation complex from cryo-EM and integrative 
modeling.
Positions of the general transcription factor subunits are indicated by color coding. The 

model is based on integration and comparative analysis of cryo-EM densities for human apo-

TFIIH, human closed-state holo-PIC density and yeast core-PIC–TFIIH–DNA. Atomic 

model for the entire complex is shown with (a) and (b) without the EM envelope.
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