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Abstract

We propose a new method for generating synthetic CT images from modified Dixon (mDixon) 

MR data. The synthetic CT is used for attenuation correction (AC) when reconstructing PET data 

on abdomen and pelvis. While MR does not intrinsically contain any information about photon 

attenuation, AC is needed in PET/MR systems in order to be quantitatively accurate and to meet 

qualification standards required for use in many multi-center trials. Existing MR-based synthetic 

CT generation methods either use advanced MR sequences that have long acquisition time and 

limited clinical availability or use matching of the MR images from a newly scanned subject to 

images in a library of MR-CT pairs which has difficulty in accounting for the diversity of human 

anatomy especially in patients that have pathologies. To address these deficiencies, we present a 

five-phase interlinked method that uses mDixon MR acquisition and advanced machine learning 

methods for synthetic CT generation. Both transfer fuzzy clustering and active learning-based 

classification (TFC-ALC) are used. The significance of our efforts is fourfold: 1) TFC-ALC is 

capable of better synthetic CT generation than methods currently in use on the challenging 

abdomen using only common Dixon-based scanning. 2) TFC partitions MR voxels initially into 

the four groups regarding fat, bone, air, and soft tissue via transfer learning; ALC can learn 

insightful classifiers, using as few but informative labeled examples as possible to precisely 

distinguish bone, air, and soft tissue. Combining them, the TFC-ALC method successfully 
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overcomes the inherent imperfection and potential uncertainty regarding the co-registration 

between CT and MR images. 3) Compared with existing methods, TFC-ALC features not only 

preferable synthetic CT generation but also improved parameter robustness, which facilitates its 

clinical practicability. Applying the proposed approach on mDixon-MR data from ten subjects, the 

average score of the mean absolute prediction deviation (MAPD) was 89.78±8.76 which is 

significantly better than the 133.17±9.67 obtained using the all-water (AW) method (p=4.11E-9) 

and the 104.97±10.03 obtained using the four-cluster-partitioning (FCP, i.e., external-air, internal-

air, fat, and soft tissue) method (p=0.002). 4) Experiments in the PET SUV errors of these 

approaches show that TFC-ALC achieves the highest SUV accuracy and can generally reduce the 

SUV errors to 5% or less. These experimental results distinctively demonstrate the effectiveness of 

our proposed TFC-ALC method for the synthetic CT generation on abdomen and pelvis using 

only the commonly-available Dixon pulse sequence.

Keywords

Synthetic CT generation; Dixon-based MR; Abdomen; attenuation correction (AC); transfer fuzzy 
clustering (TFC); active learning-based classification (ALC)

I. Introduction

PET/MR is a hybrid imaging modality which has several advantages over conventional 

PET/CT [1], [2], particularly in the areas of the abdomen and pelvis. In addition, the lack of 

ionizing radiation given the lack of CT may be beneficial for long-term surveillance of 

pediatric patients. The MR aspect of PET/MR also provides information on soft tissue 

composition via contrast enhancement as well as defined tissues margins for surgical or 

radiation therapy planning [61].

However, despite these advantages, PET/MR cannot be realized in clinical trials. PET/MR 

often exhibits SUVs that differ by as much as 20% from the values of PET/CT. This exceeds 

the 10% specification for SUV accuracy of the National Cancer Institute/American College 

of Radiology Imaging Network (NCI/ACRIN) [3] and the Society of Nuclear Medicine 

Clinical Trials Network [4] and thus disqualify PET/MR for use in multicenter clinical trials. 

The difference in SUVs is primarily due to inaccuracy in attenuation correction (AC). A 

PET/CT scanner uses CT to measure photon absorption and to make its determination of 

attenuation correction. Lacking a CT, this information is not available with PET/MR as MR 

data is based on the resonance signal from hydrogen atoms in water and not on photon 

attenuation.

Currently, there are several proposed methods for obtaining MR-AC, including the template, 

atlas, and model-based segmentation. These methods used previously collected MR and CT 

dataset pairs to generate a “best-fit” attenuation map [58]. However, given the great diversity 

of human anatomy and morphological changes over time even within a patient, these 

approaches have difficulty capturing a patient-specific anatomy and pathological lesions 

progression [5], [6]. Moreover, proximity of bone and air [7], [8] and intra-subject 

variability in lung density [9] remains an unsolved challenge for AC with these approaches. 

Other methods include using patient-specific MR data or brain anatomy with constrained 
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structure. With all these techniques, reported errors in SUVs still exceed 20% in both lesions 

and normal organs. The most egregious errors are seen in or adjacent to bone [3], [10]–[19]. 

In the fact, bone and air lie at the extremes with regard to photon attenuation yet both have 

very low MR signals and are hard to differentiate using MR. Some advanced sequences such 

as ultra-short echo time (UTE) or zero echo time (ZTE) have been also used, but they are 

often technically challenging and not available on many scanners [10], [11], [14], [20]–[26], 

[60].

State-of-the-art methods are to use advanced imaging processing approaches based on 

machine learning and pattern recognition techniques [28], [32], [59], [61]–[65]. These 

methods attempt to synthesize a CT by classifying image voxels according to their 

composition of the four key materials: bone, air, fat, and soft tissue [27]–[32]. Although 

these methods have been shown to be able to generate accurate brain and pelvis synthetic CT 

[30], [57], [59]–[61], it would be difficult to use them for other body sections, e.g. abdomen, 

as the training data would contain lots of incorrect, mismatched information due to the 

complicated and deformable anatomy that leads to imperfect CT and MR co-registration 

[46], [54].

