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A B S T R A C T

Cellular energy demands are readily changed during physical exercise resulting in adaptive responses by signaling proteins of metabolic processes, including the
NAD+ dependent lysine deacetylase SIRT1. Regular exercise results in systemic adaptation that restores the level of SIRT1 in the kidney, liver, and brain in patients
with neurodegenerative diseases, and thereby normalizes cellular metabolic processes to attenuate the severity of these diseases. In skeletal muscle, over-expression
of SIRT1 results in enhanced numbers of myonuclei improves the repair process after injury and is actively involved in muscle hypertrophy by up-regulating anabolic
and downregulating catabolic processes. The present review discusses the different views of SIRT1 dependent deacetylation of PGC-α.

1. Introduction

Every attachment of the myosin heavy chain to actin requires ATP,
and during high-intensity exercise, sufficient production ATP is a huge
metabolic challenge for skeletal muscle. The transfer of electrons in the
mitochondrial electron transport chain, as well as other cytosolic and
mitochondrial molecules are obligatory to ATP production. NAD is a
key factor of electron transfer, and the ratio of reduced and oxidized
(NADH: NAD+) forms of NAD reflects redox homeostasis, which is
dependent on cellular compartments and the rate of metabolism. The
lactate-dehydrogenase system reflects the NAD+:NADH ratio, which in
mitochondria is about 100- to 1000-fold higher than in the cytosol. In
addition, the NAD+:NADH ratio does not necessarily change parallel
with changes in metabolism [1]. However, an increase in the
NAD+:NADH ratio in the sarcolemma results in enhanced expression of
SIRT1 mRNA and protein levels [2]. Therefore it is not surprising that
physical exercise, which significantly changes metabolism, also alters
the NAD+:NADH ratio and leads to a potent induction of SIRT1. SIRT1
is a mammalian homolog of the sir2 gene discovered in yeast twenty
years ago as a mating-type regulator [3]. All of seven orthologs of sir-
tuins are dependent on NAD+. Most of the sirtuins have a powerful
lysine deacetylating capacity and are associated with cellular metabo-
lism. Sirtuins are directly, or indirectly through signaling pathways,
associated with the regulation of gluconeogenesis, fat oxidation,
apoptosis, autophagy, mitochondrial biogenesis, DNA repair and redox
homeostasis [4,5]. In addition, sirtuins have been shown to exert life-
extending effects for organisms like yeast, worms, and flies [5].

However, the role of sirtuins on the maximal life span of mammals is
under debate.

It is suggested that a significant part of the health promoting and
age retarding effects of regular physical exercise at the cellular level
could be mediated by sirtuin proteins [5]. In the present review, we
summarize our current knowledge on how SIRT1 is involved in ex-
ercise-induced adaptation in the liver, kidney, brain, heart and skeletal
muscle. Moreover, we also examine to role of SIRT1 in endurance and
muscular strength. While we acknowledge there are important biolo-
gical roles for the entire sirtuin family, the present review focuses on
SIRT1.

2. SIRT1 forward messages of exercise to liver and kidneys

During heavy acute exercise, the renal blood delivery can decrease
to 25% of resting values [6], and after exercise, due to the increased
glomerular permeability, protein, and urea are excreted. However, the
positive effects of regular exercise on renal function is well established
[7–9].

Kidneys are heavily affected by metabolic diseases including dia-
betes, especially in aging individuals. Aerobic exercise is often utilized
to attenuate the diabetic nephropathy in a diabetic rat model.
Streptozotocin injection resulted in proteinuria, increased collagen,
decreased SIRT1 and PGC-1α levels and mitochondrial dysfunction in
renal tissue [10]. On the other hand, aerobic exercise training sig-
nificantly attenuated these abnormalities in the kidney [10].

In another diabetic model, C57BLKS/J mice were subjected to
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moderate intensity treadmill running for 8 weeks, and renal and hepatic
histology was studied with biological markers [11]. Exercise prevented
the downregulation of SIRT1 in the kidney of these diabetic mice and
reduced acetylation of transcription factor NF-κB. The exercise-induced
adaptive response included the up-regulation of citrate synthase, sub-
units of mitochondrial complexes as well as PGC1α protein levels [11].
As a consequence of these molecular adaptations, regular training de-
creased creatinine, urea and triglyceride levels in this diabetic model
[11].

