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Abstract: Nighttime light (NTL) images have been broadly applied to extract urban built-up areas
in recent years. However, the typical NTL images provided by Defense Meteorological Satellite
Program/Operational Linescan System (DMSP/OLS) and National Polar-Orbiting Partnership’s Visible
Infrared Imaging Radiometer Suite (NPP/VIIRS) have the drawbacks of low resolution and blooming
effect, which bring difficulty for the application of them in urban built-up area extraction. Therefore,
this paper proposes the POI (point of interest) and LST (land surface temperature) adjusted NTL
urban index (PLANUI) to extract the urban built-up areas with high accuracy. PLANUI is the first
urban index to integrate POI and NTL for urban built-up area extraction. In this paper, NPP/VIIRS
and Luojia 1-01 images were introduced as the original NTL data and the vegetation adjusted NTL
urban index (VANUI) was selected as the comparison item. The threshold method was utilized to
extract urban built-up areas from these data. The results show that: (1) Based on the comparison with
the reference data, the PLANUI can make up the shortcoming of low resolution and the blooming
effect of NTL effectively. (2) Compared with the VANUI, the PLANUI can significantly improve the
accuracy of the urban built-up areas extracted and characterize urban features. (3) According to the
results based on NPP/VIIRS and Luojia 1-01 images, the PLANUI has extensive applicability, both for
regions with different degrees of economic development and NTL data with different resolutions.
PLANUI can enhance the features of urban built-up areas with social sensing data and natural remote
sensing data, which helps to weaken the NTL blooming effect and improve the extraction accuracy.
PLANUI can provide an effective approach for urban built-up area extraction, which plays a certain
guiding role for the study of urban structure, urban expansion, and urban planning and governance.
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1. Introduction

The nighttime light (NTL) data can capture light signals from urban buildings, road facilities,
and vehicles. The NTL images in urban built-up areas have continuous spatial distribution and
brightness value significantly higher than that in surrounding areas. Therefore, many studies utilize
it for the urban built-up area extraction [1–6]. Currently, the typical NTL images are provided by
Defense Meteorological Satellite Program/Operational Linescan System (DMSP/OLS) and National
Polar-Orbiting Partnership’s Visible Infrared Imaging Radiometer Suite (NPP/VIIRS) [7,8]. Their spatial
resolutions are 1 km and 500 m, respectively. However, the study of extracting urban built-up areas
using NTL data only is limited to a large scale due to the low resolution, which makes it hard to obtain
high-precision urban built-up area results on small and medium levels [9]. Meanwhile, the area of the
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urban built-up area extracted from the NTL image is larger than the actual range due to the blooming
effect [10], and the extraction accuracy is low. Elvidge et al. [2] also believe that the blooming effect is
one of the main causes of overestimating the urban built-up areas.

In recent years, many studies [11,12] combined multi-source data with NTL data to build urban
indices for the urban built-up area extraction to improve its accuracy on small and medium levels.
Several studies have demonstrated that abundant information on urban built-up areas can be obtained
by utilizing multi-source data with different characteristics [13,14]. The human settlement index (HIS),
vegetation adjusted NTL urban index (VANUI), and enhanced vegetation index (EVI) adjusted NTL
index (EANTLI) are the most broadly utilized urban indices. They assume an inverse relationship
between vegetation and urban built-up area to mitigate NTL blooming effect and characterize urban
built-up areas [15–17]. Lu et al. [15] proposed the HIS by combining NTL images with the normalized
difference vegetation index (NDVI) images. HIS overcorrects the light signals in peri-urban areas.
Besides, NTL blooming effect is still obvious in bare soil areas, where NDVI values are zero. Zhang
et al. [16] proposed VANUI combining NDVI and NTL, which enriches urban fringe information and is
broadly utilized in urban built-up area extraction. However, VANUI has a limitation in the peri-urban
areas where both vegetation values and NTL values are high. In addition, it is not suitable for some
desert cities in North America regarding the unobvious relationship, between urban built-up areas
and vegetation. According to the same principle, Zhuo et al. [17] built the EANTLI by combining EVI
with NTL. Compared with NDVI, EVI can weaken the effects of atmosphere and soil background on
vegetation index. Therefore, it can promote the accuracy of the urban built-up areas extracted without
the shortcomings of NDVI. However, the EANTLI value may be abnormally high especially for the
mixed pixels in the water land boundary region, which increases the misclassification error.