So, for accurate synthetic CT generation on abdomen and pelvis, we propose a five-

interlinked-phase method that jointly leverages transfer fuzzy clustering and active learning-

based classification (TFC-ALC for short). Our contributions lie in four aspects:

1. TFC-ALC is based solely on common Dixon-based sequences, by organically 

incorporating two key techniques - knowledge-leveraged transfer fuzzy c-means 

(KL-TFCM) and active learning-based support vector machine (AL-SVM). As 

such, TFC-ALC method is suitable for synthetic CT generation for the 

challenging abdominal body section.

2. Due to transfer fuzzy clustering, KL-TFCM can reliably partition voxels in MR 

images into the four initial groups for the key materials. Since only fat is well-

defined by KL-TFCM, AL-SVM strives to figure out insightful classifiers, using 

as few informative labeled examples as possible, to further accurately refine the 

bone, air, and soft tissue. As such, jointly leveraging KL-TFCM and AL-SVM, 

TFC-ALC is capable of overcoming the inherent imperfection and potential 

uncertainty existing in the training phases and of generating better synthetic CTs 

than those obtained using methods currently in use, for the body sections of 

abdomen and pelvis.

3. Compared with existing methods, TFC-ALC features better parameter 

robustness, which facilitates its clinical practicability.

4. Results of PET SUV errors indicate that TF-ALC obtains the general 5% or 

better accuracy, which ultimately verifies the effectiveness of our work for PET 

AC on abdomen and pelvis.

The remainder of this manuscript is organized as follows. Related work, e.g., KL-TFCM, 

SVM, and active learning, are reviewed briefly in Section II. The proposed TFC-ALC 

method, including from Phase I to Phase V, is introduced specifically in Section III. The 
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complexity analysis of TFC-ALC is given in Section IV. The experimental studies are 

presented in Sections V–VII. Conclusions are given in Section VIII.

II. Related Work

A. Knowledge-Leveraged Transfer Fuzzy c-Means (KL-TFCM)

Fuzzy c-means (FCM) is a classic representative of fuzzy clustering [33]–[36], [63], which 

aims to optimally group the data instances in one data set into C disjoint clusters so that not 

only the overall intra-cluster deviation is minimum but also the overall inter-cluster 

separation is maximum. FCM has been extensively applied in image compression [37], 

image segmentation [35], [38], target tracking [39], and gene expression analysis [40]. 

However, FCM is sometimes inefficient and even invalid when facing situations where target 

data are quite distorted by interference information, e.g., noise and outliers [35]. To address 

such challenges, and inspired by transfer learning [34]–[36], [41], we proposed the KL-

TFCM approach [35]. KL-TFCM is associated with two data domains: the target domain in 

which target data need to be partitioned into C clusters and the source domain from which 

some knowledge, e.g., cluster prototypes, can be used as the reference in the target domain.

Notations involved in KL-TFCM are listed in Table I. Based on the entities defined, the 

framework of KL-TFCM can be reformulated as

min

JKL−TFCM UT, V T

= ∑
i = 1

NT
∑
j = 1

CT
μij, T

m xi, T − vj, T
2

+λ ∑
j = 1

CT
vj, T − vj, S

2

(1)

s.t. i ∈ [1, NT], j ∈ [1,CT], μij,T ∈ [0, 1], ∑j = 1
CT μij, T = 1 where, xi,T (i = 1, …, NT) ∈ XT, 

vj, S ∈ V S, vj,T ∈ VT, and λ ≥ 0 is a regularization coefficient.

Eq. (1) is composed of two terms. The first attempts to partition the target data into CT 

groups with optimal intercluster purity, while the second is devoted to suitably and flexibly 

exploit the referenced knowledge, i.e., the cluster representatives, V S = v1, S, ⋯, vCT, S T, 

from the source domain. The parameter λ determines the referenced degree across the two 

domains. Large values of λ indicate that the target domain should learn much from the 

source domain, i.e. VT should be close to V S; conversely, small values of λ mean that the 

overall similarity between VT and V S is not strongly enforced. As for the acquirement of V S, 

it is a systematic procedure; one can refer to [35] for the details. Here we would like to 

clarify that V S can be the historical cluster prototypes (also called cluster centroids), 

V S = v1, S, ⋯, vCS, S
T, of the source domain if and only if the cluster numbers of the target 

and source domains are the same.
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Using the Lagrange optimization, the updating equations regarding cluster prototype v j,T 

and membership μij,T in (1) can be deduced as

vj, T =
∑i = 1

NT μij, T
m xi, T + λvj, S

∑i = 1
NT μij, T

m + λ
(2)

μij, T = 1

∑l = 1
CT xi, T − vj, T 2

xi, T − vl, T 2

1
m − 1 (3)

B. Support Vector Machine (SVM)

SVM is a well-accepted classification technique of machine learning. Instead of minimizing 

the empirical risk, SVM is devoted to the overall risk minimization by minimizing the upper 

bound of the generalization error. Via a certain Mercer kernel [42], [43], SVM can map the 

original data into one high-dimensional feature space in order to seek the optimal separating 

hyperplane in terms of maximizing the margin between two classes.

Let X = {xi ⊂ Rd, i = 1, …, l} denote the training set, l be the training example number, and 

yi ∈ {+1, −1} (i = 1, …, l) signify the labels of the corresponding data instances in X. 

Suppose that f (.) represents the decision function, and HK denotes the reproducing kernel 

Hilbert space (RKHS) associated with one Mercer kernel K. The framework of SVM can 

then be formulated as

min
f ∈ Hk

1
l ∑

i = 1

l
1 − yif xi + + γ‖f‖K

2
(4)

where ( )+ is the hinge loss function, (1 − yf (x))+ = max(0, 1 − yf (x)), an γ > 0 is the 

regularization parameter.