Similar to the kidneys, the liver also experiences a significant drop
in blood flow during acute exercise, however because of the central role
of the liver in lipid and carbohydrate metabolism, the regular exercise-
mediated adaptation of this organ has a particular importance. An acute
bout of exercise, especially vigorous exercise, which results in sig-
nificant metabolic challenge to the body, is associated with powerful
activation of cellular signaling pathways in the liver. Indeed, it has been
reported that the mitogen-activated protein kinase (MAPK) signaling
pathway, significant transcriptional activation of Fos/Jun-family,
growth arrest, and energy depletion associated genes, are all upregu-
lated during heavy acute bouts of exercise [12].

To gain more information on endurance associated adaptation, a
mouse model has been developed by phenotypic selection. High en-
durance capacity mice had a 3.8-fold higher running capacity than
control mice [13]. When the liver metabolism-associated biochemical
assays were compared, it turned out that protein levels of SIRT1, acetyl-
CoA-synthetase, acetyl-CoA-carboxylase, phosphoenolpyruvate car-
boxykinase, and glutamate-dehydrogenase were higher in the liver of
mice with a high running capacity than in control mice [13]. Based on
this finding, it was suggested that mice with higher endurance have
higher levels of gluconeogenesis and lipogenesis [13]. In accordance
with this, it has been shown that 36 weeks of treadmill running resulted
in elevation of the activity and content of SIRT1 as well as PGC-1α
levels and improved redox balance in the liver compared to control
animals [14]. However, it has been also reported that in a transgenic
mouse model with overexpression of SIRT1 in the liver, the increased
SIRT1 did not guarantee improved glucose metabolism and improved
insulin sensitivity [15], showing that the exercise-mediated adaptation
is very complex and not just dependent upon a single protein.

Non-alcoholic fatty liver disease (NAFLD) encompasses a disease
spectrum that can progress from significant uptake of carbohydrates
that leads to enhanced lipogenesis in the liver, which could result in
increased storage of hepatic triacylglycerol or nonalcoholic steatohe-
patitis [16]. NAFLD is also associated with insulin resistance and oxi-
dative stress [17]. Due to its systemic effects [18,19], exercise has all of
the means to prevent or decrease the deleterious consequences of
NAFLD. Indeed, 8 weeks of treadmill running decreased the NAFLD
induced by a high fat diet by suppression of lipolysis, enhanced mi-
tochondrial biogenesis in the liver, and fatty acid oxidation [20]. These
changes were the result of the activation of SIRT1 mediated cellular
pathways, especially by the induction of AMPK [20]. It is suggested that
SIRT1 can attenuate the poor phosphorylation of AMPK and its down-
stream target acetyl-CoA carboxylase and elevation in the expression of
fatty acid synthase, hence the storage of lipids [21].

Based on the knowledge of the important role of SIRT1 in the
treatment of NAFLD, a study was done where nicotinamide riboside
(NR) was administered to boost NAD+ levels to examine the effects of
pharmacological intervention [22]. NR attenuated the deleterious ef-
fects of NAFLD by activating SIRT1 and SIRT3 mediated mitochondrial
unfolded protein responses leading to hepatic β-oxidation and mi-
tochondrial complex content and activity [22].

Overall, the data suggest that SIRT1 controls cellular metabolism,
through the regulation of lipid metabolism since it inhibits hepatic de
novo lipogenesis by deacetylation of carbohydrate response element
binding protein and sterol regulatory element binding protein-1c
[23,24] and increases fatty acid β-oxidation via deacetylating PPARα/
PGC-1α [25,26] and reduces inflammation through deacetylating NF-

κB [27].

3. Is SIRT1 involved in the neuroprotective effects of exercise?

The neuroprotective effects of regular exercise are very well-estab-
lished [28], which among others includes improved function [29], in-
creased resistance to oxidative stress [30,31], increased generation of
brain derived neurotrophic factor (BDNF) [32], neurogenesis [33], and
increased mitochondrial biogenesis [34]. Interestingly enough, activa-
tion of SIRT1 mediated cellular pathways can result in all of the above
mentioned neuroprotective effects [35–39].

