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A B S T R A C T

Strenuous exercise is a potent stimulus to induce beneficial skeletal muscle adaptations, ranging from increased endurance due to mitochondrial biogenesis and
angiogenesis, to increased strength from hypertrophy. While exercise is necessary to trigger and stimulate muscle adaptations, the post-exercise recovery period is
equally critical in providing sufficient time for metabolic and structural adaptations to occur within skeletal muscle. These cyclical periods between exhausting
exercise and recovery form the basis of any effective exercise training prescription to improve muscle endurance and strength. However, imbalance between the
fatigue induced from intense training/competitions, and inadequate post-exercise/competition recovery periods can lead to a decline in physical performance. In
fact, prolonged periods of this imbalance may eventually lead to extended periods of performance impairment, referred to as the state of overreaching that may
progress into overtraining syndrome (OTS). OTS may have devastating implications on an athlete's career and the purpose of this review is to discuss potential
underlying mechanisms that may contribute to exercise-induced OTS in skeletal muscle. First, we discuss the conditions that lead to OTS, and their potential
contributions to impaired skeletal muscle function. Then we assess the evidence to support or refute the major proposed mechanisms underlying skeletal muscle
weakness in OTS: 1) glycogen depletion hypothesis, 2) muscle damage hypothesis, 3) inflammation hypothesis, and 4) the oxidative stress hypothesis. Current data
implicates reactive oxygen and nitrogen species (ROS) and inflammatory pathways as the most likely mechanisms contributing to OTS in skeletal muscle. Finally, we
allude to potential interventions that can mitigate OTS in skeletal muscle.

1. Introduction

Exercise is arguably the most potent stimulus that triggers skeletal
muscle adaptations during chronic endurance and resistance training.
These adaptations range from increased endurance due to mitochon-
drial biogenesis and angiogenesis, to increased strength from hyper-
trophy in skeletal muscle. It is also well-known that the adaptation is
dependent on exercise intensity, i.e. when exercise is performed to
exhaustion, resulting in fatigue, it creates a metabolic drive that in-
itiates a more powerful downstream activation of genes responsible for
skeletal muscle remodeling than moderate exercise [1,2]. While ex-
ercise is necessary to trigger and stimulate muscle adaptations, the post-
exercise recovery period is equally critical in providing sufficient time
for metabolic and structural adaptations to occur within skeletal muscle
[3–5]. These cyclical periods between fatigue and recovery form the
basis of any effective exercise training prescription to improve muscle
endurance and strength. However, we are currently lacking scientific
knowledge of how long the recovery periods should be to receive op-
timal adaptation in skeletal muscle. Moreover, elite athletes and high-
performance individuals might struggle to allow time for recovery be-
tween their exercise sessions and competitions where they, as required
at the top level, are supposed to perform at their utmost capacity.

Imbalance between the fatigue induced from intense training/compe-
titions, and inadequate post-exercise/competition recovery periods can
lead to a decline in physical performance. In fact, prolonged periods of
this imbalance between fatigue and recovery may eventually lead to
extended periods of performance impairment, referred to as the state of
overreaching that may progress into overtraining syndrome (OTS). The
prevalence of overreaching and OTS is difficult to establish as specific
diagnostics are absent, but studies report that ~30% of both young
athletes (< 18 years) and elite athletes (> 18 years old) have experi-
enced overreaching/OTS at least once [6–9]. However a prevalence of
as high as ~60% in male and female elite runners have been described
[10].

Performance decrements accompanying overreaching will require
days to weeks for recovery, but appropriate rest will ultimately lead to
performance increases. However, if the overreaching is extreme and/or
combined with insufficient downtime (i.e. rest, recovery) it will ad-
vance into OTS [8,11]. OTS is defined by persistent underperformance
despite> 2 months of recovery, joined with changes in mood and ab-
sence of symptoms/diagnosis of other possible causes of under-
performance [8,9,11,12]. OTS has been attributed to both central
(psychological, neurological) and peripheral (intramuscular) mechan-
isms [8,9,11,12]. In this review, we will focus on intramuscular
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mechanisms that results in impaired skeletal muscle contractile func-
tion following exhaustive exercise and elucidate how these can lead to
OTS (Fig. 1).