According to the Representer Theorem [42], [43], the solution of (4) is given by

f*(x) = ∑
i = 1

l
αi*K x, xi (5)

Following the SVM expositions and adding an unregularized bias term b to (5), we can 

rewrite (4) as
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min
α ∈ Rl, ξi ∈ R

1
l ∑

i = 1

l
ξi + γαTKα ,

s.t. yi( ∑
j = 1

l
αjK xi, xj + b) ≥ 1 − ξi, i = 1, …, l,

ξi ≥ 0, i = 1, …, l,

(6)

where K is l × l the Gram matrix with Kij = K(xi, x j) and K(.,.) being the enlisted kernel 

function.

Based on the Karush-Kuhn-Tucker (KKT) conditions, the dual form of (6) is derived as

max
β ∈ Rl

1
l ∑

i = 1

l
βi − 1

2βTQβ ,

s.t. ∑
i = 1

l
βiyi = 0,

0 ≤ βi ≤ 1
l , i = 1, …, l,

(7)

where β = [β1, …, βl]T ∈ Rl are the Lagrange multipliers, Q = Y (K/2γ) Y, Y = diag(y1, …, 

yl), and diag(·) signifies the generating function of the diagonal matrix.

Via the optimum β* of (7), the eventual solution of (6) can be obtained, i.e. α* = Yβ*/2γ.

C. Active Learning

In machine learning, the accuracy and generalizability of classifiers depend greatly on the 

quality and quantity of labeled examples in the training set. However, obtaining informative 

examples for training is usually computationally expensive or labor-intensive. Instead, we 

often have a limited quantity of labeled data, due to the limitation of time and cost. Active 

learning is a special modality of classification learning that iteratively trains the classifier by 

purposively acquiring a few examples that are informative and hence require to be labeled 

for training.

Active learning can be modeled as A = (C, L, S, Q, U), in which C is the learned classifier, L 
denotes the subset of labeled examples, Q is a function qualified to inquire the examples full 

of information and beneficial to train the classifier, U is the unlabeled data set, and S is the 

supervisor capable of labelling examples. The entire procedure of active learning includes 

two phases:

1) Initialization phase—In this phase, a small number of examples are randomly 

selected from the unlabeled data set U to initialize the classifier C after being labeled by the 

supervisor S.

2) Iteration phase—During this phase, according to the inquiry standard Q, the 

supervisor S selects some examples from the unlabeled data set U, then labels them and adds 
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them to the training data set L. After that, the newly-obtained training data set L is used to 

retrain the classifier C until a certain criterion of termination is satisfied.

Active learning is an iterative procedure. The classifier is continuously retrained with the 

feedback of newly-labeled examples throughout the iteration, and the classification 

performance of the learned classifier can be gradually improved.

III. The Proposed TFC-ALC Method

The proposed TFC-ALC method consists of five phases and these phases can be further 

divided into three sub-procedures, as shown in Fig. 1. In Sub-procedure 1, by means of the 

strategies of the weighted convolutional sum as well as grid partition, Phase I generates the 

seven-dimensional MR feature data from mDixon MR images for each subject. In Sub-

procedure 2, Phase II obtains the referenced class prototypes regarding the tissue types of 

the four key materials for transfer learning; Phase III, using two key machine learning 

techniques, KL-TFCM and AL-SVM, generates multiple candidate tissue-distinguishable-

operators (TDOs). In Sub-procedure 3, Phase IV recognizes the tissue types of voxels in 

target MR images using the multiple candidate TDOs and the voting strategy; Phase V 

synthesizes target CT images according to component tissue types of voxels. Next, we detail 

each phase as follows.

1) Phase I: Generate MR feature data for given MR images

Feature extraction determines, to a great extent, the realistic performance of processing. In 

this regard, inspired by convolutional neural network (CNN)-based deep learning [44], the 

weighted convolutional sum is used to extract local texture features in our research. For each 

subject, with the mDixon MR scan (voxel size: 0.98×0.98×5 mm3), four different types of 

3D MR images of the body sections of abdomen and pelvis, including water, fat, in-phase 

(IP), and opposed-phase (OP) [45], are the inputs to our TFC-ALC method. We extract 

texture features from each of the 3D MR images in terms of the 512×512 pixel slices of Z-

axis. Specifically, let IV denote the intensity value image corresponding to one Z-axial slice, 

having pixels, iv (i,j), 1≤ i ≤512, 1≤ j ≤512. The matching texture value image, TV, can be 

calculated by discrete convolution with the weighting matrix W3×3 indicated in Fig. 2:

TV = IV ⊗ W 3 × 3 (8)

In the weighting matrix W3×3, for a pixel in one Z-axial slice, the other eight surrounding 

pixels are equally treated and their weights are identically 0.1 and the weight of the pixel 

itself is 0.2.

In addition, the position of pixel (i, j) in the slice is also used and the strategy of grid 

partition is adopted. Because the voxel spacing of the 3D MR images is 0.98×0.98×5 mm3, 

we partition each Z-axial slice into grids with the grid size being 5×5 pixels corresponding 

to 4.9×4.9 mm2. In this way, from the 3D perspective, the grids are approximately isotropic, 

i.e., approximately 5 mm. Then the position information of pixel (i, j) can be expressed as 

the indices of the grid belonged to, e.g., (m, n, z), 1≤ m ≤103, and 1≤ n ≤103.
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As such, we are able to obtain the seven-dimensional feature vector for pixel (i, j): [tvwater(i, 
j), tvfat(i, j), tvIP(i, j), tvOP(i, j), m, n, z]T. All of the pixel features in all slices constitute the 

MR feature data set.

2) Phase II: Acquire the referenced class prototypes of bone, air, fat, and soft tissue

To perform transfer fuzzy clustering, the class prototypes of the four tissue types in abdomen 

and pelvis, i.e., bone, air, fat, and soft tissue, termed as the referenced class prototypes, 

play important roles in our TFC-ALC method. Therefore, they need to be effectively 

estimated in this phase. For this purpose, several pairs of MR and CT images of the body 

sections of abdomen and pelvis are required, and each pair was deformably registered 

beforehand [46], [54], recognizing this is imperfect as there is no wellestablished, robust 

method.