Gomez-Pinilla and Ying were one of the first investigators, who
showed that exercise increases SIRT1 content in the hippocampus,
which was associated with increased levels of phosphorylated AMPK
[40]. When the effects of exercise training on young and aged cerebella
was studied, data revealed a positive correlation between protein
acetylation and the gripping test, which suggests that the age-depen-
dent decrease in relative activity of SIRT1 in the cerebellum impairs
motor function [41]. Aging is associated with increased levels of oxi-
dative stress, and 8-oxo-7,8-dihydroguanine (8-oxoG) is considered to
be a major mutagenic DNA base lesion [42]. Data revealed that aging
increases the levels of 8-oxoG, which could be due to decreased acet-
ylation of 8-oxoguanine DNA glycosylase-1 (OGG1) [43]. Meanwhile, it
turned out that OGG1 has the potential to directly modulate gene ex-
pression [44]. Oxidative stress directly or cytokine (e.g., TNF-α) in-
duced increase in ROS levels resulted in enrichment of OGG1 primarily
in the regulatory regions of genes [44]. Hence, the regulation of OGG1
appears to have a complex role for cellular function, and we have
shown that the deacetylation, and therefore the activity of OGG1, is
regulated by SIRT1 [33].

It is suggested that most of the neuroprotective effects of exercise
are mediated by the induction of brain-derived neurotrophic factor
(BDNF) [45–47]. Upon the translocation and DNA binding of the
transcription factor cyclic AMP response element-binding protein
(CREB), transcript levels of Bdnf gene are increased. Mature and pro-
BDNF are then transferred to axons/presynaptic terminals and den-
drites and released in response to glutamate receptor activation [48].
Released BDNF bounds to tropomyosin-related kinase B (TrkB) re-
ceptors, which can lead to the activation of intracellular signaling
pathways leading to activation of transcription factors that regulate
expression of proteins involved in neuronal survival, plasticity, cellular
energy balance and mitochondrial biogenesis [49,50]. It turns out that
SIRT1 may also be an activator of BDNF production, by deacetylating
the transcriptional coactivator of 1 (TORC1), which activates CREB
resulting in enhanced transcription of BDNF in a mammalian Hun-
tington's disease model [35]. Therefore, some of the neuroprotective
effects of exercise induced SIRT1 activation can be mediated by BDNF.
In another animal model, where melatonin was used to attenuate the
lipopolysaccharide (LPS) induced oxidative stress, melatonin activated
the SIRT1/Nrf2 (nuclear factor-erythroid 2-related factor 2) signaling
pathway, which suppressed the LPS-induced ROS generation [36].

There could be several mechanisms by which exercise activates Bdnf
expression. One recently reported pathway could be through lactate-
SIRT1- Fndc-5- axis. Exercising muscles produce lactate, which readily
crosses the blood brain barrier. It is reported, voluntary exercise, which
leads to increased levels of hippocampal lactate compared to control
mice, resulted in lactate-induced BDNF levels and improved spatial
learning [51]. Intraperitoneal injection of lactate also resulted in en-
hanced Bdnf expression in the hippocampus. Moreover, SIRT1 levels
were also increased by lactate. Silencing SIRT1 by shRNAs and ad-
ministration of SIRT1 inhibitor, sirtinol, on the other hand prevented
the lactate-associated induction of Bdnf expression, strongly suggesting
that it is SIRT1 mediated [51]. Moreover, this study also suggested that
SIRT1 activates the PGC-1α/FNDC-5 pathway and leads to the induc-
tion of hippocampal Bdnf expression and enhanced learning and
memory [51]. Physiological functions like memory or learning are
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regulated by a variety of cellular pathways, but cellular metabolism
associated pathways in which SIRT1 could be an important player, are
most likely involved.

