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Abstract
Progress in genomic analysis has resulted in the proposal that the intestinal
microbiota is a crucial environmental factor in the development of multifactorial
diseases, such as obesity, diabetes, rheumatoid arthritis, and inflammatory bowel
diseases represented by Crohn’s disease and ulcerative colitis. Dysregulated gut
microbiome contributes to the pathogenesis of such disorders; however, there are
few effective treatments for controlling only disease-mediating bacteria. Here, we
review current knowledge about the intestinal microbiome in health and disease,
and discuss a regulatory strategy using a parenteral vaccine with emulsified
curdlan and CpG oligodeoxynucleotides, which we have recently developed.
Unlike other conventional injectable immunizations, our vaccine contributes to
the induction of antigen-specific systemic and mucosal immunity. This vaccine
strategy can prevent infectious diseases such as Streptococcus pneumoniae
infection, and control metabolic symptoms mediated by intestinal bacteria (e.g.
Clostridium ramosum) by induction of high titers of antigen-specific IgA at target
mucosal sites. In the future, our vaccination approach could be an effective
therapy for common infectious diseases and dysbiosis-related disorders that have
been difficult to control so far.
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Core tip: How to control intestinal pathogenic bacteria that mediate multifactorial
diseases is a major concern worldwide. There are few methods for controlling only
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intestinal pathogenic bacteria; therefore, we have developed a prime–boost type, next-
generation mucosal vaccine, and have used it for control of bacterial intestinal diseases.
This vaccine can contribute to prevention of Clostridium ramosum-mediated obesity.
Thus, this approach might be useful for protecting against microbe-associated disorders
of the intestine.
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INTRODUCTION
With  the  rapid  progress  of  next-generation  sequencing  and  genome  analysis
technology, human genome analysis has ended, and the focus has shifted to research
on commensal  microbiomes[1-8].  Body sites  that  are  exposed to  a  wide variety  of
external  antigens  through  mucosal  sites,  such  as  the  respiratory  organs  and
gastrointestinal tract, are constantly colonized with microorganisms, resulting in a
symbiotic relationship. If this relationship is broken, the host immune response to
microorganisms is distorted, sometimes causing disease. Dysbiosis, which is defined
as an imbalance in the repertoire of the intestinal microbiota, is associated with many
disorders in humans[9-11]. Therefore, novel strategies to control dysbiosis-associated
diseases by attenuating the function of related microorganisms are necessary.

Antibiotics,  which  were  first  deployed in  1910,  have  drastically  changed our
lives[12]. In particular, penicillin discovered in 1928 contributed to the discovery of
naturally occurring antibiotics. Antibiotics have extended our lifespans by > 20 years.
However,  a  rapid increase  in  multidrug-resistant  bacteria  has  arisen because  of
overuse and inappropriate consumption and application of antibiotics, which reveals
that antibiotics are not a panacea for infectious diseases[13,14]. In addition, antibiotics
sometimes cause dysbiosis and can lead to diseases such as Clostridioides difficile (C.
difficile) infection[15]. Thus, although antibiotics are available for killing disease-specific
commensal bacteria, they are not suitable for eliminating only pathogens.

Fecal microbiota transplantation (FMT), an effective therapy for dysbiosis-related
diseases such as C. difficile infection, has been shown to improve aberrant intestinal
microbiota[16,17]. Feces from healthy individuals, which are considered relatively safe,
are usually used for FMT. However, it was recently reported that antibiotic-resistant
bacteria from donor feces were transferred to recipients and induced bacteremia[18].
This is an emergency issue and FMT is not now a recommended regimen. In fact,
elimination of only pathobionts through the intestinal mucosa is difficult; therefore,
development of novel methods to control dysbiosis-related diseases by attenuating
the function of pathobionts is strongly desired.

In this review, we present current knowledge about the intestinal microbiome in
health and disease, and discuss a prime–boost type, next-generation mucosal vaccine
that we have recently developed and reported for control of disease mediated by
intestinal bacteria.