The work and data flows of Phase II are shown in Fig. 3. Suppose that there are n pairs of 

registered MR and CT images of abdomen and pelvis, denoted as Subject 1 (Sub 1) to 

Subject n (Sub n). Taking one subject as an example, we explain our design as follows. 

Because air and bone are difficult to differentiate using only Dixon-based MR images, we 

start from the subject’s CT image. We first get the positions of bone from the CT image 

using the threshold segmentation at the value of 300 Hounsfield Unit (HU). Then, mapping 

these positions from the CT image into the registered MR images, we acquire the group of 

bone voxels from the matching MR feature data set, and the feature mean of this group is 

enlisted as this subject’s class prototype of bone. After removing the examples affiliated to 

bone from the subject’s original MR feature data, we then group the leftover MR feature 

data into three clusters using the conventional FCM algorithm and regard the obtained 

cluster centroids as the subject’s class prototypes with respect to fat, air, and soft tissue. In 

this phase, given empirical knowledge is dependent. Specifically, the knowledge, e.g., 

clinical experience as well as given values from existing references [47], are used to confirm 

the appropriate tissue types of the cluster centroids. Afterwards, we obtain the subject’s 

four-class prototypes corresponding to the key materials. This process is applied to all 

subjects and the means of all subjects’ obtained four class prototypes are the referenced 

class prototypes.

3) Phase III: Obtain multiple candidate tissue-distinguishable-operators (TDOs) for the 
four tissue types

Phase III aims to obtain several candidate TDOs, and the overall work and data flows are 

illustrated in Fig. 4.

We also take one subject as an example to explain how we obtain the anticipated candidate 

TDOs from this subject. We first generate the MR feature data set via the feature extraction 

sketched in Phase I. Then, two embedded machine learning techniques, i.e., KL-TFCM and 

AL-SVM, play vital roles in our TFC-ALC method. We utilize KL-TFCM to partition the 

target subject’s MR feature data into four clusters with referring to the class prototypes 

obtained in Phase II. Here the n previous subjects’ MR feature data are treated as the source 

domain and the current target subject’s MR feature data as the target domain. The class 

prototypes obtained in the source domain are used as the beneficial knowledge to assist the 

Qian et al. Page 9

IEEE Trans Med Imaging. Author manuscript; available in PMC 2021 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



KL-TFCM clustering in the target domain. In this way, we can obtain the four initial 

partitions of the key materials, based on the principle of maximum probability.

Due to the fact that mDixon sequences are good at embodying the fat tissue, the obtained 

group of fat is generally satisfactory versus the others. To reliably distinguish the other three 

tissue types, i.e., bone, air, and soft tissue, the strategy of classification is further enlisted in 

our method. With the help of the subject’s CT image, we acquire the group of bone and the 

purified group of air with removing voxels that belong to bone but could be wrongly 

partitioned to air by KL-TFCM, and then all leftover voxels are designated as the group of 

soft tissue. Thus, numerous labeled examples for classification learning are available. 

However, because of the high computing cost (O(N3)) as well as considerable memory space 

complexity (O(N2)) [48], we cannot straightforwardly use the whole labeled data for SVM 

training. In such case, active learning-based SVM (i.e., AL-SVM) is ideal. With a limited 

number of informative, labeled examples, AL-SVM is capable of learning insightful 

classifiers.

Fig. 5 sketches our design of M-round-based AL-SVM. Specifically, with a fixed sampling-

size ssIII, we randomly sample each of the groups of bone, air, and soft tissue to constitute 

the original training set, and the leftover examples constitute the original testing set. Via the 

strategy of cross-validation [49], SVM is able to determine the optimal parameter settings on 

the current training data, e.g., the regularization coefficient l and the Gaussian kernel width 

σ commonly used in (9), and then to output a preliminary three-class classifier. We 

subsequently obtain current prediction results on the current testing set in terms of the 

learned classifier. By comparing the given labels with the predicted ones, we achieve 

currently, wrongly classified subset particularly significant for our TFC-ALC method for 

active learning. To determine which examples should be newly labeled for coming rounds of 

active learning, we randomly sample the currently, wrongly classified subset according to 

the given sampling-ratio srIII. Afterwards, for each selected, misclassified example, we seek 

the pth nearest neighbor from the testing set in which all already chosen examples for active 

learning have been excluded, and move the neighbor, along with its label, from the testing 

set to the training set. As such, we successfully update the training set, adding a few 

elaborately selected, informative examples. What makes us employ the pth nearest neighbor 

instead of the wrongly classified example itself is due to the consideration of reinforcing the 

generalizability of the learned classifier as well as reducing the potential bias existing in the 

registration between abdominal MR and CT images.

Thus far, we described one round of AL-SVM. Additional rounds of active learning improve 

classification performance but at the cost of increased computation and runtime. The number 

of rounds M may be determined to balance the performance and cost.

The three-class classifier of bone, air, and soft tissue achieved after the whole procedure of 

multiple rounds of AL-SVM together with the partition of fat achieved by KL-TFCM are 

collectively called the subject’s tissue-distinguishable-operators (TDOs).

As such, using all of the given subjects’ MR and CT image data (e.g., m subjects), we are 

able to obtain m candidate TDOs.
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4) Phase IV: Distinguish tissue types in target MR images using the multiple candidate 
TDOs

In terms of the m candidate TDOs obtained in Phase III, in theory, the tissue types of voxels 

in new subject’s MR images can be decided using the voting strategy. Nonetheless, in our 

method, Phase IV belongs to the prediction stage using all learned TDOs, which certainly 

requires rapid performance for clinical use. As the orders of magnitude of subjects’ feature 

data are usually as high as millions in this study, the computational time is infeasible to 

directly apply these candidate TDOs on the whole new MR feature data. In response to such 

challenge, the “sampling + K nearest neighbors (KNN)” mechanism is enlisted to speed up 

our method.