4. The role of SIRT1 in endurance

Since endurance capacity is strongly dependent on cardiovascular
function and mitochondrial biogenesis [52] we outline the role of SIRT1
in the function of cardiac and skeletal muscle. Oxidative stress and
aging are often associated with activation of inflammation and apop-
tosis via NFκB and FOXO3 pathways, and the deacetylation of these
transcription factors by SIRT1 has beneficial effects on cellular survival
[53]. Indeed, exercise training along with resveratrol treatment, which
is a potent activator of SIRT1, increased SIRT1 and PI3K-Akt pathways
and suppressed FOXO3 in aging hearts [53].

One way to study the role of targeted proteins on cellular function is
by ablation of the protein. When SIRT1 was ablated in the cardio-
myocyte and the heart was subjected to ischemia/reperfusion, the
ejection fraction of SIRT1 KO mice was impaired [54]. Moreover, SIRT1
deficiency significantly compromised substrate metabolism in cardiac
muscle [54]. In accordance with this, when trained and untrained rats
were challenged by ischemia/reperfusion, trained rats displayed sig-
nificantly decreased injury, and exercise activated the SIRT1 and SIRT3
pathways and reduced p53 mediated apoptosis and oxidative damage
[55].

p53 is one of the most well studied targets of SIRT1. Accumulating
evidence suggests that p53 acts as a threshold regulator of cellular
homeostasis [56], since under mild cellular stress p53 induces cell cycle
arrest to allow cells to repair damage, while greater stress results in
growth arrest or apoptosis. In harsh stress conditions that cause irre-
parable damage, p53 activates a number of pro-apoptotic genes to
terminate the cell [57]. Studies on p53 knockout (KO) mice showed
decreases in the levels of mitochondrial content, marked reduction of
PGC-1α content and exercise capacity [58]. Hence p53 is an important
protein for exercise induced adaptation. This transcription factor con-
trols metabolism via down-stream targets like cytochrome c oxidase 2
(SCO2), which regulates the cytochrome c oxidase (COX) [59] and
phosphate-activated mitochondrial glutaminase (GLS2) [60]. One of
the important targets of p53 is TP53-induced glycolysis and apoptosis
regulator (TIGAR), which decreases cellular fructose-2,6-bisphosphate
levels, glycolysis and ROS [61]. Ablation of TIGAR resulted in de-
creased running capacity in mice and decreased mitochondrial content
and function in the skeletal muscle. These effects were attenuated by
resveratrol treatment by promoting SIRT1 and the PGC-1α axis [62].
Data suggests that TIGAR translocation into the mitochondria is im-
portant for increasing the endurance capacity of fast-twitch fibers, and
this process involves SIRT1 and PGC-1α [62].

Endurance exercise have been shown to increase mitochondrial
biogenesis [63] and SIRT1 content and activity [64,65], and it has also
been shown that SIRT1 deacetylates PGC-1α [26]. Therefore, it has
been suggested that SIRT1, especially nuclear SIRT1, can cause mi-
tochondrial biogenesis by deacetylation of PGC-1α [66]. However, the
study of Nemoto et al. [26], actually suggests that deacetylation of PGC-
1α results in reduction of oxygen consumption at least in PC12 cells.
Along with this observation, it has been shown that mice lacking SIRT1
deacetylase activity in skeletal muscle showed similar adaptive re-
sponses to exercise as wild type animals, indicating that exercise can
induce mitochondrial biogenesis independently from SIRT1 [67].

The complexity of this phenomenon is further emphasized by nu-
tritional manipulations, especially by resveratrol supplementation. We
supplemented the diet of rats with low and high running capacity with
resveratrol [68,69]. The same amount of resveratrol decreased en-
durance in low-running capacity and increased it in high running ca-
pacity rats, and differently affected the levels of AMPK, SIRT1, PGC-1α
and mitochondrial transcription factor A [68,69]. On the other hand,
when resveratrol and piperine were administered to subjects during