2. Prolonged low-frequency force depression, a potent contributor
to OTS

Physiological assessments of OTS by coaches and athletes has been
limited due to difficulties in employing practical tests to assess skeletal
muscle performance in the field [13]. However, in studies where muscle
function was investigated, muscle weakness was a defining symptom of
overtraining in elite athletes [7,14–16]. The muscle force produced
during an exercise session, which allows us to e.g. run, jump and
breathe, is primarily muscle contractions carried out at the submaximal
level. Prolonged low-frequency force depression (PLFFD) is defined as a
persistent exercise-induced reduction in submaximal force that can last
for several days or weeks during the post-exercise recovery period
[17–21]. This means that PLFFD underlies the long-lasting sensation of
muscle weakness during the post-exercise recovery period. Thus, one
consequence of PLFFD is that depressed submaximal force will require
greater perceived effort to perform any given exercise task, which im-
plies that repeated periods of PLFFD without recovery could potentiate
or even exacerbate OTS in skeletal muscle. This greater voluntary effort
required to compensate for the depressed submaximal force associated
with PLFFD may also accelerate muscle fatigability by requiring in-
creased recruitment of muscle fibers and higher motor unit discharge
rates to maintain a given force. Indeed, fatigue is a defining symptom of
OTS and muscle weakness associated with PLFFD may underlie the
impaired exercise capacity [8,22]. PLFFD was first described in a
human exercise study by Edwards and colleagues (1977), but since
then, accumulating evidence has shown that PLFFD following fatigue
can be replicated in single muscle fibres [23–26]. Thus, the primary
cause of PLFFD appears to lie within muscle itself. Intriguingly, the
prevailing hypotheses of underlying intramuscular causes of OTS [8]
(Fig. 1) are also proposed causes of PLFFD [19,23,24,26–28], i.e. gly-
cogen depletion, ultrastructural damage, inflammation, and oxidative
stress, which will be discussed in more detail below.

3. Underlying intramuscular causes of OTS

3.1. The glycogen hypothesis

Excitation-contraction (E-C) coupling [29] and the force producing
machinery (cross-bridge cycling) [30] are two energy-demanding pro-
cesses in skeletal muscle, which are further potentiated by physical
exercise. For instance, Ca2+ pumping by the sarcoplasmic reticulum
Ca2+-ATPase (SERCA) is purportedly responsible for ~50–80% of the
total energy cost in skeletal muscle [31,32]. Furthermore, one ATP
molecule is required for each myosin head (myosin/myofibrillar

ATPase) that will interact with actin to generate force in the cross-
bridge cycling [30]. Glycogen is a multi-branched polymer of glucose
molecules that serves as an energy storage form. Glycogen is found in a
variety of tissues, but quantitatively high in skeletal muscles (and the
liver). The large quantity of glycogen in skeletal muscle reflects its
important role of rapidly providing muscle cells with ATP, which dis-
play a high and rapidly shifting energy turnover. Moreover, glycogen is
located in close proximity to energy-consuming sites in skeletal muscle,
e.g. SERCA and myofibrillar ATPase [33]. Thus, intramuscular glycogen
depletion can be a significant contributor to fatigue and impaired post-
exercise recovery [27,34–36]. The rate of muscle glycogen re-syntheses
is slow and takes hours to several days to fully restore [37–41].
Nevertheless, intramuscular glycogen levels restore faster than the
months-long duration of OTS.