Specifically, first, by referring to the class prototypes of bone, fat, air, and soft tissue and 

applying KL-TFCM, we identify the group of fat voxels on the target MR feature data set. 

Second, we randomly sample the remaining, non-fat voxels according to the given sampling-

capacity scIV to obtain a subset denoted as SBIV. Third, for each voxel in SBIV, we gain m 
predicted outcomes in terms of the m candidate TDOs, and then decide the tissue type of this 

voxel based on the majority principle. Finally, with the obtained tissue types of SBIV as the 

reference, all of the other unknown voxels are cognized using the KNN algorithm.

In this way, the target MR images is eventually segmented into the four groups: fat, bone, 

air, and soft tissue.

5) Phase V: Generate synthetic CT image corresponding to target MR images using the 
identified tissue types for the voxels

Given voxel labels, with assigning appropriate CT values to corresponding tissue types, we 

can reconstruct a synthetic CT image for the target MR images. In our research, the CT 

values of bone, air, fat, and soft tissue are set to 380, −700, −98, and 32, respectively [47].

In addition, as described in Phase I, the strategy of grid segmentation is used to acquire the 

position information of voxels in our TFC-ALC method. Despite the fact that this prevents 

TFC-ALC from over-fragmented segmentation on target MR images, there still is a certain 

extent of uncertainty with regard to voxel coordinates, because now all voxels affiliated to 

the same grid have the same position values. In response to such issue, we smooth the 

originally-synthesized CT image using a Gaussian filter with the full-width-at-half-

maximum being 2.5 mm.

IV. Computation Complexity in TFC-ALC

The three sub-procedures in TFC-ALC can be grouped to two parts: the off-line and the on-

line. Both Phases II and III belong to the off-line part wherein the multiple candidate TDOs 

are learned, whereas Phases I, IV, and V are on-line in which we generate MR feature data 

as well as synthetize CT images.

The computation complexity is different in each sub-procedure corresponding to phases in 

TFC-ALC. This is detailed in Table II. Specifically, the time complexity of Sub-procedure 1 

is roughly O(N×4×9)=O(N) in which N denotes the total number of voxels in the MR 
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images, digit 9 is the number of elements in the weighting matrix, and digit 4 indicates the 

four different types of 3D MR images, i.e., water, fat, IP, and OP. The time cost of grid 

partition can be ignored against the feature convolution calculation. In Sub-procedure 2, to 

obtain the referenced class prototypes for transfer fuzzy clustering in Phase II, the time 

complexity is O(max_iter×(N × C + C)) =O(N) on each subject’s MR feature data, in which 

max_iter denotes the maximal number of iterations and C is the cluster number. In Phase III, 

to roughly partition one subject’s MR feature data into the four clusters with referring to the 

given class prototypes, the time complexity of KL-TFCM is O(max_iter×(N×C+C+C×C)) 

=O(N). Further, to learn each of the multiple insightful classifiers, the time complexity of M-

round-based AL-SVM is O ssIII
3 + ∑i = 1

M ssIII + ∑j = 1
i Rj × srIII

3
 where Rj signifies the 

data number of the wrongly classified subset in the jth round of active learning. In Sub-

procedure 3, the time complexity of Phase IV is O(scIV × n + K × (N-scIV)) = O(N) in which 

n denotes the multiple learned TDOs, K is the neighbor parameter in KNN, and N signifies 

the total voxel number in target MR images.

In brief, the off-line time complexity is polynomially-related with the numbers of MR voxels 

and of the training examples during active learning-based classification, whereas the on-line 

complexity is generally linear with the total voxel number in the MR images. Due to the fact 

that the off-line part can be completed in advance, it does not impact the practicability of our 

proposed method for clinical translation.

V. Experimental Setup

In this section, we assess the effectiveness of the proposed TFC-ALC method for generating 

synthetic CTs for PET attenuation correction on abdomen and pelvis, using only commonly-

available Dixon MR sequences [50]. For this purpose, ten subjects were recruited using a 

protocol approved by the University Hospitals Cleveland Medical Center Institutional 

Review Board. An MR mDixon scan (voxel size: 0.98 × 0.98 × 5.00 mm3) and a low-dose, 

120-kV CT scan (voxel size: 1.17 × 1.17 × 5.00 mm3) were separately acquired using the 

MR of a Philips Ingenuity TF PET/MR [51], [52] and the CT of either a GEMINI TF 

PET/CT or a Gemini TF Big Bore PET/CT [53]. The raw mDixon data were reconstructed 

to generate the water, fat, IP, and OP images. A deformable registration was performed to 

warp the CT image to the MR images using OpenREGGUI, an open-source image 

registration package [54]. As such, we obtained ten sets of MR images (including water, fat, 

IP, and OP images) as well as matching CT images on the body sections of abdomen and 

pelvis, designated as Sub 1 - Sub 10 in our studies.

We evaluate our proposed method in competition against two existing methods. One is the 

four-cluster-partitioning method (FCP) [7] in which the MR feature data are 

straightforwardly partitioned into four disjoint clusters, i.e., external-air, internal-air, fat, and 

soft tissue, using the FCM algorithm, due to the insensitivity of bone in Dixon-based MR 

sequences. The other is the all-water method (AW) [56], i.e., all voxels within the body are 

regarded as water, which is a commonly-used uniform approximation for diagnostic imaging 

and radiation therapy treatment applications.
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As is evident, TFC-ALC is a systematic method composed of five phases, in which several 

system parameters are involved, as additionally shown in Table III. System parameters 

usually facilitate the flexibility of algorithms. However, too many indeterminate parameters 

conversely weaken the practicability. In this content, by means of the grid search [36], [65], 

most system parameters were eventually assigned fixed values, listed in Table III, based on 

our extensive empirical studies. Exceptions were the regularization l and Gaussian kernel 

width σ in SVM that were adaptively determined using the 5-fold cross-validation on target 

data sets as usual. Also, the trial ranges of these parameters are given in Table III. As such, 

our TFC-ALC method can be implemented automatically, without any manual intervention.