Previous articles ignored combining NTL and point of interest (POI) data to build an index for
urban built-up area extraction, while actually POI is positively correlated with urban built-up areas.
POI is a kind of social sensing data produced by human activities and contains a wealth of location
and attribute information. The abrupt changes of its density at the boundaries between urban and
surrounding suburbs and rural regions make it easier to extract urban built-up areas [18,19]. At present,
the main method using POI is to set a threshold value for the kernel density of POI to obtain accurate
urban built-up area results. Some studies have demonstrated that there is a good coupling relationship
between NTL and POI, which has high consistency and broad applicability in the study of urban
spatial structure [20,21]. POI brings convenience in obtaining the boundary of urban built-up areas
accurately and helps to make up the shortages of the low resolution and the blooming effect of NTL
data. Therefore, this paper combined NTL and POI data to build a new index for urban built-up area
extraction. It is urgent to clarify the effects of the combination on the extraction improvement. In
addition to POI, this paper also introduces a natural remote sensing data, land surface temperature
(LST). Many studies have shown that the land surface temperature is positively correlated with the
distribution of urban land cover [22,23]. The characteristics of urban built-up areas can be enhanced by
LST from a natural perspective, which is different from the humanistic and social perspective of POI.
Some [14,24,25] chose the combination of NTL and LST to extract urban built-up areas. Among them,
He et al. [24] combined the NTL with LST to extract dynamic information of global urban expansion by
the fully convolutional network. Further, Zhang et al. [25] proposed the temperature and vegetation
adjusted NTL urban index (TVANUI) for the purposes of characterizing urban built-up areas and
reducing the blooming effect. Their satisfactory results proved that the combination of LST and NTL
has great potential in improving the extraction accuracy of urban built-up areas. Therefore, this paper
combined NTL with POI and LST, to establish the POI and LST Adjusted NTL Urban Index (PLANUI)
for the study on the extraction of urban built-up areas.

The widely used NPP/VIIRS images with 500-m resolution were introduced into this study
to explore the effects of PLANUI. Moreover, the Luojia 1-01 satellite was successfully launched in
June 2018 and began to provide NTL images with 130 m resolution and 250 km width. This data
greatly enhances the spatial resolution of NTL and was proved to have a great ability to extract urban
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areas [26–28]. Therefore, this paper also introduced Luojia 1-01 images into the urban built-up area
extraction experiments to verify whether PLANUI is suitable for NTL data with increasingly high
spatial resolution.

The primary purpose of this paper is to propose the PLANUI that combines NTL images with
POI and LST data to reduce the blooming effect of NTL and enhance urban built-up areas features for
promoting the extraction accuracy. The secondary objective is to explore whether PLANUI is suitable
for NTL with a high resolution like Luojia 1-01.

2. Data

2.1. Study Area

The study selected Nanjing, the provincial capital of Jiangsu province of China, as the study area
(Figure 1). Among the 11 districts under the jurisdiction of Nanjing, the main urban area, such as
Gulou and Xuanwu, have relatively advanced economic development, while other administrative
regions such as Lishui and Gaochun have remote geographical locations and relatively weak economic
development. Through utilizing the characteristics of the high spatial heterogeneity of Nanjing’s
regional development level, the broad applicability of PLANUI in regions with different development
levels can be verified.
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(5) Yuhuatai; (6) Qixia; (7) Pukou; (8) Lishui; (9) Jiangning; (10) Liuhe; (11) Gaochun.

2.2. Data Preparation

1. NTL data includes Luojia 1-01 and NPP/VIIRS images (Figure 2a,b), the selection date of which is
July 2018. Luojia 1-01 is provided by the High-Resolution Earth Observation System of the Hubei
Data and Application Center. NPP/VIIRS is provided by the National Geophysical Data Center
(NGDC). Table 1 shows the specific parameters of Luojia 1-01 and NPP/VIIRS.
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Table 1. Introduction to Specifications of Luojia 1-01 and NPP-VIIRS Images.