The glycogen hypothesis of OTS states that exercise-induced muscle
glycogen depletion is linked to decreased performance [42]. Based on
this hypothesis, long-term carbohydrate supplementation was recently
tested as an intervention to prevent or mitigate OTS in rodents [43].
Although a trend towards attenuated OTS-induced performance de-
crements in running and muscle atrophy with carbohydrate supple-
mentation was observed, it did not reach statistical significance. Fur-
thermore, glycogen supplementation was not able to protect against
muscle damage in rodents [43], assessed by oxidative stress markers
and creatine kinase (CK) levels [43]. On the other hand, a noticeable
glycogen dependence has been observed in the post-exercise recovery
of PLFFD. For instance, we have shown that submaximal force recovery
is absent in muscles not provided with glucose, i.e. in muscles not able
to resynthesize glycogen [27]. Thus, low intramuscular glycogen ap-
pears to contribute to PLFFD and OTS, but muscle glycogen content
alone cannot explain the mechanism underlying PLFFD and/or OTS.

3.2. Exercise-induced muscle damage and OTS

Exercise-induced muscle damage is a condition characterized by e.g.
loss of muscle strength, swelling, delayed onset muscle soreness
(DOMS), ultrastructural myofibrillar disruption, systemic efflux of
myocellular enzymes and proteins (e.g. CK), or a combination of these
[44–46]. It is well recognized that muscle damage is pronounced after
repeated eccentric contractions (i.e., lengthening) [47–49]. For in-
stance, running downhill and limb deceleration (drop jumps) are two
common movements of repeated eccentric muscle contractions that will
induce muscle damage [19,21,49], which lead to both maximal as well
as submaximal force depression (i.e. PLFFD) [19]. Moreover, there
appears to be a temporal association between the extent of loss of
muscle strength after exercise, and the time required to restore muscle
strength back to normal, i.e. the more the muscle strength decreases
immediately after exercise the longer it takes to recover [49–51] but if
the next exercise bout takes place before full recovery, it could con-
tribute to the negative performance spiral that can lead to overreaching

Fig. 1. Illustration picturing potential in-
tramuscular mechanisms of OTS, including gly-
cogen depletion, membrane damage, creatine
kinase efflux, reduced excitation-contraction
(E–C) coupling, inflammation and cytokine sig-
naling with e.g. enhanced TGF-β1 signaling,
mitochondrial dysfunction and increased ROS
signaling. Current data implicates ROS and in-
flammatory pathways as the most likely me-
chanisms contributing to OTS in skeletal muscle.
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and OTS. Overall, the multitude of symptoms initiated with muscle
damage can last from weeks to over a month, including prolonged
depression in muscle strength [21,44,46,48], hence the muscle damage-
induced loss of muscle strength matches the duration of the perfor-
mance decrements in OTS. However, what are the underlying cellular
and molecular explanations for the loss of strength introduced by ex-
ercise-induced muscle damage and the recovery/regeneration that fol-
lows injury, and what is the evidence, if any, that these mechanisms are
potential causes of OTS?

3.2.1. Mechanical damage not directly responsible for exercise-induced loss
of force

Mechanical damage of the muscle fiber ultrastructure has been
proposed to explain exercise-induced muscle damage and loss of muscle
strength [19,52,53]. For instance, loss of z-disc integrity (i.e. z-disc
streaming) and hence loss of the sarcomeric boundaries and the an-
choring site for the contractile protein actin in skeletal muscle [19,52].
However, despite a wider z-disc, the force production of isolated
myofibrils from human muscle biopsies were only marginally reduced
following 100 repeated drop jumps [19]. Nonetheless, impaired short-
ening velocity following eccentric exercise could indicate dysfunction
in crossbridge kinetics that could contribute to decreased muscle power
generation [54].

Moreover, despite evidence of increased sarcolemmal membrane
tearing and permeability as shown by elevated creatine kinase levels
into blood plasma [47,55], measurements of M-wave properties (am-
plitude, duration, area) from surface electromyography shows that
sarcolemmal excitability is unchanged under conditions that cause
marked force depression and PLFFD [54,56]. The absence of a sig-
nificant change in the M-wave suggests that failure in neuromuscular
transmission and sarcolemmal excitation are not closely related to the
force decrease, but instead imply that peripheral intramuscular me-
chanisms are responsible for the loss of force. Overall, accumulated
data [19,44,54,56–58] suggests that the ultrastructural changes are
signs of damage and/or remodeling, but are not directly responsible for
the force decrements. Instead, intramuscular modifications targeting
the E-C coupling and/or cross-bridges appear accountable for the
weakness. Specifically, exercise-induced inflammation and oxidative
stress targeting proteins involved in muscle contraction and force pro-
duction are major candidates potentially responsible for the force and
performance decrements in OTS [23,44,50,57,59–66].

