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A B S T R A C T

The purpose of the present work is to provide a complete overview of possible direct/indirect implications on the
quality of aquatic compartments due to the recent SARS-CoV-2 outbreak. With this aim, the environmental
impacts are mainly related to i) the virus persistence in sewage and wastewaters, and ii) possible fate in aquatic
compartments of drugs tested and administered to SARS-CoV-2 infected patients. Because SARS-CoV-2 spread is
very recent, and there is a lack of specific studies on this strain, the virus persistence in wastewaters, the
parameters influencing the persistence, as well as the detection methodologies are referenced to the general
coronaviruses group. However, the present detailed report of up-to-date knowledge on this topic can provide a
useful source for further studies focusing on more deepened investigations of SARS-CoV-2 behaviour in the
environment. Such a perspective is significant not only for the control of virus diffusion but also represents a
crucial point for the identification of produced alteration to the environmental quality.

1. Introduction

At the end of December 2019, the first detection of SARS-CoV-2
virus occurred in Wuhan (Hubei Province, China) creating a big con-
cern related to a possible outbreak (Zhu et al., 2020). The SARS-CoV-2
is a viral strain from a wide viruses group identified as coronaviruses in
the sixties (Woo et al., 2010). The group includes strains such as MERS-
CoV and SARS-CoV, which have been responsible for a widespread
diffusion in the last 20 years (Lee and Hsueh, 2020; Lu et al., 2015).
However, the current SARS-CoV-2 showed a wider and faster diffusion
than the previous coronaviruses. In fact, its basic reproduction number
(R0) is almost one order of magnitude higher compared to the others of
the same group (R0-SARS-CoV-2> R0-SARS-CoV > R0-MERS-CoV) (Cao et al.,
2020; Liu et al., 2020; WHO, 2003, 2019). Because of the SARS-CoV-2
worldwide diffusion, the World Health Organization (WHO) declared
the state of pandemic on the last March 11, and each country all over
the world adopted specific containment measures on the population
and economic activities (Cucinotta and Vanelli, 2020; WHO, 2020a). It
resulted in a global social restrictive action with no precedents. To date,

the presence of the virus is confirmed in more than 200 countries with a
number of confirmed infected individuals not far from 7.0 millions
(WHO, 2020b). However, these numbers are likely to be much higher,
as they do not include positive asymptomatic patients (Pan et al.,
2020).

Because of their nature of respiratory pathogens, over the years the
main concern about coronavirus strains transmission has been focused
on aerosols and droplets, coming from infected individuals (Chen et al.,
2020). Indeed aerosols and droplets control are primary means for the
coronavirus spreading and play a key role for the prevention and con-
tainment of the contagion extension (Lai et al., 2020; Motta Zanin et al.,
2020). Nonetheless, to fully control the outbreak, many researchers
moved their attention on the potential correlation between the cor-
onavirus spread and its survival in the environment outside the human
host (Núñez-Delgado, 2020). In particular, different studies focused on
the presence endurance of the virus in sewage and wastewaters iden-
tifying this environmental compartment as a potential mean of ex-
posure to the contagion (Daughton, 2020; Reusken et al., 2020;
Wigginton and Boehm, 2020). This concern is mainly due to the
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coronaviruses structure which is common to other viruses (such as
H1N1 “Spanish flu”, avian influenza H5N1 and H7N9, SARS-CoV,
MERS-CoV) detected in the stools and urine of infected individuals
(Wigginton et al., 2015). For instance, Wang et al. (2005c) observed
that SARS-CoV persistence in body fluids (stools and serum) was up to
96 h. Similarly some studies recently reported traces of the SARS-CoV-2
RNA in the wastewater of several European urban centres, during the
current pandemic (Reusken et al., 2020; Wurtzer et al., 2020).

This is certainly the main aspect of the direct relationship existing
between the current SARS-CoV-2 pandemic and the aquatic compart-
ments (Venugopal et al., 2020; Zambrano-Monserrate et al., 2020).
Nonetheless, there is an indirect relationship, which is worth high-
lighting too, related to the use of drugs administered to infectious in-
dividuals. In particular, several scientific studies are currently focusing
on specific drugs already used for other medical diseases therapy in
order to identify effective treatments, which could mitigate the dan-
gerous effects of coronavirus infection (Guo et al., 2020). All these
drugs are released, in massive amount, into the wastewater through the
body fluids of the infected patients, potentially causing a dramatic al-
teration of the final aquatic receptor compartments and exposed biota
(Richardson, 2012).

Therefore, the aim of the present manuscript is to provide a wide
and detailed report about all the potential consequences of the current
pandemic, which can be directly or indirectly exerted on the aquatic
compartments. Accordingly, the manuscript focuses on three main
sections analysing i) the correlations existing between the SARS-CoV-2
virus and the previously identified strains of the same coronavirus
group; ii) the persistence characteristics of coronaviruses in waste-
water, and the related methodologies for its detection; iii) the negative
impact on water bodies, related to the release of therapeutic drugs for
coronavirus infection treatments.