wrist flexor exercise training and the mitochondrial capacity (probably
oxidative capacity) was monitored by near-infrared spectroscopy, the
results revealed that the treated group had a greater increase at mi-
tochondrial capacity [70]. When resveratrol was supplemented to pa-
tients with peripheral artery diseases, their walking performance, as
assessed by a 6-min walking test, was very similar to the placebo group,
suggesting that resveratrol treatment was not effective [71]. Resvera-
trol was supplemented to subjects who carried out high intensity ex-
ercise training, and the results did not show significant performance
enhancing effects of this treatment [72]. In addition, when resveratrol
was supplemented to aged man to test the possible exercise enhancing
effects, results revealed that resveratrol supplementation did not in-
crease the protein levels of SIRT1 and actually eliminated the beneficial
effects of exercise training on cardiovascular health parameters [73].
Conversely, there are a number of studies in which flavonoids, like
myricetin [74], taheebo [75], rutin [76], resveratrol [68,77], or quercin
[78] were administered to animals, and in most of these studies, the
treatment increased levels of SIRT1 and PGC-1α as well as enhanced
exercise performance. However, the parallel increase of PGC-1α and
SIRT1 from exercise training, does not necessarily indicate a functional
link.

Higashida and co-workers showed that training with resveratrol
supplementation does not have performance enhancing effects on rats,
and SIRT1 actually inhibits PGC-1α by deacetylation [77]. The authors
argued that in cell culture, resveratrol supplementation actually acti-
vates AMPK in a manner that results in decreased production of ATP,
which in turn activates PGC-1α. Induction of AMPK then results in
enhanced levels of SIRT1. They further suggest that acetylation of PGC-
1α activates this co-activator, which fits well with earlier reports
[26,79]. However, other investigators suggest that deacetylation of
PGC-1α leads to mitochondrial biogenesis, and therefore increased ac-
tivity of SIRT1 directly leads to better mitochondrial function [80–82].

Regardless of the differing evaluations of the role of acetylation/
deacetylation on the activity of PGC-1α, it appears that the exercise
mediated induction of SIRT1 has a complex effect on cellular function,
which importantly involves metabolic processes and cellular survival
(Fig. 1) [83,84]. One possible explanation for the different views on
SIRT1 mediated deacetylation of PGC-1α could be due to possible dif-
ferences in the effects of site-specific lysine acetylation. It is known that
the site-specific acetylation of lysine residues on histone proteins could
have different downstream effects [85]. Therefore, it cannot be ex-
cluded that certain residues of PGC-1α that are acetylated may result in
activation and acetylation of other residue(s) may also cause inhibition

Fig. 1. Exercise activated SIRT1 regulates wide range of adaptive response.
Exercise induced metabolic challenge increase the activity of AMPK phos-
phorylation, which leads to SIRT1 activation. SIRT1 deacetylates key proteins,
which play important role in cellular adaptation to exercise training.
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of the activity of this co-activator. This selectivity works well in the
regulation of histones, so is makes sense that it would work for other
proteins as well. If this is the case, it would in part explain the different
outcomes of SIRT1 and PGC-1α associated studies.

5. Resistance training and SIRT1

There are only a few reports on SIRT1 and resistance training.
However, SIRT1 plays an important role in the physiology of skeletal
muscle, which includes development, repair, hypertrophy and meta-
bolism. Resistance training generally aims to increase the strength and
size of skeletal muscle. An early paper from Fulco et al. [86] suggested
that Sir2 is a redox sensitive modulator of gene expression and differ-
entiation of the skeletal muscle. Matured myofibers can include hun-
dreds of myonuclei, and each myonucleus regulates the gene products
for a given area of cytoplasm, termed the myonuclear domain (MND)
[87]. Greater number of myonuclei results in smaller MND and faster,
better transport of gene products to the given area. Slow twitch fibers
have smaller MND to feed the large number of mitochondria for pro-
ducing the necessary gene products. Moreover, there is also a need to
increase the number of myonuclei during resistance training, which
aims to cause muscle hypertrophy. It has been reported that PGC-1α not
only regulates mitochondrial biogenesis, but it also controls the number
of myonuclei in the fibers, and thus the size of the MND as well [88].
Overexpression of PGC-1α in the extensor digitorum longus resulted in
increased number of myonuclei resulting in decreased volumes of MND
[88]. Moreover, over-expression of the gene SIRT1 caused the myo-
nuclear number in the tibialis anterior muscle to significantly increase,
with the concomitant decrease in MND size, while ablation of SIRT1
caused decreased myonuclear numbers [89]. Interestingly, neither
over-expression nor deletion of the SIRT1 gene changed the levels of
mitochondrial markers [89]. Therefore, it is suggested that SIRT1
mediated changes in myonuclear number is independent from PGC-1α.