3.3. Exercise-induced inflammation and cytokine production

The local classical signs of inflammation include pain, heat, redness,
swelling and loss of function, i.e. it has many commonalities with
symptoms of exercise-induced muscle damage. In fact, inflammation is
an acknowledged key process in muscular repair and regeneration
[67,68] and under non-pathophysiological conditions (e.g. after ex-
ercise-induced muscle damage) intramuscular inflammation is a tightly
coordinated and dynamic process that eventually leads to adaptive re-
modeling, e.g. skeletal muscle hypertrophy [50,57,62,67,69]. Among
the myeloid lineage cell types (including monocytes, macrophages,
neutrophils, basophils, eosinophils, erythrocytes, and megakaryocytes
to platelets) [70] that enter muscle following damage, macrophages are
most clearly demonstrated as positive regulators of regeneration
[44,50,63,71,72]. Macrophages demonstrate a wide continuum of
phenotypic diversity, on one hand, macrophages can be activated to the
M1 (F4/80+/CD68high/CD206-) phenotype by e.g. proinflammatory
cytokines or other myeloid cells [73]. Interferon gamma (IFNγ) and
tumor necrosis factor alpha (TNFα) are well-characterized proin-
flammatory cytokines that activate macrophages to the M1 phenotype.
At the other hand, macrophages can be activated to the M2 (F4/80+/
CD68low/CD206+) phenotype by anti-inflammatory cytokines, in-
cluding interleukin 4 (IL-4), IL-10 and IL-1373. Moreover, M1 and M2
macrophages appear functionally coupled to distinct stages of

myogenesis in muscle regeneration. For instance, it has been shown
that depletion of macrophages at the time of M1 to M2 transition re-
duced muscle growth, repair and regeneration, and perturbed the ex-
pression of the muscle-specific transcription factor MyoD in skeletal
muscle from mice that had undergone hindlimb unloading and re-
loading as a model of muscle damage [74]. However, the spatial and
temporal coordination of macrophage-mediated signaling of in-
flammation and muscle regeneration is not fully understood, but sev-
eral cytokines, including TNFα, IFNγ, IL-6, and IL-10, appears to play
key roles in muscle regeneration [44,50,63,64]. In accordance, non-
steroidal anti-inflammatory drugs (NSAIDs) have been shown to nega-
tively impact satellite cell activity, translational signaling and protein
synthesis in human biopsies after acute exercise and chronic resistance
training (both concentric and eccentric contractions) [57,59–61].
Moreover, it was recently shown that in healthy young men and women
which performed 8 weeks of supervised resistance training, the NSAID
ibuprofen (1200 mg/day) compromised resistance exercise-induced
muscle strength and muscle hypertrophic adaptations, which was ac-
companied by ibuprofen-induced downregulation of IL-6 expression
[62].

Although there are beneficial effects of inflammation in the short
term, a chronic inflammatory response will be deleterious ultimately
resulting in decreased muscle function with reduced mitochondrial
respiration and muscle weakness [75–81]. For instance, overexpression
of IL-6 causing chronically elevated IL-6 levels in skeletal muscle, re-
sults in lowered force production, reduced expression of proteins in the
mitochondrial electron transport chain, and diminished respiratory
capacity [81]. Moreover, exercise-induced muscle damage can persist
for weeks and trigger macrophage activation where several cytokines
(incl. TNFα, IFNγ, IL-6, and IL-10), appear to be involved
[44,50,63,64]. Thus, repeated strenuous exercise can induce a persis-
tent intramuscular molecular cytokine signature, which shares com-
monalities with disease states of chronic inflammation (e.g. rheumatoid
arthritis [80]) which is accompanied by muscle weakness [76–78,80].
As a result, repeated strenuous physical activity with too short recovery
periods that induces soluble factors which prolongs the duration of
inflammation will most certainly lead to decreased muscle function and
may well be a key component in OTS.