2. Genetics and virology

Coronaviruses are positive single stranded RNA viruses, having a
diameter of about 60–140 nm (Bárcena et al., 2009; Cascella et al.,
2020). They are named after their shape, observed at the electron mi-
croscope, which reminds a crown (in latin corona) because of the pre-
sence of spike proteins on the surface. Coronaviruses are common in
many animal species and, in some cases, can be transmitted to humans,
leading to zoonotic diseases (Su et al., 2016). Sequencing and phylo-
genetic analyses have shown that the novel SARS-CoV-2 is closely re-
lated (similarity rate of 88%) to a group of human SARS-like cor-
onaviruses and bat SARS-related coronaviruses (bat-SL-CoVZC45, bat-
SL-CoVZXC21).

The viral composition of coronaviruses includes pericapsid en-
velope, which consists of a double layer of phospholipids and glyco-
proteins (Ashour et al., 2020). The several structural proteins (Fig. 1)
are represented by the membrane (M), the envelope (E), the spike (S),
and the nucleocapsid (N) one (Fehr and Perlman, 2015). The N protein
is sited into the virus particle core and interacts with the virus RNA. The
stabilization of this latter is due to the M protein, which is bound to the
N protein. The structural M protein is the most abundant one and
confers the shape to the virus (Nal et al., 2005). It forms the virion
internal core, and together with the E protein, the mature viral envel-
opes. The amount of the E protein in the envelope is not high but,
during the replication cycle, its presence inside the infected cells is
reported to be remarkable. Moreover the E protein plays a fundamental
role in the virus production (Siu et al., 2008). The S protein is re-
sponsible for the formation of homotrimeric spikes on the viral particle
surface. It is a highly glycosylated protein, which mediates viral entry
into the host cells. In certain coronaviruses, each S protein monomer
can be present on viral particle as two subunits (i.e. S1 and S2). This is
caused by the S protein separation occurring in the virus replication,
due to the host furin-like proteases (Bosch et al., 2003; Izaguirre, 2019).
In other strains, such as SARS-CoV, the S protein does not separate and

forms the S1 and the S2 domains (Ashour et al., 2020; Xiao et al., 2003).
In S1, the receptor-binding domain (RBD) is responsible for the med-
iation with the related host cell receptor while the S2 domain allows the
fusion between the two cell membranes (host and viral) which is ne-
cessary for the entry of coronaviruses into the host cells (He et al.,
2006).

It has been reported that some cellular receptors can be identified as
coronaviruses receptor such as the case of angiotensin-converting en-
zyme 2 (ACE2) for the SARS-CoV (Wrapp et al., 2020). Moreover, Lu
et al. (2020) observed similarities in the RBD between SARS-CoV and
SARS-CoV-2. According to this, ACE2 could be a cellular receptor also
for the new SARS-CoV-2 (Wrapp et al., 2020). ACE2 in humans is well
expressed in the respiratory tract, so when the virus enters it is able to
quickly replicate in the target cells, causing strong respiratory infec-
tions (Jia et al., 2006).

Also relevant, taking into account that cell entry of coronaviruses
depends on binding of the viral S proteins to cellular receptors and on S
protein priming by host cell proteases, Hoffmann et al. (2020) found
that SARS-CoV-2 uses the SARS-CoV receptor ACE2 for entry and the
serine protease TMPRSS2 for S protein priming.

3. Direct environmental impact on wastewater

3.1. Persistence of coronavirus in wastewaters

Because of the limited time span occurred from the beginning of the
COVID-19 pandemic, very scarce research studies dealing with the
presence of the SARS-CoV-2 in wastewaters are yet available (Lodder
and de Roda Husman, 2020; Medema et al., 2020). However, the
methodologies applied in the past for the detection of other strains of
the same coronavirus group, such as virus RNA detection, Most Prob-
able Number method, etc. can be considered applicable also for the
present situation, and might turn out useful for monitoring the presence
of the SARS-CoV-2 in wastewaters (Barcelo, 2020; C. C.G. Daughton,
2020; La Rosa et al., 2020; Orive et al., 2020).