Activated satellite cells play an important role in muscle repair and
can be responsible for increases in myonuclear number. Interestingly,
ablation of the SIRT1 gene lead to impaired muscle regeneration and
revealed impaired activation of genes responsible for muscle develop-
ment [90]. Nitric oxide (NO) leads to the proliferation of satellite cells
[91], and inhibition of NO production by L-NAME results in decreased
levels of SIRT1 in both slow- and fast twitch skeletal muscles [92].

Moreover, it has been reported that SIRT1 up-regulates eNOS [93]. We
have shown that SIRT1 protein levels and activity are increased during
overload induced hypertrophy of the plantaris muscle, and this increase
was paralleled by an increase in NO content by deacetylation of eNOS
[94]. Akt deacetylation by SIRT1 on the other hand, also suppresses
catabolic processes via down‐regulation of FOXO1 [95]. Hence, SIRT1
activation during overload induced hypertrophy resulted in up-regula-
tion of anabolic and downregulation of catabolic pathways (Fig. 2). In
addition, Koltai et al. [96] have shown that overload induced hyper-
trophy results in changes in muscle‐specific microRNA (myomiR) ex-
pression, and it was reported that microRNA‐1 and ‐133a levels were
negatively correlated with muscle mass and SIRT1 expression.

One of the striking effects of aging is sarcopenia, loss of muscle mass
and strength, which is associated with decreased levels and activity of
SIRT1 [65,97,98]. It has been reported that one of the reasons for the
different adaptive responses of young and old mice to resistance
training is due to different levels of Poly [ADP-ribose] polymerase
(PARP-1) acetylation by histone acetyltransferase General control of
amino acid synthesis protein 5-like 2, GCN5 [98]. Aging decreases
SIRT1 activity, which causes hyper-acetylation of PARP-1 and the
consequent decrease of NAD+ and suppression of SIRT1 activity [98].
Acetylation of PARP-1 results in NF-κB dependent gene activation [99]
and enhanced inflammation, which is one of the hallmarks of sarco-
penia. The SIRT1 dependent adaptive response, which attenuates the
aging process, also involves endothelial function in the skeletal muscle.
It has been recently reported that exercise increases the levels of en-
thothelial NAD+ and SIRT1, which activates VEGF-associated angio-
genesis [100], resulting in better supply of oxygen and food to the aging
skeletal muscle.

6. Conclusion

Exercise results in massive changes in cellular metabolism and al-
teration of NAD+:NADH ratios. However, the activity of SIRT1 is not
just dependent on NAD+ levels. Exercise mediated increases in the
activity of SIRT1 is systemic, and it is observed in many organs. Regular
exercise restores levels of SIRT1 in the kidney and liver in patients with
neurodegenerative diseases, and therefore normalizes cellular meta-
bolic processes and attenuates the severity of the diseases. The available
data on the parallel increases in the activity of SIRT1 and PGC-1α in

Fig. 2. SIRT1 regulates myonuclear numbers.
Over-expression of SIRT1 results in increased myo-
nuclear number in skeletal muscle, and SIRT1 is ac-
tively involved in hypertrophy of skeletal muscle by
enhancing NO levels to stimulate satellite cell pro-
liferation and pro-synaptic pathways. The inhibition
of FOXO1 curbs cellular catabolism.
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skeletal muscle during endurance training does not suggest a causative
relationship. Overexpression of SIRT1 does not cause increased mi-
tochondrial biogenesis, but without question, SIRT1 is an important
adaptive protein for endurance training as it controls metabolic path-
ways. SIRT1 levels also significantly increase the number of myonuclei,
the levels of NO and concomitant satellite cell proliferation. SIRT1 has
emerged as an active regulator of muscle repair and hypertrophy.
Regular exercise rejuvenates aging skeletal muscle partly because it has
powerful stimulating effects on SIRT1. Despite the significant knowl-
edge on the role of SIRT1 in cellular signaling, there is still much to be
learned. It cannot be excluded that different site-specific acetylation/
deacetylation of different lysine residues has different effects on the
activity of proteins like PGC-1α.
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