Satellite Luojia 1-01 NPP-VIIRS

Spatial Resolution 130 m 750 m
Width 250 km 3060 km

Spectrum Range 0.46–0.98 µm 0.5–0.9 µm
Radiometric Resolution 14 bits 14 bits

Available Years June 2018–present November 2011–present

2. POI was crawled in May 2018 through the Amap API. After data cleaning, Nanjing’s POI totaled
366,123, divided into 13 categories, mainly including catering, shopping, culture, and life. Kernel
density estimation was used to pre-process the POI data.

3. LST (resolution 1KM, Figure 2c) is derived from the MODIS eight-day composite product
(MOD11A2) in July 2018 provided by NASA (http://ladsweb.nascom.nasa.gov), the accuracy of
which is better than 1 ◦C [29].

4. The NDVI comes from the MOD13Q1 product (http://modis.gsfc.nasa.gov) provided by NASA. It
has a 16-day temporal resolution and a 250 m spatial resolution. Data in June–September 2018
with the best effect was selected for averaging and min-max normalization.

5. The reference built-up areas data is provided by the Resource and Environment Data Cloud
Platform (http://www.resdc.cn/). It has a 100 m spatial resolution and is produced by visual
interpretation and field investigation.

3. Methods

3.1. PLANUI: The POI and LST Adjusted NTL Urban Index

Previous studies [18–26,30] proved that POI data and LST data are suitable for the extraction of
urban built-up areas and that combining the two with NTL data for the study of the extraction of urban
built-up areas is feasible. Therefore, this paper combined NTL, POI, and LST data to propose PLANUI.
After referring to related researches [14,25,31], the three data are given equal weight. PLANUI aims
to make up the shortcomings of low spatial resolution and blooming effect of NTL images with the
help of POI data and LST data, to obtain more accurate urban built-up area results. Based on the fact
that urban built-up areas have generally higher LST values and POI density than other land types,
PLANUI can enhance the signals of urban built-up areas and weaken the interference light signals
of non-built-up areas, to improve the accuracy of the urban built-up areas extracted. Since the NTL
DN (digital number) values, the POI density values, and the LST values have significant positive
correlations with urban built-up areas, the “average value method” was chosen to establish PLANUI to
utilize the positive correlation for the ideal results. The geometric average value in the “average value
method” was selected for the following considerations: Firstly, the magnitude difference between
the DN value of NTL, the kernel density value of POI, and the value of LST is tremendous. The
geometric mean value can eliminate the impact of this difference and integrate the advantages of the
three. Secondly, there are many noise points in the NTL images, which have higher DN values than
actual. There are few or no points of interest near the noise points, so the POI kernel density value of
the points approach zero. At the same time, the LST values at the points are also usually low. The
geometric mean can use the POI kernel density values and LST values of the noise points to reduce the
influence of the abnormal DN values on the calculation result of PLANUI. Thereby, it can avoid some
areas with noise points being mistakenly extracted as urban built-up areas. According to the same
principle, it can reduce the part of the results that are incorrectly extracted, such as roads and railways
outside urban built areas. Thirdly, the urban built-up areas with weak light signals have a serious
problem of missing information in the process of extraction. The DN values of NTL are low in areas
with low economic development. In the process of extracting urban built-up areas using NTL images,
these areas are easily overlooked, resulting in many missing parts in the extraction results. However,

http://ladsweb.nascom.nasa.gov
http://modis.gsfc.nasa.gov
http://www.resdc.cn/
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these regions have high POI and LST values as other regions. Therefore, the POI and LST values can be
used to enhance the signals of urban built-up areas in the areas, and then make up the missing built-up
areas. Fourthly, one of the characteristics of the geometric mean is that it is less affected by extreme
values, which can correct the abnormal light values.

PLANUIi =
3
√

NTLi × Pi × Ti, (1)

where NTLi represents the DN value of point i, Pi represents the POI kernel density value of point i, and
Ti is LST value at point i. In this paper, the PLANUI includes the LJ-PLANUI and the NPP-PLANUI
according to the combined NTL data (Figure 3).
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3.2. The Implement of PLANUI

The original NTL and LST data were preprocessed by necessary steps to avoid the abnormal pixels
influencing the final results. This study used the method of precise geometric correction proposed by
Jiang et al. [28], which utilizes distributed ground control points (GCPs) and Landsat 8 OLI to conduct
the ortho-rectification, to correct the Luojia 1-01 images. In addition, the outliers of the LST data were
removed by the quality control flags [25].