Generally speaking, research studies concerning the fate of viruses
in aquatic compartment, have been mainly focused on nonenveloped
enteric viruses, as these viruses are characterized by higher resistance
in various environmental conditions (Carducci et al., 2020). The
number of studies concerning the fate of enveloped viruses in aquatic
compartments, instead, is quite limited, as enveloped viruses are pre-
disposed to deactivate in waters (Wigginton et al., 2015). Nonetheless,
in the last 10–15 years, some authors have reported, the possible pre-
sence of enveloped viruses, such as coronaviruses in sewage systems
(Cantalupo et al., 2011; Ikehata et al., 2009). Indeed, despite the faster
inactivation rate of enveloped viruses compared to the nonenveloped
ones, the survival time of enveloped viruses can be not negligible, ac-
cording to the specific environmental conditions (Table 1). Main
parameters affecting the potential survival of coronaviruses in waste-
water are represented by temperature, relative humidity (Casanova
et al., 2010; La Rosa et al., 2012) as well as suspended solids content
and disinfection products in waters. For instance, Ye et al. (2016) ob-
served a T90 (time for 90% virus titer decrease) equal to 7 h for en-
veloped Pseudomonas phage ɸ6 and equal to 13 h for murine hepatitis
virus (MHV) in unpasteurized water at 25 °C. The value of T90 increased
to 28 h for ɸ6 and to 36 h for MHV at 10 °C. On the contrary, Casanova
and Weaver (2015) reported a faster inactivation of bacteriophage ɸ6 in
sewage, increasing the temperature. In more details, the limit of virus
detection occurred after 4 observation days at 30 °C, and after 10 ob-
servation days at 22 °C. In general, low temperatures and humidity can
be favourable conditions for a prolonged persistence and more con-
cerning viability of coronaviruses (Yeo et al., 2020). Comparing dif-
ferent waters (tap water filtered and unfiltered) or wastewaters (pri-
mary effluent filtered and unfiltered and secondary effluent),
experimental results always indicated a decrease of coronavirus sur-
vival with increasing temperatures (Gundy et al., 2009) reporting a
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coronavirus T99.9 (time for 99.9% of virus titer decrease) growing from
10 to above 100 d with temperature decreasing from 23 to 4 °C in fil-
tered tap water. Moreover, comparing filtered and unfiltered primary
effluent from wastewater treatment plant at the same environmental
temperature (23 °C), the same authors observed a higher T99.9 for the
unfiltered wastewater than for the filtered one (Gundy et al., 2009).
Such a result suggested that a higher solid content in water/wastewater
samples can provide a higher protection to the virus, for its longer
survival in the environment. This is expected considering the hydro-
phobicity of the coronavirus envelop, which leads to a lower virus so-
lubility and to a potentially higher rate of virus adhesion onto solid
particles (Gundy et al., 2009). Similar inactivation trend were observed
for MHV and transmissible gastroenteritis virus (TGEV) in pasteurized
settled sewage at two different temperatures (25 and 4 °C) (Casanova
et al., 2009). A faster inactivation was observed for both viruses at 25 °C
with a 99.99% of virus titer decrease (4log10 viral reduction kinetic) of
19 d for TGEV and 14 d for MHV. On the contrary, half of the time was
required in order to achieve a 99% of virus titer decrease (2log10 viral
reduction kinetic) for both viruses.

Further information concerning the survival of coronaviruses in
aquatic environment can be found in the report of the World Health
Organization (WHO, 2003), dealing with a significant SARS spreading
occurred in a housing block of Hong Kong. According to a preliminarily
investigation, in fact, the contagion was attributed to the contaminated
air, flowing inside the apartments through the ventilation system lo-
cated in the building bathrooms, having a flawed plumbing system.
This hypothesis led to a pilot-scale investigation conducted with a
model organism, Pseudomonas putida, aimed at assessing the potential
virus transmission via building plumbing systems (Gormley et al.,
2017). The experimental observations confirmed that the organisms
spreading could have been favoured by the transportation through the
ventilation system. Such an event allowed identifying the inter-
connectedness of a plumbing system and its conditions, as two funda-
mental factors to be monitored in order to prevent infection diffusion,
especially in high risk location, such as hospitals (Gormley et al., 2020).

Strongly related to the high potential of sanitary structures to con-
tribute to viruses spreading, are the two research studies conducted by
Wang et al. (Wang et al., 2005a, 2005b). In these studies the RNA of
SARS-CoV was isolated from patients’ stools, no RNA was found in their
urine. Moreover, no live viruses were isolated from stools samples,
suggesting the possibility of no infectious SARS-CoV excretion from
digestive system of infected patients (Wang et al., 2005a). Also, the
virus nucleic acid was mainly found in sewage samples collected before

the disinfection treatment while less RNA occurrence was detected in
disinfected sewage samples (Wang et al., 2005b). However, despite the
RNA of SARS-CoV was detectable in sewage for 8 d, no active virus
could be found (Wang et al., 2005b). Indeed, SARS-CoV virus showed a
marked sensibility to inactivation due to disinfection products in was-
tewater. Experimental tests proved that both sodium hypochlorite and
chlorine dioxide may exert an inactivation effect on the virus (Wang
et al., 2005c). However, free chlorine from sodium hypochlorite dis-
solution resulted more efficient as inactivating agent, recommending its
use as preferred disinfecting agent for hospital wastewater (Tsai and
Lin, 1999; Wang et al., 2005c). It has to be highlighted that, besides
chlorinated compounds, several other organic compounds, including
alcohols (ethanol, and isopropanol), aldehydes (formaldehyde), and
phenolic compounds (creosol soap) were found to be very efficient for
some coronaviruses inactivation, such as MHV and canine coronavirus
(Wolff et al., 2005). This generally highlights that an important ap-
proach to limit possible exposure to the virus infection could be re-
presented by new disinfection technologies and upgrading of waste-
water treatment plants for the remediation of wastewaters deriving
from specific buildings (such as hospitals) (Naddeo and Liu, 2020).