INTESTINAL MICROBIOME IN HEALTH AND DISEASE
Intestinal commensal microbes have primarily been analyzed through single bacterial
species isolation. Since most enteric bacteria do not like aerobic conditions, it has been
difficult to culture them. However, advances in culture-independent technologies
such as next-generation sequencing have shown the dynamics of the human intestinal
microbiota [9 ,19 ].  For  example,  trillions  of  intestinal  microbes  reside  in  the
gastrointestinal tract and dysbiosis is correlated with diseases such as obesity[20-22],
diabetes[23-25], rheumatoid arthritis (RA)[26-31], and inflammatory bowel diseases (IBDs)
including Crohn’s  disease  and ulcerative  colitis[32].  Therefore,  in  addition to  the
current best treatment, it is suggested that controlling dysbiosis may improve these
diseases.

It is widely accepted that metabolic diseases, such as obesity and diabetes, are
intimately correlated with diet and dysbiosis[22,33]. Germ-free (GF) mice do not develop
western-diet-induced obesity[34-36]. It was also shown in 2006 that colonization of GF
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mice with intestinal microbiota from obese mice led to a significantly greater increase
in total body fat than colonization with microbiota from lean mice[21]. This suggests a
strong  association  between  the  intestinal  microbiota  and  host  metabolism.  The
intestinal microbiome from obese mice and humans has a significantly higher ratio of
Firmicutes to Bacteroidetes (F/B ratio) than that from their lean counterparts[21,37-40]. In
addition,  the bacterial  diversity  is  lower in the microbiota from obese than lean
individuals[39,41]. However, other studies have shown no difference in the F/B ratio
between obese and lean individuals[42-46]. Therefore, although the diversity in obese
individuals is low compared with that in lean individuals, the correlation between
obesity and the F/B ratio is unclear.

There  is  an increased risk  of  developing type 2  diabetes  in  obesity;  therefore,
dysbiosis might also influence type 2 diabetes. Previous reports have shown that
disorder of  intestinal  carbohydrate metabolism and low-grade gut inflammation
cause insulin resistance[47-49]. A reduced abundance of short chain fatty acids such as
butyrate  is  associated  with  type  2  diabetes[50].  Vrieze  et  al[51]  showed  that  FMT
improved insulin resistance in individuals with metabolic syndrome by altered levels
of butyrate-producing intestinal bacteria, indicating that gut microorganisms might be
developed as therapeutic tools in the future.

RA is a systemic inflammatory disorder including in polyarthritis that leads to joint
destruction. Although both genetic and environmental factors are involved in the
pathogenesis  of  RA,  intestinal  microbiota  analysis  has  recently  attracted  much
attention, along with single nucleotide polymorphism analysis. When mice are reared
in GF conditions, arthritis does not develop, indicating that intestinal microbiota is
related to onset of arthritis[28,52-54]. Abdollahi-Roodsaz et al[53] showed that interleukin-1
receptor antagonist knockout mice do not spontaneously develop T-cell-mediated
arthritis under GF conditions. However, they do develop arthritis under specific-
pathogen-free conditions, and monocolonization of the mice with Lactobacillus bifidus
induces  arthritis[53].  Matsumoto  et  al[55]  also  showed that  K/BxN T-cell  receptor
transgenic mice develop arthritis under specific-pathogen-free conditions, but not GF
conditions, and monocolonization of the mice with segmented filamentous bacteria
induces arthritis. Previous studies have shown that composition of the microbiota is
altered in early RA[26,28,56]. In the preclinical stages of RA, Prevotella species such as
Prevotella copri  (P. copri) are dominant in the intestine. Maeda et al[28]  showed that
microbiota isolated from RA patients whose fecal bacteria contained high levels of P.
copri  contributes  to  the  development  of  Th17-dependent  arthritis,  and  mono-
colonization of SKG mice with P. copri is sufficient to induce arthritis. Thus, although
more precise investigations are needed to determine which bacterium is a target for
RA treatment, it is strongly suggested that there are intestinal pathogens that are
related to the pathogenesis of human RA.