For performance comparisons, three metrics were used throughout our experiments: mean 

absolute prediction deviation (MAPD), root mean square error (RMSE), and R [28], [29]. 

Measured CT, after deformable registration, served as the reference. The outcomes of TFC-

ALC were achieved using the leave-one-out strategy with respect to subjects. Specifically, 

TFC-ALC obtained ten candidate TDOs in terms of the ten subjects’ feature data, following 

Phases I to III. However, in Phase II, for each of the subjects, the referenced class 

prototypes, i.e., the knowledge used for transfer clustering, were acquired using the data 

from all of the other nine subjects and excluding the current one being processed. Then, in 

Phase IV, likewise, for each of the subjects, TFC-ALC recognized the tissue types of image 

voxels by means of the other nine candidate TDOs learned excluding the current subject and 

based on the majority principle.

Our experimental studies were carried out on a computer with an Intel i5–4590 3.3 GHz 

CPU, 12 GB of RAM, Microsoft Windows 10 (64 bit), and MATLAB 2016a.

VI. Results

We separately ran TFC-ALC, FCP, and AW methods on data from the ten subjects. We first 

evaluated their generating performance of synthetic CTs using MAPD, RMSE, and R 

metrics. Means and standard deviations of validity metrics are reported in Table IV after 20 

times of running each method for individual subject. In Phase III, the initialization of both 

KL-TCVM and AL-SVM are random which provides different TDOs and different results 

each time. Meanwhile, p-values, calculated using a paired two-tailed t-test and α = 0.05, are 

listed to support the significance of the improvement of our method. Fig. 6, which shows the 

performance curves of the three involved methods against each subject with respect to the 

MAPD, RMSE, and R metrics, provides a visualization of the performance advantage of our 

method. Fig. 7, for example, shows the synthetic CT images from Sub 2 for all three 

methods.

We continued to compare the performance of PET attanuation correction regarding these 

three methods, based on their generated synthetic CT images and by means of the metric of 

SUV error. As shown in Fig. 8, the comparisons of SUV errors of these three methods with 

regard to multiple tissue types existing in the body sections of abdomen and pelvis are given. 

An example image volume, using the data from the same patient as was used in Fig. 7, is 

shown in Fig 9. Our data are from Na18F- PET scans and emphasize SUVs in and near bone 

areas wherein currently existing methods are particularly inaccurate. In this regard, in terms 
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of the Dice coefficient [57], the consensus of bone between our synthetized CTs and 

measured CTs used before PET attenuation correction is additionally listed in Table V.

We also recorded the running time of TFC-ALC in terms of the separate sub-procedures on 

the ten subjects whose mean MR voxel number is N = 6,864,159. On the average, we spent 

approximately 79 seconds in Sub-procedure 1 and 225 seconds in Sub-procedure 3. That is, 

our method spent approximately 5 minutes in generating synthetic CTs for new subjects. By 

the way, in our experiments, the off-line Sub-procedure 2 generally required 22451 seconds 

(370 minutes) to learn the TDOs for each subject with a commonly available PC. Only three 

rounds of active learning were conducted in our experiments, as the data capacity of the 

latest training set was as high as tens of thousands in our studies after three rounds of AL-

SVM, e.g., around 60,000 on Sub 1, which is actually near the limitation of our condition. In 

comparison to our proposed method, FCP running time was approximately 89.5 s per subject 

and the AW method had negligible computation time.

Lastly, we evaluated the robustness of TFC-ALC with respect to several system parameters, 

including parameters ssIII to constitute initial training set, srIII to sample misclassified 

subsets, p to find the pth nearest neighbor for updating the training set during active learning, 

scIV to obtain SBIV, and K for KNN in Phase IV. For all subjects, with first assigning the 

suggested or optimal settings to all parameters, as shown in Table III, we then took turns 

fixing all of the others but gradually varied one parameter near its optimum. Meanwhile, we 

recorded the performance measure in terms of the enlisted validity metrics. For the sake of 

conciseness, here we only report our experimental results in terms of the MAPD metric, as 

shown in Fig. 10. These results are reported according to the means of TFC-ALC after ten 

times of running on each subject’ data.

VII. Discussion

Our work addresses a challenging topic in current medical imaging trials; few investigators 

have reported an effective means to distinguish the bone, air, fat, and soft tissue in abdomen 

and pelvis without using UTE or ZTE pulse sequences [57], [66]. These sequences 

particularly help to differentiate air and bone and may be preferable to use when available. 