Compared with POI data, NTL and LST data are easy to preprocess before constructing PLANUI.
It is challenging to obtain rational data of POI density. Therefore, kernel density estimation was
selected to get the POI probability density in this paper. The advantage of this method is that it is not
affected by grid size and position [32], so it can obtain high-quality POI kernel density estimation data.
Kernel density estimation takes a regular area with a specific bandwidth near any point as the range of
the density calculation and analyzes the spatial distribution status of the research object through the
calculation results. The weight is given according to the distance from the center point. The weight of
the data points close to the center point in the calculation area is relatively high. Otherwise it is low.
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So, the results obtained of all points in the study area are the weighted average density values [33].
The formula for calculating the kernel density Pi is as follow:

Pi =
1

nπR2 ×

n∑
j=1

Kj(1−
D2

ij

R2 )

2

(2)

where Kj represents the weight of point j, Dij represents the Euclidean distance between point i and
point j, R represents the bandwidth (Dij< R) of regular area, and n represents the quantity of point j in
the regular area.

The rational choice of bandwidth R according to the research question has a crucial impact on the
results [34]. Because this paper needs to combine the POI kernel density data with two night-time
light data with different resolutions, an appropriate bandwidth R should be selected. According to the
current research results [31], a bandwidth of 1000 m is selected, and at the same time, one-tenth of the
bandwidth is used as the side length of the resulting grid unit. The result is shown in Figure 2d.

3.3. The Evaluations of PLANUI

To fully evaluate the proposed index PLANUI, the widely used index VANUI was introduced
as a comparison term. VANUI is a standardized urban index adjusted by vegetation proposed by
Zhang et al. [16]. On the basis that there is a negative correlation between vegetation and urban
surface, MODIS NDVI is used to weaken the NTL blooming effect and strengthen the characteristics of
urban cores at night. The VANUI value of the core urban area approaches 1, and the VANUI value of
non-urban and non-illuminated areas approaches 0, so the VANUI is widely used in the extraction of
urban built-up areas.

VANUI = (1−NDVI) ×NTL (3)

in this paper, the VANUI index includes the LJ-VANUI index and the NPP-VANUI index, according to
the combined NTL data.

3.3.1. The Extraction Method

The threshold method [35,36] is typical in the field of urban built-up area extraction based on
NTL. This paper adopted the statistical data comparison method [37] with simple operation and high
accuracy. This method uses statistical data to assist in selecting the threshold and uses the dichotomy
to continuously change the threshold to make the extraction results approach the statistical data. The
extraction result based on the optimal threshold is the urban built-up area. This method can make up
the drawback of the blooming effect to a certain extent [38,39].

3.3.2. Accuracy Assessment

The accuracy of the extraction results was quantitatively evaluated by the statistical classification
index precision (Equation (4)), recall (Equation (5)), F1 score (Equation (6)) (the F1 score is the harmonic
mean of precision and recall) [40], and Kappa coefficient.

precision =
TP

TP + FP
(4)

recall =
TP

TP + FN
(5)

F1− score = 2 ×
prcision× recall

precision + recall
(6)

where TP is the area of the correct part of the extraction results, FP is the area of the wrong part of the
extraction results, and FN is the area of the omission pixels.
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The workflow of conception, implementation, and evaluation of PLANUI is shown in Figure 4.
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4. Results