There are data from rodents that supports the link between cyto-
kines and OTS, however, further experiments in humans are necessary
to elucidate the relationship between inflammation and excessive ex-
ercise [82]. For example, in an experimental setting, overtraining was
induced in rats by 11 weeks of motorized treadmill running, which
resulted in decreased physical performance accompanied by increased
cytokine levels of e.g. TNF-α, IL-4, IL-6, IL-10 as compared with a se-
dentary control group and a moderate trained control group [83]. Re-
markably, the levels of TNF-α, IL-6, and IL-10 remained elevated even
after a two week recovery period after the last exercise session [83].
Nevertheless, how can cytokines lead to decreased performance in
skeletal muscle, i.e. decreased force production? Cytokines are known
to increase the production of reactive oxygen species (ROS) and in turn,
ROS can promote release of pro-inflammatory cytokines [67,80,84–86].
In the next chapter we will discuss how ROS can cause an imbalance in
the redox state of the muscle, resulting in impaired exercise perfor-
mance as evident in athletes with OTS [12,87].

3.4. Oxidative stress and decreased muscle function in OTS

Athletes with OTS exhibit exercise-induced oxidative stress [12,87],
which is thought to be caused by an imbalance in the intramuscular
redox state that triggers inflammatory signaling, resulting in impaired
force production and exercise performance. In line with the data from
human studies showing that the degree of exercise-induced muscle in-
flammation depends on the type of exercise and extent of loss of force
[57,66,88], the amount and impact of the oxidative stress on muscle
performance appears dependent on type of exercise and intensity
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[19,66]. The time course of exercise-induced oxidative stress in skeletal
muscle is unclear, but transcriptional analyses of skeletal muscle
biopsies after endurance exercise indicated transcriptional activity of
oxidative-stress related genes (e.g. transforming growth factor β (TGF-
β1), phospholipase A2) 96h post-exercise [66]. However, exercise-in-
duced increases in ROS can also have direct effects on the force pro-
duction in skeletal muscle [23,65].

Exercise-induced increases in ROS has been associated with muscle
fatigue and impaired post-exercise recovery [89]. For instance, Reid
et al. showed already 25 years ago that the general antioxidant N-
acetylcysteine (NAC) alleviated the fatigue-related force decline when
human subjects performed repeated submaximal contractions [90].
This finding established the mechanism that ROS production increases
in skeletal muscle during physical exercise and ameliorating the re-
sulting oxidative stress with antioxidants lessens the force decrease.
Another study that investigated the direct effect of ROS on muscle force
generation in unfatigued muscle, showed via exposure of isolated
muscle fibers to oxidizing (i.e. H2O2) and reducing agents (i.e. DTT)
that shifting the redox state of the muscle also had implications on the
muscle force generation [91]. Specifically, these findings revealed that
an unfatigued muscle is mostly in a reduced state and upon exposure to
mild oxidation, ROS increases contractile force to a state considered
“optimal redox balance” [91]. However, continued exposure of the
muscle fiber to ROS caused force depression due to excessive oxidation,
which may represent the state of severe fatigue and OTS [91] (Fig. 2).
Since these landmark studies though, the role of ROS and oxidative
stress in fatigue and force depression has been a subject of intense
debate. For instance, it is known that ROS are produced to the greatest
extent during metabolically demanding high-intensity exercise [92].
However, it was recently shown that treating muscle with potent an-
tioxidants that inhibited ROS production from the major cellular sites
(e.g. mitochondria and NADPH oxidase 2 (NOX2)) during one session of
high-intensity stimulation did not mitigate the fatigue-induced decline
in contractile force [23]. One plausible explanation why no effect was
seen with antioxidants in direct conjunction with one session of fatigue-
induced decline in contractile force [23] is that the ROS produced
during the contractions was transient which shifted it to an “optimal
redox balance” that was beneficial for the force generation
[24,25,91,93], and direct application of antioxidants could not reduce
the redox state of the fiber and thus no altered muscle performance was
observed (Fig. 2). However, several human and animal studies show
that chronic treatment with antioxidants to remove ROS can hamper
the beneficial effects of endurance training [94–96], probably because
continuous antioxidants intake/application neutralizes the oxidative
stress and also the beneficial effects of ROS on e.g. force generation and
signaling leading to mitochondrial biogenesis. In comparison to acute
and brief increases in ROS with exercise in healthy skeletal muscle,
several chronic diseases showing symptoms of skeletal muscle dys-
function and muscle weakness, including rheumatoid arthritis (RA)
[76–78], Duchenne muscle dystrophy [97], malignant hyperthermia