IBDs are increasing in incidence worldwide[57]. Also in Japan, the numbers of IBD
patients have rapidly increased over the past 30 years, suggesting that in addition to
genetic predisposition, environmental factors such as dysbiosis are more involved in
the development of IBDs[58]. Various changes in the intestinal microbiota have been
reported in IBD patients[59-61]. The advent of next-generation sequencing has revealed a
range of altered microbiota in the intestine. However, a common problem is that it is
unclear whether the dysbiosis observed in IBD patients is a cause or a consequence of
intestinal inflammation. Given the complicated relationships between the intestinal
immune system and gut  microbiota,  further  studies  are  needed to  elucidate  the
pathogenesis of IBDs and develop more effective treatments.

PRIME–BOOST TYPE MUCOSAL VACCINE
Conventional injectable vaccines, including subcutaneous vaccines, have the ability to
induce  antigen-specific  IgG,  maintain  antigen-specific  immune  memory,  and
contribute to prevention of severe infection[62-64]. Pediatric vaccination is a key factor in
protection against many life-threatening infections[64]. However, despite progress in
vaccine technology, many infections remain incompletely controlled in both humans
and animals worldwide.

Mucosal immune responses are thought to be effective for prevention of infection
because foreign antigens, such as microorganisms and food antigens, enter the host
through mucosal surfaces[65-69].  In the mucosal sites, secretory IgA (SIgA) plays an
important role in regulating intestinal health and disease prevention[70-78]. The major
functions  of  IgA are  (1)  prevention  of  adherence,  colonization,  and  invasion  of
pathogenic microorganisms that invade the mucosal surface; (2) neutralizing effect on
toxins  and  enzymes  produced  by  pathogenic  microorganisms;  (3)  capturing
pathogenic microorganisms in the mucus layer; and (4) antimicrobial activity. Only
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limited numbers of mucosal vaccines are available to date; therefore, a new mucosal
vaccine strategy is  strongly desired for induction of  beneficial  systemic immune
responses.

IgA  is  the  most  abundant  antibody  in  mucosal  secretory  components.  In  the
intestinal mucosa, there are two types of IgA production mechanisms, represented by
T-cell-dependent and T-cell-independent immune responses[79-82]. In the gut, T-cell-
dependent antibody responses are involved in activation of B cells by antigen in the
organized lymphoid tissue of Peyer’s patches, mesenteric lymph nodes and isolated
lymphoid follicles[82-84]. It has been shown that both CD40L and transforming growth
factor-β1 are essential for the induction of T-cell-dependent IgA class switching[85]. In
contrast, T-cell-independent IgA class switch recombination occurs in B1 cells of the
gut-associated lymphoid tissue (GALT),  where  IgA is  constitutively  induced by
stimulation with commensal bacteria[82].

GALT, such as Peyer’s patches and isolated lymphoid follicles, is the primary site
for IgA induction[86,87]. It has been reported that antigen-specific IgA-producing B cells
develop in GALTs with the aid of  GALT-dendritic  cells  (DCs).  It  is  notable  that
retinoic acid synthesized by GALT-DCs can contribute to IgA synthesis[87-89]. GALT-
DCs are also able to imprint gut-homing chemokine receptors such as α4β7 integrin
and C-C chemokine receptor type 9 on B and T cells, which is an essential process for
lymphocyte migration to the intestines[90].

Intestinal lamina propria DCs (LPDCs) are also crucial inducers of SIgA-producing
B cells in a T-cell-independent manner. We have previously reported two subsets of
small-intestinal  LPDCs based on their  differential  CD11c and CD11b expression
patterns:  CD11chiCD11b lo  LPDCs  and  CD11chiCD11bhi  LPDCs[91-93]  (Figure  1).
CD11chiCD11bhi  intestinal  LPDCs  express  the  gene  encoding  the  retinoic-acid-
converting enzyme, Raldh2, and are able to induce antigen-specific SIgA as well as
systemic immunity mediated by Toll-like receptor (TLR) 5 or 9 stimulation[91] (Figure
1). In contrast to CD11chiCD11bhi LPDCs, CD11chiCD11blo LPDCs express TLR3, TLR7
and TLR9, which recognize dsRNA, ssRNA, and CpG oligodeoxynucleotides (ODNs),
respectively[93] (Figure 1). They do not express Raldh2 and are not involved in IgA
synthesis in the small-intestinal lamina propria[93]. In addition, high titers of antigen-
specific  IgA were detected in fecal  extracts  from antigen-loaded CD11chiCD11bhi