4.1. Comparison of Spatial Distributions

Figure 5 shows the spatial distribution of Luojia1-01, LJ-VANUI, and LJ-PLANUI in all
administrative regions of Nanjing. The black line represents the reference urban built-up area
and is superimposed on these images. With the advantage of high spatial resolution, Luojia 1-01
images can reflect many details, such as streets and roads. It also enables luojia1-01 to roughly reflect
the general distribution of urban built-up areas. However, within the urban built-up areas, the DN
value of it varies greatly, which fails to accurately reflect the continuous distribution characteristics
of urban built-up areas. Meanwhile, the blooming effect exists in some areas with high light value
(Figure 5a,b). There are also many interference light signals from roads and non-built-up areas in
Luojia 1-01 image. LJ-VANUI slightly enhanced the signals of surrounding administrative areas and
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weakened the signals of surrounding roads. In general, the changes brought by LJ-VANUI are not
noticeable. LJ-PLANUI reduced the gap of DN value by enhancing the missing light signals in urban
built-up areas. Meanwhile, the light signals in the non-built-up areas are weakened to reduce the
influence of blooming effect and interference lights.
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NPP/VIIRS has the blooming effect, interference lights, and weak light signals in local areas
(Figure 5a–c). In the Lishui district and Gaochun district, the problem of light signals missing is
serious (Figure 5d,e), which is caused by the low spatial resolution of NPP/VIIRS. NPP-VANUI mainly
corrects the concentrated and high light signals in the main urban area. The improvement brought
by NPP-VANUI is not obvious. NPP-PLANUI reduces the blooming effect and interference lights by
weakening the light signals outside urban built-up areas. Meanwhile, NPP-PLANUI increased the
missing light signals of urban built-up areas, especially in the Lishui district and Gaochun district. In a
word, PLANUI effectively corrects the blooming effect and reduces the interference information while
increasing the missing information.
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4.2. Extraction Results

4.2.1. Comparison between Extraction Results and the Reference

The final results of Nanjing were extracted from Luojia 1-01, NPP/VIIRS, LJ-VANUI, NPP-VANUI,
LJ-PLANUI, and NPP-PLANUI by thresholds 17,450, 16.2, 9200, 8.65, 2200, and 230, respectively. These
results were compared with the reference, as shown in Figure 6.
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The overall shape of the extraction results from the Luojia 1-01 image is basically consistent with
the reference data. However, the urban built-up areas are fragmented and have many holes. Much
other non-built-up area information, such as roads outside urban built-up areas, is also extracted by
mistake. The results extracted from the LJ-VANUI index have no significant improvement. There
are still many holes and error parts in them. The results extracted from LJ-PLANUI are closest to
the reference data. On the one hand, the extraction results are complete because the missing urban
built-up areas are reasonably filled. On the other hand, the error parts of the extraction results are
significantly reduced.

In the main urban area of Nanjing, the extraction results from NPP/VIIRS not only have the
problem of many false urban built-up areas due to blooming effect and interference light signals but also
the problem of lack of urban built-up areas due to lack of local light information (Figure 6a). In Liuhe
district and Pukou district, there is boundary expansion due to the blooming effect. At the same time,
because some urban built-up areas are not accurately extracted, the extraction results are not continuous
and the boundaries are not complete (Figure 6b,c). The problem of discontinuity is particularly serious
in the Lishui district and Gaochun district (Figure 6d,e). NPP-VANUI did not improve these problems.
Although the extraction results of the Gaochun district extracted from NPP-VANUI increase the patches,
the problem of poor continuity has not been solved. The results extracted from NPP-PLANUI are
closest to the reference data. The extraction results from NPP-PLANUI in the main urban area are very
close to the reference data (Figure 6a) by reducing false extraction and increasing the missing parts.
As the missing urban built-up areas increases, the urban built-up areas of the non-main urban area
become complete and continuous (Figure 6b–e).

Figure 7 shows the spatial distribution of errors on the extraction results from NTL, VANUI,
and PLANUI in the selected regions of Nanjing, China. The urban built-up areas extracted from
Luojia 1-01 and LJ-VANUI have many omission pixels inside, and there are many commission pixels
around. NPP/VIIRS and NPP/VIIRS generated a large number of omission pixels, which caused the
lack of large-scale urban built-up areas, especially in Gaochun and Lishui districts. PLANUI effectively
corrects these errors by adding correct pixels and reducing commission pixels.

