Skip to main content
. 2020 May 14;12(5):452. doi: 10.3390/pharmaceutics12050452
cp,a J/(kg·K) specific heat capacity of dry air: cp,a=1005 J/(kg·K) [12] (p. 289)
cp,v J/(kg·K) specific heat capacity of water vapor: cp,v=1863 J/(kg·K) [12] (p. 289)
cw J/(kg·K) specific heat capacity of water: cw=4191 J/(kg·K) [12] (p. 289)
cg J/(kg·K) specific heat capacity of granules (computed from specific heat of lactose [21] (p. 20), corn starch [22] (p. 10) and Povidon PVP [23] (p. 120)): cg=1321 J/(kg·K)
Δhe J/kg evaporation enthalpy of water at T=0 °C: Δhe=2501×103 J/kg [12] (p. 289)
k1 - factor used to obtain “mean” air temperature across cell height
kag J/(K·s) proportional factor describing heat transfer from air to granules
km 1/kg proportional factor describing evaporation rate
kloss J/(K·s) proportional factor describing heat transfer from air to ambient
ksep - factor used to obtain cell temperature sensor value from T˜ai and T^g,k
ma kg dry air mass in one dryer cell
mg,k kg dry granule mass in dryer cell k
mw,k kg water mass in granules in dryer cell k
m˙ae kg/s dryer emptying air mass flow
m˙ai kg/s dryer inlet mass flow of dry air into one dryer cell coming from AHU
m˜˙ai kg/s net inlet mass flow of dry air into one dryer cell
m˙ai,t kg/s total dryer inlet mass flow of dry air coming from AHU
m˙af kg/s mass flow of dry air for filter blowback
m˙ao,t kg/s total dryer outlet mass flow of dry air
m˙ao,k kg/s dryer cell k outlet mass flow of dry air
m˙ap kg/s mass flow of dry air for granule transport
m˙p kg/s mass flow of pre-blend
m˙gi kg/s mass flow of dry granules during filling
m˙wi kg/s mass flow of water (in wet granules) during filling
m˙ge kg/s mass flow of dry granules during emptying
m˙we kg/s mass flow of water (in wet granules) during emptying
m˙l kg/s mass flow of granulation liquid
m˙w kg/s mass flow of water from granules to air
p Pa air pressure
p˜i Pa air pressure of inlet air into one dryer cell
pv Pa partial pressure of water vapor
pv,s Pa partial saturation pressure of water vapor
Q˙loss J/s heat flow between dryer and surroundings (heat loss)
Q˙ag J/s heat exchange between air and granules
Rv J/(kg·K) specific gas constant of water vapor: Rv=461.53 J/(kg·K) [12] (p. 286)
φa % relative humidity of air
φaa % relative humidity of ambient air
φae % relative humidity of air while emptying
φai % relative humidity of air coming from the AHU
φao,t % relative humidity of total dryer outlet air
φao,k % relative humidity of cell k outlet air
Tg,k °C temperature in one dryer cell k
Ta °C air temperature
Taa °C ambient air temperature
Tae °C air temperature emptying
Tai °C air temperature of air coming from AHU
T˜ai °C air temperature of net air entering one dryer cell
Tao,k °C air temperature outlet of cell k
Tao,t °C air temperature dryer outlet
Tg °C measured granule temperature
Tgi °C granule temperature of granules being filled
Uav J internal energy of humid air
Ugw J internal energy of wet granules
wg,k % LOD of granules (wet basis) in dryer cell k (wg,k=mw,kmw,k+mg,k×100 %)
wp % initial LOD of pre-blend (wet basis)
xa kg/kg water content based on dry air mass, i.e., kg water per kg dry air
xai kg/kg water content of air coming from AHU
x˜ai kg/kg water content of net air entering one dryer cell
V˙a m3/s volume flow of air