LPDC-immunized mice[93]. Accordingly, CD11chiCD11bhi LPDCs are considered to be
an ideal target for a mucosal vaccine, but it has thus far been technically difficult to
induce antigen-specific mucosal immunity using conventional injectable vaccines.

We have recently reported that splenic DCs stimulated with both curdlan, dectin-1
ligand, and CpG-ODN, TLR9 ligand, successfully induced antigen-specific fecal IgA
as well as antigen-specific serum IgG and splenic Th1 and Th17 responses in mice[94].
This indicates that combination of curdlan and CpG-ODN is available as an adjuvant
of  parenteral  vaccination to  induce  broad functional  immunity  against  mucosal
antigens. We found that intramuscular immunization with the combination of curdlan
and CpG-ODN emulsified with  incomplete  Freund’s  adjuvant  induced antigen-
specific fecal IgA as well as serum IgG and splenic Th1 and Th17 responses[94] (Figure
2). However, although antigen-specific IgG in serum was continuously detected after
prime injection, antigen-specific IgA production in feces was only transiently detected
by parenteral  immunization with  curdlan +  CpG-ODN[94].  Therefore,  additional
immunization, for example, boosting, to induce more durable mucosal immunity at
targeted mucosal sites is thought to be necessary. We have demonstrated that after
oral,  nasal  or vaginal  antigen administration,  high titers of  long-lasting antigen-
specific  intestinal,  lung  or  vaginal  IgA  are  inducible[94]  (Figure  2).  Also,  this
prime–boost  vaccine  is  effective  against  cholera-toxin-induced  diarrhea  and
Streptococcus  pneumoniae  (S.  pneumoniae)  infection [94].  Thus,  we  established
intramuscular antigen injection adjuvanted with curdlan + CpG-ODN and subsequent
antigen administration on target mucosal sites (prime–boost vaccination) as a new
vaccine  strategy  capable  of  inducing  strong  and durable  systemic  and mucosal
immunity.

FUTURE REGULATION OF DYSBIOSIS-ASSOCIATED
DISORDERS
Intestinal dysfunction has been correlated with multifactorial diseases[9], suggesting
that the mucosal immune responses provide a solid causal link between pathological
symptoms  in  the  host  and  disease-associated  dysbiosis.  Several  studies  have
identified some pathobionts, such as Clostridium ramosum (C. ramosum)[95], P. copri[26,28],
Helicobacter pylori[96], adherent invasive Escherichia coli[97], Clostridium scindens[98], and
Enterococcus gallinarum[99].  Therefore, regulating the function of disease-associated
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Figure 1

Figure 1  Function of two distinct lamina propria dendritic cells in the small intestine. Mouse small-intestinal lamina propria dendritic cells (LPDCs) are divided
into two subsets on the basis of CD11c and CD11b expression. CD11chiCD11blo LPDCs express Toll-like receptor (TLR) 3, TLR7 and TLR9, whereas
CD11chiCD11bhi LPDCs express TLR5 and TLR9. After TLR stimulation, activated CD11chiCD11bhi LPDCs can produce interleukin (IL)-12p40, IL-6, transforming
growth factor-β and retinoic acid, and subsequently induce antigen-specific Th1 and Th17 responses and antigen-specific-IgA-producing plasma cells. In contrast to
CD11chiCD11bhi LPDCs, activated CD11chiCD11blo LPDCs can induce antigen-specific Th1 responses, but not antigen-specific Th17 responses and antigen-
specific-IgA-producing plasma cells. TLR: Toll-like receptor; TGF: Transforming growth factor; IL: Interleukin; DC: Dendritic cell.

pathobionts  can  lead  to  prevention  or  treatment  of  dysbiosis-related  disorders.
However, antibiotics are not suitable for eliminating only pathogens because they
have the possibility to induce dysbiosis or multidrug-resistant bacteria[100].