4.2.2. Accuracy Assessment

Table 2 shows the accuracy assessment of the extraction results from different data. It can be
seen that the PLANUI produces the highest extraction accuracy in all study areas among all the data.
Specifically, LJ-PLANUI produced 7% higher F1 score than luojia1-01, and NPP-PLANUI produced
about 3–4% higher F1 score than NPP/VIIRS in Nanjing and the main urban area. LJ-PLANUI produced
10–14% higher F1 score than luojia1-01 in the selected regions of Liuhe, Pukou, Lishui, and Gaochun.
NPP-PLANUI produced about 7–14% higher F1 score than NPP/VIIRS in the selected regions of Liuhe,
Pukou, and Lishui. It is worth mentioning that the F1 score of the result extracted from the NPP/VIIRS
images is only 0.22 in Gaochun, and NPP-PLANUI increased it to 0.55. Figure 8 shows the kappa value
of each extraction result. LJ-PLANUI produced 8–9% higher kappa than luojia1-01 and NPP-PLANUI
produced about 5%–6% higher kappa than NPP/VIIRS in Nanjing and the main urban area. The
kappa value of PLANUI increased significantly in the non-main urban area of Nanjing. LJ-PLANUI
produced 14–17% higher kappa than luojia1-01 in the selected regions of Liuhe, Pukou, Lishui, and
Gaochun. NPP-PLANUI produced 10–17% higher kappa than NPP/VIIRS in the selected regions of
Liuhe, Pukou, and Lishui. The Kappa of the result extracted from the NPP/VIIRS images is only 0.15 in
Gaochun, and NPP-PLANUI increased it to 0.48. This proves that PLANUI is suitable for both NTL
with different resolutions and regions with significant differences in development. The accuracy of
VANUI is 1–2% generally higher than that of NTL, but significantly lower than that of PLANUI. This
shows that PLANUI is better than NTL and VANUI in the urban built-up area extraction.
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Table 2. Accuracy assessment on the extraction results.

Study Area Index Luojia
1-01

LJ-
VANUI

LJ-
PLANUI NPP/VIIRS NPP-

VANUI
NPP-

PLANUI

Precision 0.73 0.74 0.81 0.78 0.79 0.81
Nanjing Recall 0.63 0.64 0.70 0.67 0.68 0.71

F1-score 0.68 0.69 0.75 0.72 0.73 0.76

Main Precision 0.84 0.84 0.88 0.82 0.82 0.87
urban Recall 0.77 0.78 0.86 0.85 0.85 0.88
area F1-score 0.80 0.81 0.87 0.84 0.84 0.87

Precision 0.79 0.79 0.82 0.74 0.78 0.80
Liuhe Recall 0.63 0.65 0.83 0.65 0.68 0.86

F1-score 0.70 0.71 0.83 0.69 0.73 0.83

Precision 0.89 0.90 0.91 0.89 0.92 0.91
Pukou Recall 0.67 0.69 0.85 0.76 0.76 0.87

F1-score 0.76 0.78 0.88 0.82 0.83 0.89

Precision 0.69 0.71 0.89 0.76 0.79 0.89
Lishui Recall 0.52 0.53 0.63 0.46 0.48 0.59

F1-score 0.60 0.61 0.74 0.58 0.60 0.71

Precision 0.66 0.64 0.88 0.62 0.73 0.88
Gaochun Recall 0.46 0.47 0.51 0.13 0.23 0.39

F1-score 0.54 0.54 0.64 0.22 0.34 0.55
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Figure 8. Comparison of Kappa coefficients of extraction results based on (a) Luojia 1-01 and
(b) NPP/VIIRS in Nanjing and in the five selected regions: Main Urban Area, Liuhe, Pukou, Lishui,
and Gaochun.