3.2. Methodologies for detection of coronaviruses persistence in wastewater

Detection methods for viruses in the environment must be preceded
by a suitable concentration technique especially in case of very low
virus levels. Various concentration methods have been tested, each
presenting some advantages and some disadvantages. Among others
can be cited the methods based on adsorption-elution (negatively/po-
sitively charged filters, glass powder or fiber), precipitation (organic
flocculation, ammonium sulphate precipitation), ultracentrifugation,
ultrafiltration, and lyophilisation (Bosch et al., 2006).

Detection methods are often tested on artificially contaminated
samples. A well-assessed practice includes the use of surrogate viruses.
This practice is useful to overcome problem related to viruses which are
not easily cultivable (Bosch et al., 2006). For instance, MHV and TGEV
have been successfully used as surrogate viruses to identify the cor-
onaviruses persistence at various ambient temperatures and in different
water environments (Casanova et al., 2009).

Common traditional methods for virus determination are re-
presented by plaque assay or, for viruses not forming plaques, by the
50% tissue culture infective dose (TCID50). In the plaque assay, it is
possible to determine the viral titer in terms of plaque forming units
(pfu). The assay is conducted using petri dishes, inoculating countable

Fig. 1. Transmission electron microscope image (left side) and structural schematic representation (right side) of SARS-CoV-2.

M. Race, et al. Environmental Research 188 (2020) 109808

3



Ta
bl

e
1

In
fo
rm

at
io
n
re
la
te
d
to

ex
pe
ri
m
en
ta
lc

on
di
tio

ns
,i
nv
es
tig

at
ed

vi
ru
se
s,
co
nc
en
tr
at
io
n/
de
te
ct
io
n
m
et
ho

ds
,a

nd
m
ai
n
re
su
lts

on
vi
ru
s
pe
rs
is
te
nc
e
in

w
as
te
w
at
er
s
re
po

rt
ed

in
lit
er
at
ur
e
st
ud

ie
s.

Ex
pe
ri
m
en
ta
l

Vi
ru
s

Co
nc
en
tr
at
io
n
m
et
ho

d
D
et
ec
tio

n
m
et
ho

d
Vi
ru
s
pe
rs
is
te
nc
e
m
ai
n
re
su
lts

Re
fe
re
nc
e

21
st
oo
la

nd
ur
in
e
sa
m
pl
es

co
lle
ct
ed

fr
om

Xi
ao

Ta
ng

Sh
an

H
os
pi
ta
la

nd
30

9t
h
H
os
pi
ta
l;
se
w
ag
e

sa
m
pl
es

co
lle
ct
ed

fo
r
7
d
be
fo
re

di
si
nf
ec
tio

n
(2
50

0
m
l)
an
d
af
te
r
di
si
nf
ec
tio

n
(2
5,
00

0-
50

00
0
m
l)

SA
RS

-C
oV

Po
si
tiv

el
y
ch
ar
ge
d
fil
te
r
m
ed
ia

pa
rt
ic
le
s

RT
-P
CR

as
sa
y
•N

o
pr
es
en
ce

of
in
fe
ct
io
us

SA
RS

-C
oV

•S
A
RS

-C
oV

RN
A
de
te
ct
io
n
in

st
oo
ls
am

pl
es

(7
on

11
)
of

sy
m
pt
om

at
ic

pa
tie

nt
s

•N
o
RN

A
de
te
ct
io
n
in

ur
in
e
sa
m
pl
es

an
d
in

st
oo
lo

fr
ec
ov
er
ed

pa
tie

nt
s

•R
N
A
de
te
ct
io
n
in

se
w
ag
e
sa
m
pl
es

be
fo
re

di
si
nf
ec
tio

n
an
d
RN

A
de
te
ct
io
n
in

se
w
ag
e
af
te
r
di
si
nf
ec
tio

n
on

ly
in

3
d

W
an
g
et

al
.

(2
00

5a
)

Se
w
ag
e
sa
m
pl
es

co
lle
ct
ed

be
fo
re

di
si
nf
ec
tio

n
(2
50

0
m
l)
an
d
af
te
r
di
si
nf
ec
tio

n
(2
5,
00

0-
50

00
0
m
l)
fr
om

Xi
ao

Ta
ng

Sh
an

H
os
pi
ta
l,
30

9t
h

H
os
pi
ta
la

nd
ho

us
in
g
es
ta
te

Ba
ct
er
io
ph

ag
e
f 2
(a
s
co
ro
na
vi
ru
s

m
od

el
)
an
d
SA

RS
-C
oV

Po
si
tiv

el
y
ch
ar
ge
d
fil
te
r
m
ed
ia

pa
rt
ic
le
s

RT
-P
CR

as
sa
y
•N

o
pr
es
en
ce

of
in
fe
ct
io
us

SA
RS

-C
oV

•S
A
RS

-C
oV

RN
A
de
te
ct
io
n
in

se
w
ag
e
sa
m
pl
es

be
fo
re

th
e
di
si
nf
ec
tio

n

•R
N
A
de
te
ct
io
n
in

se
w
ag
e
af
te
r
di
si
nf
ec
tio

n
on

ly
in

3
d

•A
ve
ra
ge

f 2
re
co
ve
ry

fr
om

ho
sp
ita

ls
sa
m
pl
es

of
79

.2
an
d
85

.8
%

be
fo
re

di
si
nf
ec
tio

n
an
d
61

.2
an
d
85

.5
%

af
te
r
di
si
nf
ec
tio

n

W
an
g
et

al
.