[98], and even in normal ageing [99] show chronic intramuscular in-
creases in ROS and oxidative stress (Fig. 2). Similar to chronic disease,
OTS may represent a state of chronic oxidative stress. For instance,
blood markers of oxidative stress (e.g. depletion of reduced glutathione
(GSH)) can persist for longer than a month following an ultra-en-
durance running event [100]. Athletes categorized as chronically suf-
fering from OTS (> 6 months) show increased levels of the oxidative
stress marker malondialdehyde (MDA) adducts at baseline and reduced
blood plasma antioxidant capacity (i.e., oxygen radical absorbance
capacity) [101]. In chronic conditions with oxidative stress and muscle
weakness, antioxidant treatment has been shown to be beneficial in
restoring muscle force production [75,77,102]. Thus, increases in ROS
can have both good and bad effects on skeletal muscle contractile
function and fitness, and the outcome probably depends on a combi-
nation of factors, e.g. the type of ROS, the size of ROS increase, the
duration of ROS/RNS elevation (e.g. milliseconds vs hours and months),
as well as the site of ROS production and accumulation [103–105].

Furthermore, oxidative stress contributes to PLFFD in skeletal
muscle and both could act as potent promoters of OTS. Within skeletal
muscle, ROS appears to promote PLFFD by either reducing Ca2+ release
from the sarcoplasmic reticulum (SR) mediated by the ryanodine re-
ceptor (RyR1) or myofibrillar Ca2+ sensitivity, and this appears to
depend on the major origin of the ROS-producing cellular site (i.e.,
mitochondria, cytosol), and on the ROS species interacting with various
intracellular proteins (i.e., superoxide (O2

●-), hydrogen peroxide
(H2O2), hydroxyl radicals (●OH), nitric oxide (NO), peroxynitrite
(ONOO●-)) [23,24,26,28]. In a state potentially representing chroni-
cally elevated oxidative stress in OTS, H2O2 treatment of rat skinned
muscle fibers decreased myofibrillar Ca2+ sensitivity and cross-bridge
force [106]. A mechanism was revealed whereby prolonged and ele-
vated [H2O2] interacts with the Fe2+ on myoglobin, to generate hy-
droxyl radicals, which then oxidizes the major cytosolic antioxidant
enzyme, glutathione, to decrease myofibrillar Ca2+ sensitivity via ir-
reversible oxidation on the contractile apparatus [106].

Another intramuscular mechanism by which oxidative stress inter-
feres with cross-bridge cycling and force production is by oxidative
post-translational modifications (PTMs) on actin [76] (Fig. 1). Using
mass spectrometry we recently identified a specific set of oxidative
MDA and 3-nitrotyrosine (3-NT) PTMs on skeletal muscle actin from
mice and humans with chronic inflammation (i.e. RA), which caused
impaired actin polymerization, reduced myofibrillar force production
and muscle weakness [76].