5. Discussion

5.1. Advantages of PLANUI

This study proposed PLANUI to extract urban built-up areas. The PLANUI is a new urban index.
In it, POI and LST are utilized to characterize the edge and interior of the urban built-up areas and
reduce the bloom effect of NTL. PLANUI is the first urban index that combines POI and NTL to extract
urban built-up areas. POI is a kind of data from social sensing, while LST is based on natural remote
sensing. Moreover, they are all positively correlated with urban built-up areas. With the help of
the positive correlation, PLANUI can enhance the signals of urban built-up areas and weaken the
influence of non-built-up areas light. The PLANUI was evaluated quantitatively and qualitatively by
comparing it with the NTL and the VANUI. The experimental results prove that the PLANUI can not
only effectively reduce the blooming effect, but also improve the extraction accuracy, which achieved
the first goal of this study. Comparison with NTL data and VANUI showed that the PLANUI not
only increases the boundary and detail information of the area affected by the blooming effect but also
adds many missing urban built-up areas. The extraction results from the PLANUI demonstrate great
integrity and connectivity and are consistent with the reference built-up areas (Figure 6), which is a
big advantage of the PLANUI. In addition, the PLANUI gained significant effects in districts where
economic development varies. In the main urban area, it can guarantee high extraction accuracy, while
supplementing detailed information and modifying boundary information. In the non-main urban
area, it not only significantly improved the extraction accuracy but also complemented the missing
parts. These prove that the PLANUI has extensive applicability in the field of urban built-up area
extraction, which is another advantage of the PLANUI.
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5.2. Difference for the Indexes Based on Luojia-1 and NPP/VIIRS

The applicability of PLANUI to different NTL data is great. By contrast, LJ-PLANUI performs
better than NPP-PLANUI, in terms of the spatial distribution of built-up areas and extraction accuracy.
The experimental results of Luojia 1-01 and NPP/VIIRS showed that they have different shortcomings.
The results extracted from the NPP/VIIRS images have a significant blooming effect. They are
excessively concentrated in the main urban area, has insufficient information on the boundary and
details, and have many missing parts in the administrative area with a low level of development.
Although the extraction results from the Luojia 1-01 images can well reflect the entire urban built-up
areas of Nanjing, there remains a problem with many holes and misinformation. The PLANUI based
on NTL images at two different resolutions achieved good results. The LJ-PLANUI can fill excessive
holes and add missing parts, and increase connectivity and integrity of the urban built-up areas. The
NPP-PLANUI can solve problems such as the out-of-bounds boundary caused by the blooming effect
by supplementing the boundary information, which guarantees the complexity of urban built-up areas.
Therefore, PLANUI is suitable for both NTL with different resolutions and regions with significant
differences in development. Due to the higher spatial resolution of Luojia 1-01 than NPP/VIIRS,
LJ-PLANUI performs better than NPP-PLANUI in the details of the interior and boundary of the urban
built-up areas (Figure 5). The urban built-up areas extracted from LJ-PLANUI are more complete and
accurate (Figure 6). It can be seen from Table 2 that the accuracy of the results extracted based on the
two indices is relatively high and the difference between the two is generally small. Only in Gaochun
District, the extraction accuracy of LJ-PLANUI is significantly higher than that of NPP-PLANUI, which
shows that LJ-PLANUI is more suitable for areas with low economic development than NPP-PLANUI.

5.3. Applications of PLANUI

As the urbanization develops rapidly, the challenge becomes how to make a reasonable policy
for urban planning, to ensure the orderly expansion of the city to avoid rapid population growth,
environmental pollution and resource shortage [41–44]. Accurate data of urban built-up areas are
necessary for urban planning [36,45], so it is very important to extract urban built-up areas effectively.
The extraction results from PLANUI has advantages of high precision and consistency with the
reference built-up area. In addition, PLANUI is suitable for the extraction in the regions with different
levels of development, greatly improving extraction efficiency and accuracy. Therefore, PLANUI can
be applied to urban planning and has certain guiding significance for urban expansion, urban structure,
and urban governance. The positive correlation between POI, LST, and urban built-up areas, which
PLANUI is based on, is more stable than the negative correlation of vegetation index. As a social and
economic complex, the city has two basic characteristics, namely the agglomeration effect and scale
effect, which can be reflected by the dynamic density of POI [18]. LST can reflect the phenomenon that
the temperature in urban built-up areas is generally higher than that of vegetation, water bodies, or
other land types [22,23]. It has a positive correlation with the distribution of urban built-up areas. The
stability of the relationship between vegetation index and the urban built-up areas is affected by the
following two points. First, in a short period of time, the urban vegetation cover changes in a large
area. Most cities in China are in the stage of transformation, development, and construction. In a short
period of time, large-scale land development and land use transformation are very common, which
has a great impact on urban vegetation coverage. Second, not all regions urbanize through large-scale
vegetation cover reduction. In suburban and desert cities in North America, such as Las Vegas and
Nevada, vegetation for residential and commercial would increase in the process of urbanization [16].
Therefore, in theory, PLANUI is suitable for more cities than the index based on vegetation, which
will be verified in the next study. From DMSP/LOS to NPP/VIIRS to Luojia 1-01, the development of
NTL is characterized by the improvement of spatial resolution. In this trend, PLANUI is suitable for
NTL with different resolutions, which provides a theoretical basis to introduce more NTL with high
spatial resolution into PLANUI. It can be seen that PLANUI has a broad application space in the field
of urban built-up area extraction from NTL in the future.
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5.4. Uncertainties and Prospects