(2
00

5b
)

Sa
m
pl
es

of
st
oo
l(
3)

an
d
ur
in
e
(2
)
fr
om

Xi
ao

Ta
ng

Sh
an

H
os
pi
ta
l;
w
as
te
w
at
er

sa
m
pl
es

fr
om

30
9t
h

H
os
pi
ta
l;
se
w
ag
e
sa
m
pl
es

fr
om

ho
us
in
g
es
ta
te
;

di
si
nf
ec
tio

n
te
st
s
on

w
as
te
w
at
er

w
ith

di
ffe

re
nt

ch
lo
ri
ne

(b
y
di
ss
ol
ut
io
n
of

so
di
um

hy
po

ch
lo
ri
te
)

or
ch
lo
ri
ne

di
ox
id
e
co
nc
en
tr
at
io
n
an
d
di
si
nf
ec
tio

n
tim

e

Ba
ct
er
io
ph

ag
e
f 2
(a
s
co
ro
na
vi
ru
s

m
od

el
)
an
d
SA

RS
-C
oV

–
RT

-P
CR

as
sa
y
•P

er
si
st
en
ce

of
SA

RS
-C
oV

in
w
as
te
w
at
er

an
d
se
w
ag
e
sa
m
pl
es

fo
r
2
d
at

20
°C

an
d
14

d
at

4
°C

•P
er
si
st
en
ce

of
3
d
in

st
oo
la

nd
17

d
in

ur
in
e
at

20
°C

an
d

pe
rs
is
te
nc
e
>

17
d
at

4
°C

•C
om

pl
et
e
SA

RS
-C
oV

in
ac
tiv

at
io
n
w
ith

10
pp

m
of

ch
lo
ri
ne

af
te
r1

0
m
in

•R
ed
uc
ed

eff
ec
tiv

en
es
s
in

pr
es
en
ce

of
ch
lo
ri
ne

di
ox
id
e

•T
ot
al

in
ac
tiv

at
io
n
w
ith

20
pp

m
of

ch
lo
ri
ne

in
1
m
in

an
d
w
ith

40
pp

m
of

ch
lo
ri
ne

di
ox
id
e
in

5
m
in

W
an
g
et

al
.

(2
00

5c
)

W
as
te
w
at
er

sa
m
pl
es

co
lle
ct
ed

fr
om

w
as
te
w
at
er

tr
ea
tm

en
tp

la
nt

an
d
pa
st
eu
ri
ze
d;

co
m
pa
ri
so
n
w
ith

re
ag
en
t-g

ra
de

an
d
la
ke

w
at
er
;t
es
ts
on

te
m
pe
ra
tu
re

eff
ec
t
ca
rr
ie
d
ou

ta
t
23

–2
5
°C

an
d

4
°C

TG
EV

an
d
M
H
V
(a
s
su
rr
og
at
es

co
ro
na
vi
ru
se
s)

–
–

•9
9%

de
cr
ea
se

in
in
fe
ct
io
us

tit
er

eq
ua
lt
o
22

d
fo
r
TG

EV
an
d
17

d
fo
r

M
H
V
at

25
°C

•N
o
si
gn
ifi
ca
nt

de
cr
ea
se

ov
er

49
d
at

4
°C

in
re
ag
en
t-g

ra
de

w
at
er

an
d

99
%

de
cr
ea
se

in
in
fe
ct
io
us

tit
er

eq
ua
lt
o
13

d
fo
r
TG

EV
an
d
10

d
fo
r

M
H
V
at

25
°C

•1
lo
g 1

0
de
cl
in
e
fo
r
TG

EV
an
d
no

de
cl
in
e
fo
r
M
H
V
af
te
r
14

d
at

4
°C

in
la
ke

w
at
er

•9
9%

de
cr
ea
se

in
in
fe
ct
io
us

tit
er

eq
ua
lt
o
9
d
fo
rT

G
EV

an
d
7
d
fo
rM

H
V

at
25

°C
in

pa
st
eu
ri
ze
d
se
tt
le
d
w
at
er

•9
9%

de
cr
ea
se

in
in
fe
ct
io
us

tit
er

eq
ua
lt
o
49

fo
r
TG

EV
an
d
70

d
fo
r

M
H
V
at

4
°C

in
pa
st
eu
ri
ze
d
se
tt
le
d
w
at
er

Ca
sa
no

va
et

al
.