However, they might not be available at all clinical sites and the ability of algorithms to 

predict bone and air in abdomen and pelvis without them merits investigation. With Dixon 

MR sequences alone, it is difficult to differentiate the tissues of air and bone as both have 

low MR signal. Unavoidable factors, e.g., separate scans, human respiration, organ motion, 

different contrasts, etc., make CT and MR images of the body section of abdomen, even 

from the same subject, difficult to robustly and precisely coregister, meaning that even the 

training data are imperfect. This implies that accurate standards that traditional supervised or 

unsupervised machine learning methods need for measuring the effectiveness of processing 

are rare. Our results, as shown in Table IV and Fig. 6, demonstrate that our proposed TFC-

ALC method outperforms the other two methods in all metrics and that the improvement is 

statistically significant. All of these demonstrate that our design to acquire desirable TDOs, 

from Phase I to Phase III, is able to overcome, to a great extent, the inherent inaccuracy and 

other potential uncertainty between given MR and CT abdomen and pelvis images, which 

facilitates the synthetic CT generation of TFC-ALC (see Fig. 7).
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KL-TFCM as well as AL-SVM are two key embedded techniques in our proposed TFC-

ALC method. With the guidance of the referenced class prototypes of tissues, KL-TFCM is 

capable of reliably initializing voxels in MR images into the four key materials: bone, air, 

fat, and soft tissue. AL-SVM is devoted to learning insightful SVM-based classifiers to 

further reliably refine the bone, air, and soft tissue classes, using as few but informative 

labeled examples as possible. Benefiting from jointly leveraging both KL-TFCM and AL-

SVM, our proposed method is effective as well as practicable in synthetic CT generation for 

abdomen and pelvis. Unlike the other methods considered, TFC-ALC is a systematic 

method including the dedicated means for feature extraction itself, i.e., Phase I. Hence, 

differing from both AW and FCP that worked merely upon the MR intensity features of all 

subjects, TFC-ALC handled the seven dimensional feature data extracted from target MR 

images.

The given, measured CTs are not perfect standard in our study, because in our experiments, 

the subjects were moved between CT and MR scanners. It is difficult to attain the strictly 

same posture and position of a subject in separate CT and MR scans. Therefore, given 

measured CT images can only be regarded as good references rather than ground truth.

The results in Figs. 8 and 9 show that the proposed TFC-ALC method achieves the overall 

highest SUV accuracy and can reduce the SUV errors to below 5% for most of the tissue 

types, except for the muscle, kidney, and at the interface of the lung and liver. Further, the 

difference image, Fig. 9, shows good performance in comparison to a similarly-formatted 

difference image shown in [67], noting that they were working with FDG data whereas we 

were working with NaF which may be a more challenging correction. The largest error, at 

the interface of the lung and liver, indicated as the blue area on top of the Fig. 9G, is 

attributed to the imperfect registration as our proposed TFC-ALC method to not classify the 

lung tissue type. The muscle and kidney errors are attributed to the soft-tissue miss-

registration between CT and MR and thus an artifact of the validation process. Fig. 11 shows 

a view through the kidneys from the same patient as in Figs 7 and 9. Although the 

deformable registration was employed to reduce this error, the miss-registration was still 

inevitable and is the limitation of this evaluation approach given the data used for this work. 

Specifically, in the kidney, the attenuation correction maps were within 5% agreement so 

they are a small factor in the SUV inaccuracy. Instead we attribute the inaccuracy mainly to 

a combination of imperfect registration and the high spatial heterogeneity of the activity 

concentration distribution of NaF; a slight misregistration can cause inflated relative SUV 

errors. In the muscle, while the attenuation correction maps were also within 5% agreement, 

the comparatively large relative errors are attributed to a combination of imperfect 

registration and generally low concentration of NaF. Therefore, a small absolute error in 

SUV is magnified to a high relative error and standard deviation when divided by SUV to 

calculate relative error.

The general 5% or less SUV accuracy of our method is quite good and well-within the 

National Cancer Institute/American College of Radiology Imaging Network (NCI/ACRIN) 

10% specification for SUV accuracy [3], [4]. In addition, our TFC-ALC method only 

requires the Dixon-based sequence, which means that our approach is applicable at most 
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clinical sites, and would not require extra scanning time for institutions that already do 

Dixon, as Dixon is commonly used with PET/MR for localization.

As revealed in Fig. 10, the performance curves of TFC-ALC are relatively stable when each 

system parameter is within the proper range, which indicates that TFC-ALC generally 

features good robustness against parameter settings.

One limitation of the generalizability of this study is the lack of patients having implants. 

The focus of this work is methods development. Also, we used pre-existing data available 

from an IRB-approved protocol of patients having breast cancer and receiving clinical 

PET/CT scans who were invited to have research PET/MR scanning. None of these patients 

had implants. Regardless, we believe that we made significant progress over previously 

described methods in that we achieved SUV errors of generally 5% or less for abdomen and 

pelvis using only Dixon data. Evaluating the method in data from patients having implants 

would be an excellent topic for a future work. Both acquisition and analysis methods could 

be considered. We would seek acquisition methods that could image hip and other implant 

materials without excessive artifact and differentiate them from human tissues.

Finally, our experiments were conducted on 10 patients with breast cancer but the synthetic 

CT generation method itself can be applied to other patient populations. Future studies in 

specific sub-populations such as post-surgical patients, pediatric populations, obese or 

cachectic patients can be investigated for validation and parameters tuning. Likewise, with 

appropriate training, our method can be applied to data collected using further refinement of 

the pulse sequences or to data collected using other types of MR scanners when such data 

are informative and training is done.

VIII. Conclusion

For Dixon-based synthetic CT generation for PET attenuation correction on abdomen and 

pelvis, particularly for the challenging abdomen in medical imaging, we propose the 

dedicated five-phase-based TFC-ALC method as effective and practical. TFC-ALC has 

incorporated multiple techniques and strategies, such as weighted convolutional sum and 

grid partition based feature extraction, transfer fuzzy clustering, active learning based 

classification, and multiple candidate TDOs based voting decision. Consequently, TFC-ALC 

proves preferable generation quality of synthetic CT, good system-parameter insensitivity, 

and satisfied accuracy of SUV errors, which greatly facilitates its applicability for generating 

synthetic CT scans that would be used for attenuation correction of PET data and for 

radiation treatment planning.
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Fig. 1. 
Overall workflow of the proposed TFC-ALC method
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Fig. 2. 
Weighting matrix W3×3
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Fig. 3. 
Illustration of work and data flows in Phase II
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Fig. 4. 
Illustration of work and data flows in Phase III
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Fig. 5. 
Sketch of M-round-based AL-SVM
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Fig. 6. 
Performance curves shows that, for all subjects, the proposed TFCALC method has lower 

mean absolute prediction deviation (MAPD), lower root mean square error (RMSE), and 

higher correlation (R) than the fourcluster-partitioning (FCP) and all-water (AW) methods.
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Fig. 7. 
Synthetic CTs generated by three employed methods on a representative subject (Sub 2)
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Fig. 8. 
Means and standard deviations of SUV errors of three methods are depicted as the column 

heights and error bars, respectively, for different tissue types in abdomen and pelvis. They 

are calculated from the 20 runs of each method for each of the 10 subjects (see Section VI.) 