The PLANUI is intuitive and easy to implement. POI is a kind of important geospatial big data,
which has advantages over remote sensing and population density data in terms of update speed
and acquisition cost [18]. LST is introduced into the study as traditional remote sensing data. The
method of average value is utilized to establish the PLANUI in this paper. The method utilizes the
advantages of the three and obtained good results. The study of the next stage needs to explore the
deeper physical relationship of the three and choose the more appropriate method to combine the data
to obtain more accurate results of urban built-up areas. However, PLANUI also has some shortcomings.
The establishment of the PLANUI is based on the positive correlation between NTL, POI, LST data,
and urban built-up areas. The positive correlation is quite significant in the most urban built-up areas,
which ensures high accuracy of the results extracted from the PLANUI. But in some regions, there is
uncertainty about the positive correlation, which is the leading cause of the error. For example, in the
areas surrounding the extremely developed urban built-up areas, the positive correlation could be
influenced and strengthened by the surrounding environment. In urban built-up areas with extremely
slow development, the positive correlation could be relatively weak. In future research, more data
sources are considered to be introduced, especially the data, such as NDVI and EVI, with a significant
negative correlation with urban built-up areas. The kind of negative correlation might correct the
uncertainty of the error producing area and improves accuracy. Future research tries to combine more
diverse data with NTL data to find a method with broader applicability and higher precision. The
PM2.5 and road network data are considered for future researches. In recent years, people have paid
more and more attention to air pollution and governance. As an essential indicator for monitoring
air pollution, PM2.5 has become a reliable data source for related research. Due to the influence of
many pollution sources and poor air circulation, the urban built-up areas usually have higher PM2.5
concentrations than the surrounding areas [46]. Road network density is an essential criterion for
measuring the level of urbanization [47]. Due to different economic development levels, the urban
built-up areas have higher road network density than the surrounding areas. These laws provide a
reliable theoretical basis for combining PM2.5 data and road network data with NTL images to extract
urban built-up areas.

6. Conclusions

This study proposed the PLANUI, a new index combining NTL, POI, and LST, to overcome the
limitations of the blooming effect and low resolution of NTL data and to characterize urban built-up
areas to improve the accuracy of the extraction.

(1) Compared with the VANUI index, the PLANUI can make the extraction results closer to the
reference data in overall shape and detail information, and can significantly improve the accuracy
of the urban built-up areas extracted.

(2) The PLANUI has extensive applicability, both for regions with varying degrees of economic
development and NTL data with different resolutions. In the main urban area, PLANUI can
increase the boundary and internal details while ensuring high accuracy. In the non-main
urban area, PLANUI can increase the extraction accuracy by adding missing urban built-up
areas. LJ-PLANUI can fill the holes inside the urban built-up areas and reduce falsely extracted
parts. NPP-PLANUI can significantly reduce the overflow effect to solve the problem of border
expansion and can also make up the lack of urban built-up area information.

(3) Due to the fact that Luojia 1-01 images have a higher spatial resolution than the NPP/VIIRS
images, LJ-PLANUI is better than NPP-PLANUI in showing the details of the interior and
boundary of the urban built-up areas and performs better than NPP-PLANUI in the areas with
poor economic development.

(4) LJ-PLANUI has achieved more significant accuracy improvement than NPP-PLANUI, which
shows that PLANUI is suitable for high-resolution NTL data. In the future, PLANUI can be
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utilized with more high-resolution night light data to conduct built-up area extraction research,
so it has a broad application prospect. Moreover, PLANUI can provide an effective approach
for research on urban built-up area extraction and contribute to the research investigating urban
expansion, urban planning, and urban pattern governance.
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