(2
00

9)

Sa
m
pl
es

of
un

fil
te
re
d
ta
p
w
at
er

te
st
ed

at
23

°C
an
d

fil
te
re
d
ta
p
w
at
er

te
st
ed

at
23

an
d
4
°C
;s
am

pl
es

of
fil
te
re
d
an
d
un

fil
te
re
d
pr
im

ar
y
effl

ue
nt

te
st
ed

at
23

°C
;s
am

pl
es

of
un

fil
te
re
d
se
co
nd

ar
y
(a
ct
iv
at
ed

sl
ud

ge
)
effl

ue
nt

te
st
ed

at
23

°C

Fe
lin

e
in
fe
ct
io
us

pe
ri
to
ni
tis

vi
ru
s

(F
IP
V)
,H

um
an

co
ro
na
vi
ru
s
22

9
E

(H
Co

V)
an
d
Po

lio
vi
ru
s
1
LS
c-
2a
b

(P
V-
1)

–
Pl
aq
ue

as
sa
y

or
TC

ID
50

•9
9%

vi
ru
st
ite

rd
ec
re
as
e
of

6.
76

d
(f
or

H
Co

V
an
d
FI
PV

)a
nd

43
.3

d
(f
or

PV
-1
)
in

fil
te
re
d
ta
p
w
at
er

at
23

°C

•H
ig
he
r
pe
rs
is
te
nc
e
in

un
fil
te
re
d
ta
p
w
at
er

at
23

°C
eq
ua
lt
o
8.
09

d
fo
r

H
Co

V,
8.
32

d
fo
r
FI
PV

,a
nd

47
.5

d
fo
r
PV

-1

•P
er
si
st
en
ce

in
fil
te
re
d
ta
p
w
at
er

at
4
°C

eq
ua
lt
o
39

2
d
fo
r
H
Co

V,
87

d
fo
r
FI
PV

,a
nd

13
5
d
fo
r
PV

-1

•9
9%

vi
ru
s
tit
er

de
cr
ea
se

of
1.
57

d
fo
r
H
Co

V,
1.
60

d
fo
r
FI
PV

,a
nd

23
.6

d
fo
r
PV

-1
in

fil
te
re
d
pr
im

ar
y
effl

ue
nt

at
23

°C

•H
ig
he
r
pe
rs
is
te
nc
e
in

un
fil
te
re
d
pr
im

ar
y
effl

ue
nt

at
23

°C
eq
ua
lt
o

2.
36

d
fo
r
H
Co

V,
1.
71

d
fo
r
FI
PV

,a
nd

7.
27

d
fo
r
PV

-1

•P
er
si
st
en
ce

in
se
co
nd

ar
y
effl

ue
nt

at
23

°C
eq
ua
lt
o
1.
85

d
fo
r
H
Co

V,
1.
62

d
fo
r
FI
PV

•L
ow

er
99

%
vi
ru
st
ite

rd
ec
re
as
e
re
qu

ir
ed

fo
rP

V-
1
in

se
co
nd

ar
y
effl

ue
nt

(3
.8
3
d)

•S
im

ila
r
tr
en
ds

fo
r
99

.9
%

vi
ru
s
tit
er

de
cr
ea
se

G
un

dy
et

al
.

(2
00

9)

Sa
m
pl
es

of
w
as
te
w
at
er

co
lle
ct
ed

an
d
pa
st
eu
ri
ze
d
at

70
°C

fo
r
3
h
ar
tifi

ci
al
ly

sp
ik
ed

w
ith

en
ve
lo
pe
d

vi
ru
s
su
rr
og
at
e;

vi
ru
s
tit
er

de
cr
ea
se

te
st
ed

at
22

an
d
30

°C

Ba
ct
er
io
ph

ag
e
ɸ6

(a
s
su
rr
og
at
e
of

en
ve
lo
pe
d
hu

m
an

vi
ru
se
s)

–
–

•P
re
do

m
in
an
t
lin

ea
r
vi
ru
s
in
ac
tiv

at
io
n
ob

se
rv
ed

at
30

°C
w
ith

7l
og

10

re
du

ct
io
n
af
te
r
da
y
3
an
d
de
te
ct
io
n
lim

it
at

da
y
4

•S
lo
w
er

an
d
no

nl
in
ea
r
in
ac
tiv

at
io
n
fr
om

da
y
0–
3

•A
cc
el
er
at
ed

in
ac
tiv

at
io
n
oc
cu
rr
ed

fr
om

da
y
4–
6
fo
llo

w
ed

by
sl
ow

er
av
er
ag
e
in
ac
tiv

at
io
n
fr
om

da
y
7–
9
at
22

°C
(d
et
ec
tio

n
lim

it
ac
hi
ev
ed

at
da
y
10

)

Ca
sa
no

va
an
d

W
ea
ve
r
(2
01

5)

(c
on
tin
ue
d
on

ne
xt

pa
ge
)