The reference standard is taken from the images reconstructed using the measured CT after 

deformable registration (Section V).
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Fig. 9. 
Example NaF-PET SUV images reconstructed using attenuation correction based on (a) CT, 

(b) All Water, AW, (c) Four Cluster Prototype, FCP, (d) our proposed method TFC-ALC. 

The subject and location correspond to those of Fig. 7. The SUV scale has been set to 10 as 

a balance between allowing the low concentration features to be visualized without 

excessive saturation in bone and bladder. Differences between the images are difficult to 

visualize so we present corresponding difference images. %SUV error maps are computed 

as the SUV result using (e) All Water, AW, (f) Four Cluster Prototype, FCP, or (g) our 

proposed method TFC-ALC, each minus the SUV image determined using the CT-based AC 

which serves as the reference. A threshold of 0.1 was applied to avoid exacerbation of errors 

in tissues having low uptake. The color bar spans plus or minus 50% error. Negative errors, 

tending toward blue, correspond to where the method has an SUV that is lower than the 

reference whereas positive errors, tending toward red, correspond to where the method has 

an SUV that is higher than the reference. The blue area towards the top of the image is at the 

interface of the lung and liver.
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Fig. 10. 
Parameter robustness of TFC-ALC method. (a) MAPD VS ssIII. (b) MAPD VS srIII. (c) 

MAPD VS p. (d) MAPD VS scIV. (e) MAPD VS K.
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Fig. 11. 
Example NaF-PET SUV images reconstructed using attenuation correction based on (a) CT, 

(b) All Water, AW, (c) Four Cluster Prototype, FCP, (d) our proposed method TFC-ALC 

showing the kidney location. The subject corresponds to that of Fig 7 and 9.
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TABLE I

Notations Used in KL-TFCM

Symbol Meaning

NT, CT NT and CT denote the example number and cluster number in the target domain, respectively

 XT = x1, T, …xNT, T ∈ RNT × d
The data set in the target domain with NT data instances and d dimensions

 UT = μij, T CT × NT
The generated CT×NT membership matrix in the target domain with μij,T indicating the 
membership degree of xj (j = 1,…, NT) belonging to cluster i (i = 1,…,CT)

 V T = v1, T, ⋯, vCT, T
T The cluster prototype matrix in the target domain with 

vj, T = vj1, T, ⋯, vjD, T
T j = 1, …, CT  signifying the jth cluster prototype (centroid)

 V S = v1, S, , vCT, S
T

The employed cluster representatives from the source domain for the eventual knowledge 

utilization in the target domain with vj, S = vj1, S, , vjD, S
T j = 1, …, CT  denoting 

the jth cluster representative in the source domain
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TABLE II

Computation Complexity in TFC-ALC

Sub-procedures Including phases On-line/Off-line for new subjects Computation complexity

1 I On-line O(N)

2 II and III Off-line O(N) + O
ssIII

3 +

∑i = 1
M ssIII + ∑j = 1

i Rj × srIII
3

3 IV and V On-line O(N)
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TABLE III

Primary Parameters Used in TFC-ALC

Parameters Suggested settings Trial Ranges

Regularization parameter λ in KL-TFCM in (1) λ = 500 λ ∈ {10,50,100,200,500,800,1000,2000,5000,10000}

Regularization parameter l and Gaussian kernel 
width σ used in SVM in (7)

Determined by 5-fold 
cross-validation

l ∈ {2^-6,2^-3,2^-1,2^1,2^2,2^3,2^4,2^5,2^6}
σ ∈ {2^-6τ,2^-3τ,2^-1τ,2^1τ,2^2τ,2^3τ,2^4τ,2^5τ,2^6τ},
where τ denotes the average distance among all data instances.

Parameter ssIII to constitute initial training set;
Parameter srIII to sample wrongly classified 
subsets;
Parameter p to pick up the pth nearest neighbor 
to update training sets during active learning in 
Phase III

ssIII = 4000;
srIII = 40%;
p = 3

ssIII ∈ {1000,2000,3000,4000,5000,6000}
srIII ∈ {15%,20%,25%,30%,35%,40%}
p ∈ {1,2,3,4,5,6,7}

Parameter scIV to obtain SBIV and parameter K 
for KNN in Phase IV

scIV = 2E4;
K = 7

scIV ∈ {1E4,2E4,3E4,4E4,5E4,6E4}
K ∈ {1,3,5,7,9,11}
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TABLE V

Dice Coefficient of Bone Between the Synthetic CTs Generated by TFC-ALC and Measured CTs Used Before 

PET AC

Subjects Dice bone
Mean ± Std

1 0.6877 ± 0.0013

2 0.6592 ± 0.0005

3 0.6480 ± 0.0007

4 0.6375 ± 0.0011

5 0.6462 ± 0.0008

6 0.6332 ± 0.0005

7 0.6121 ± 0.0008

8 0.6737 ± 0.0002

9 0.6218 ± 0.0006

10 0.6802 ± 0.0011

Average 0.6499 ± 0.0242
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