C. ramosum is an obligate anaerobic bacterium first identified in an appendicitis
patient in 1898 and widely inhabits the human gastrointestinal tract. Increased levels
of C. ramosum are associated with human obesity and diabetes[20,23]. C. ramosum is also
associated  with  clinical  symptoms  of  metabolic  disorders  in  gnotobiotic  mice
colonized with C. ramosum  alone and a  simplified human intestinal  microbiome
containing  C.  ramosum.  Furthermore,  it  has  been  shown that  the  numbers  of  C.
ramosum are higher in mice fed a high-fat compared with normal-fat diet, and this
results in increased expression of Slc2a2 in the small-intestinal mucosa[95]. Therefore,
we recently applied our prime–boost vaccination to control C. ramosum-mediated
diseases. Our vaccine for C. ramosum significantly inhibited body weight gain and the
increased levels of C. ramosum in the intestinal mucosa under a high-fat diet[94]. It also
resulted in decreased expression of Slc2a2  and subsequently ameliorated glucose
intolerance[94]. It is notable that this immunization strategy did not induce dysbiosis[94].
Thus, it might be effective for preventing C. ramosum-associated obesity and diabetes.

Until now, there have been few methods that can induce high titers of antigen-
specific IgA at target mucosal sites using an injection-type mucosal vaccine. It  is
noteworthy that we have developed a next-generation prime–boost mucosal vaccine
using curdlan and CpG-ODN, and used it for control of diseases such as S. pneumoniae
infection, and other diseases mediated by intestinal bacteria[94]. With the advent of
gnotobiotic  technology,  function of  the intestinal  microbiome has been revealed.
However, since there are few methods for specifically attenuating the function of
intestinal bacteria, many diseases mediated by intestinal bacteria are still not fully
elucidated. Our vaccination is the world’s first immunization strategy, and has the
potential to be an excellent technique for functional analysis of intestinal bacteria.
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Figure 2

Figure 2  Scheme of antigen-specific immune responses by prime–boost vaccination. Parenteral immunization with antigen emulsified in curdlan and CpG-
oligodeoxynucleotides induces antigen-specific fecal IgA as well as serum IgG and splenic Th1 and Th17 responses. Once primed, high titers of long-lasting antigen-
specific lung, intestinal, or vaginal IgA are induced after nasal, oral, or vaginal antigen administration, respectively. Also, antigen-specific Th1 and Th17 responses are
induced at the targeted organs. CpG-ODN: CpG oligodeoxynucleotides.

CONCLUSION
As the link between various diseases and aberrant intestinal microbiota becomes
apparent, there is an urgent need to develop and disseminate control strategies for
dysbiosis in addition to existing effective treatments. Antibiotics are not specific to
pathobionts and may induce dysbiosis that can lead to disease. Attempts have also
been made to control diseases mediated by intestinal bacteria using FMT or probiotic
treatments, but these are established and effective treatments. An important treatment
for diseases mediated by intestinal bacteria is to improve the underlying disease
without inducing new dysbiosis. Vaccination with curdlan + CpG-ODN and antigens
and  subsequent  antigen  administration  can  effectively  induce  antigen-specific
systemic and mucosal immunity. This prime–boost vaccine method has been patented
in Japan and prime–boost vaccines targeting various infectious diseases are being
developed  for  future  human  prescription.  There  is  no  doubt  that  the  vaccine
technology  discussed  in  this  review  will  become  a  new  treatment  in  the  next
generation  of  antimicrobial  strategies.  Further  analysis  of  the  gut  microbiota  is
necessary, but we are eagerly looking forward to developing pathobiont-specific
treatments for human diseases in the future.
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