M. Race, et al. Environmental Research 188 (2020) 109808

4



and statistically proper number of virus particles on a layer of im-
mobilized cells (Cooper, 1962). The TCID50, in turns, allows to de-
termine the sample dilution value corresponding to the occurrence of
50% cytopathic effect (CPE) (Gundy et al., 2009). Together with these
traditional methods, nowadays more modern molecular techniques are
frequently adopted. The most used ones are the polymerase chain re-
action (PCR) and the reverse transcription polymerase chain reaction
(RT-PCR). In particular, the RT-PCR is a technique used to transcript the
RNA in a DNA chain through the reverse transcriptase enzyme and
successively amplify the DNA fragment through the PCR technique in
order to indirectly determine RNA species (Carter and Shieh, 2015).
Real-time RT-PCR has been recently proposed as reliable technology to
institute new diagnostic tests in the current pandemic emergency re-
lated to the SARS-CoV-2 (Corman et al., 2020). In this work, a validated
diagnostic workflow has been suggested to detect the current cor-
onavirus and methodology design/validation was allowed due to the
genetic connection between the SARS-CoV-2 and the previous SARS-
CoV.

Further methodology suggested for rapid and economic pathogens
diagnosis is represented by paper-based devices (Magro et al., 2017).
These devices are small and easily transportable analytical tools which
can integrate various processes useful for tests on nucleic acid (from the
extraction to the amplification and visual detection) (Mao et al., 2020).
Paper-based devices could therefore potentially represent an useful tool
for virus fast detection in wastewaters and fundamental monitoring
system useable in emergency circumstances such as the current SARS-
CoV-2 infection spreading.

4. Potential environmental impact of administered drugs

During an outbreak, the lack of information on effective antiviral
drugs (AVs) or vaccines leads to nonspecific therapy for the mini-
mization of the mortality rate. In the current pandemic, the existing
drugs are being administered in much larger amount so representing an
important threat to the quality of the receiving water bodies. Besides
the treatment of disease due to coronaviruses, drugs are administered
against a broad spectrum of viral infections such as HIV, herpes, he-
patitis, Ebola and Malaria as well as autoimmune diseases such as lupus
and rheumatoid arthritis (Babıć et al., 2017; Stebbing et al., 2020).

As part of clinical trials on drugs for the treatment of COVID-19
disease, the use of humanized monoclonal antibody like tocilizumab
(TCZ) has been approved by FDA (Food and Drug Administration) for
various therapies including those related to rheumatologic disease and
lymphoproliferative disorder (Xu et al., 2020). TCZ is a recombinant
monoclonal antibody against the interleukin-6 receptor (IL-6R) pro-
duced by recombinant DNA technology. IL-6R is a cytokine adopted in
the development of immunological and inflammatory reactions. TCZ
recognizes the IL-6 binding site on the cell membrane inhibiting the IL-
6 transduction signalling (Kallen, 2002; Venkiteshwaran, 2009).

TCZ is considered a Protein and Peptide Therapeuticals (PPTs) not
associated to environmental concern by the European Medicines
Evaluation Agency (EMEA) guideline on environmental risk assessment
(ERA) for human pharmaceuticals (EMEA, 2006). Although ecotox-
icological data are not available, the half maximal effective con-
centration (EC50), as reported by the safety data sheet from the sup-
plier, showed no TCZ adverse effects for concentrations higher than
100 ppm (Table 2). Biodegradability and acute ecotoxicity studies on
TCZ report rapid biodegradability in sewage and surface waters as well
as low ecotoxic characteristics (RCC Ltd, 2006a, 2006b; 2006c, 2006d;
Straub, 2010).

The hydroxychloroquine (HCQ) and the chloroquine (CQ) represent
another class of disease-modifying anti-rheumatic drug (DMARD) also
added to the list of trial drugs in the guidelines for the diagnosis and
treatment of COVID-19 (J. Liu et al., 2020). These drugs have also been
used for years in antimalarial prevention. HCQ and CQ belong to the
quinolone family and exert their action by blocking toll-like receptorsTa
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(TLR) and reducing the activation of dendritic cells, with consequent
mitigation of the inflammatory process.

The possible increasing release due to human excreta of HCQ and
CQ in surface water through wastewater treatment plant effluents re-
presents a concerning environmental issue. CQ and HCQ are highly
soluble in water with partition coefficient octanol/water (log Kow)
equal to 4.67 for HCQ and 3.03 for CQ. Moreover, available literature
studies indicate that these drugs are only partially transformed inside
the human body and can be almost completely excreted through urine
and stools. It is reported that CQ is excreted unaltered at a percentage
variable from 40 to 70% through kidney, and at a percentage variable
from 5 to 10% through urine (Haładyj et al., 2018). Similarly, per-
centages of unaltered excreted HCQ range from 40 to 60% through
kidney and from 8 to 25% through stools (Babıć et al., 2017).

CQ and HCQ can be also considered as persistent and/or bioaccu-
mulative at high release extent in the environment potentially re-
presenting new emerging contaminants (Daughton, 2014; Howard and
Muir, 2011; Zurita et al., 2005). Nevertheless, data on CQ and HCQ
concentrations in the environment are very scarce. Chen et al. (2013)
reported the CQ and HCQ detection in surface sediments near three
rivers in southeast China. Similarly, Olaitan et al. (2017) found CQ in
wastewater effluents in Nigeria (Olaitan et al., 2017). The general
findings (Table 2) confirmed that CQ and HCQ compounds could be
risky for the environment and should be classified as harmful to aquatic
organisms (Ramesh et al., 2018; Zurita et al., 2005).

From an environmental perspective, different considerations should
be made for the AVs used in COVID-19 disease therapies. The real
concern related to AVs use and their environmental persistence, in
analogy to the development of antibiotic resistance, is the potential
formation of resistant strains through chronic exposure. This could
consequently entail more adverse effects to human health than other
classes of drugs (Jain et al., 2013). Moreover, further drawbacks are
represented by AVs low biodegradability and their increasing use
during pandemic outbreaks (Funke et al., 2016; Hill et al., 2014; Russo
et al., 2017).

Most of the AVs are excreted as unchanged parent compounds with
highly bioactive characteristics which are resistant to conventional
treatments in wastewater treatment plants. Moreover, they can react
with organic and inorganic constituents during wastewater treatment
and can be transformed in additional molecules characterized by higher
persistence (Funke et al., 2016; Jain et al., 2013). Despite no effective
AV has been specifically approved for the treatment of COVID-19 dis-
ease, recent studies are focusing on the possible use of Lopinavir and
Remdesivir (Grein et al., 2020). Regarding the Lopinavir, the environ-
mental risk assessment in hospital effluents has been evaluated through
the determination of the Predicted Environmental Concentration (PEC)
and the Predicted No-Effect Concentration (PNEC) (Acree and Grubbs,
2012). The result from the risk assessment showed that PEC value of
Lopinavir was higher than its PNEC value (0.26 and 0.05 ppb,

respectively) therefore indicating a potential environmental harm.
Moreover, the Lopinavir was listed among the top ten ranked active
pharmaceutical ingredients (API), mainly due to its high bioaccumu-
lation potential (log Kow>3.9) (Daouk et al., 2015).

The Remdesivir is a nucleoside analog, which incorporates into
nascent viral RNA chains and inhibits viral RNA polymerases. This AV
has broad-spectrum activity against members of the filoviruses, cor-
onaviruses, and paramyxoviruses. The EMEA has recommended for
compassionate use of the Remdesivir although information on the re-
lated environmental risk (ecotoxicity and degradability in the en-
vironment) are lacking. According to this, further researches are ne-
cessary to assess the magnitude of the environmental risk posed by the
Remdesivir.

5. Conclusions

Since the beginning of globalization era, COVID-19 disease has been
the first pandemic characterized by such a wide and significantly fast
spread. This global emergency took all the world countries unawares.
The occurrence of the infection spread also in poorly industrialized
areas with limited resources for epidemic containment and healthcare
systems represents an even more concerning issue.

In this context, the scientific community should not only pay close
attention to the health aspect but also inevitably consider the en-
vironmental one. In fact, fundamental importance should be given to
further deepened studies aimed at identifying accurate monitoring and
analysis systems for prompt detection of potential viruses diffusion
through aquatic media. An additional environmental element to be
taken into account is related to the consumption of drugs for the cor-
onavirus related disease therapy, which could lead to risky release of
toxic substances in the receiving water bodies. To date, the removal
efficiencies of these new contaminants from wastewaters through fea-
sible treatments have been poorly investigated. Therefore, future re-
searches should focus on the environmental fate of these contaminants,
and should evaluate the effectiveness of tertiary treatments (such as
advanced oxidation processes) on their removal.
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Table 2
Toxic effects of drugs used for the COVID-19 disease treatment on selected models and biomarkers.

Compound Organism Species Endpoint (exposure time) EC50 (ppm) Reference

Tocilizumab Alga Desmodesmus subspicatus Growth rate inhibition (72 h) >100 Roche safety data sheet (2018)
Alga Desmodesmus subspicatus Biomass inhibition (72 h) >100
Crustacean Daphnia magna Immobility (48 h) >100
Fish Danio rerio Embryotoxicity (96 h) >100

Chloroquine Bacteria Aliivibrio fischeri Bioluminescence Inhibition (24 h) 132.1 Zurita et al. (2005)
Alga Chlorella vulgaris Growth Inhibition (24 h) 133.3
Crustacean Daphnia magna Immobility (24 h) 21.5
Topminnow PLHC-1 cell line Protein content (24 h) 158.3
Basket willow Salix viminalis Relative transpiration (NRT) (117 h) (pH from 6 to 8) 7–28 Rendal et al. (2011)
Crustacean Daphnia magna Immobility (48 h) (pH from 7 to 9) 4–30

Hydroxychloroquine Alga Raphidocelis subcapitata Growth rate (72 h) 3.1 FASS safety data sheet (2019)
Crustacean Daphnia magna Immobility (48 h) 14
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