Animal models might have been criticized for not completely mi-
micking OTS in humans, however, the multifunctional cytokine TGF-β1
has been found in transcriptional analyses of skeletal muscle from both
animal models and humans with OTS [66,107]. Thus, animal models
might be a promising tool for future mechanistic studies in order to
further understand cellular and molecular aspects of intramuscular
OTS. TGF-β1 belongs to the transforming growth factor superfamily
together with myostatin and activin A, and known to have catabolic

Fig. 2. Cartoon illustrating the proposed bell-
shaped relationship between redox state and
performance in skeletal muscle. In the rested
state, muscle fibers appear in a semi-reduced
redox state and can become oxidized during
exercise to an “optimal exercise redox balance”
at which the muscle can reach peak perfor-
mance. Muscle fibers can become overly oxi-
dized during fatiguing exercise and even further
in OTS and chronic disease which leads to a
reduced muscle performance. On the opposite
end, an exceedingly reduced fiber will also result
in lower muscle performance.
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effects on skeletal muscle [108,109]. TGF-β1 can be secreted by mac-
rophages and is known to induce pathological fibrosis [110,111], but
other cells e.g. microvascular smooth muscle cells have also been re-
ported to release TGF-β1 and contribute to fibrosis [108,112,113]. For
instance, TGF-β1 can activate myofibroblasts to deposit extracellular
matrix, of which a major component is collagen and fibrosis formation
[109–111]. Furthermore, patients with peripheral artery disease (PAD)
exhibit decreased muscle function that is associated with oxidative
stress and mitochondrial defects [114], i.e. skeletal muscle biopsies
(gastrocnemius) from PAD patients that exhibit increased levels of
oxidative stress markers (e.g. carbonylation (DNP), and lipid hydro-
peroxides) [114] also have higher TGF-β1 expression which correlates
with increasing collagen deposition [108]. Moreover, TGF-β1 has been
shown to provoke skeletal muscle weakness by phosphorylation and
activation of the SMAD2/3 transcription factor, leading to NOX4
transcription which in turn induces oxidative PTMs on the Ca2+ release
channel RyR1 [102]. Oxidative PTMs (e.g. DNP [102,115]) of RyR1 can
lead to reduced binding of the 12-kDa FK506-binding protein (FKBP12)
to the channel which contributes to SR Ca2+ leak that is considered an
underlying mechanism of muscle weakness in several pathological
conditions, including diaphragm weakness during mechanical ventila-
tion and in bone metastases [102,115]. Moreover, increased SMAD2/3
signaling and decreased running performance and grip strength have
been observed in muscle from mice where overtraining was induced by
running [116].

Oxidative PTMs on proteins involved in excitation-contraction
coupling (e.g. RyR1) or cross-bridge cycling (e.g. actin, myosin) has, to
our knowledge, not been investigated in muscle samples from OTS
subjects. However, exhaustive endurance exercise ranging from days to
weeks in mice (swimming, running) and human (cycling) have shown a
progressive increase in PTM on RyR1 (nitrosylation and phosphoryla-
tion) which correlated inversely with FKBP12 binding to RyR1 and
increased open probability of RyR1, indicative of enhanced Ca2+ leak
[117]. These results suggest that during exercise, remodeling of the
RyR1 macromolecular complex with FKBP12 dissociation results in
leaky channels that play a role in limiting exercise capacity. The same
physiological mechanisms that impair exercise capacity during chronic
exercise are likely beneficial during acute exercise, but with repeated
exhaustive exercise without recovery period, this may contribute to
OTS (Fig. 1). Thus, given that OTS mimics a state of chronic in-
flammation and oxidative stress, oxidative PTMs modifications of
contractile proteins [65,76,106,117,118] are a potential intramuscular
mechanism of the decreased force production in OTS.

3.5. Reduced mitochondrial capacity in skeletal muscle from subjects with
OTS?

As mitochondria are the cellular powerhouse that generates ATP to
fuel muscle force production, reduced oxidative phosphorylation will
directly limit exercise performance and thus an obvious player that
could contribute to OTS. Athletes with OTS exhibit performance de-
crements, reduced ability to perform high intensity exercise and per-
sistent high fatigue ratings [9,22,119], which all can be linked to re-
duced mitochondrial capacity and a reduced maximum oxygen
consumption (VO2max). However, understandably, results from VO2max

tests are not a reliable physiological indicator of OTS, partly because
one might not have a ‘baseline’ value to compare with, but more im-
portantly the listed symptoms of OTS makes it impossible for the sub-
ject to perform at maximum capacity in a physiological test. Instead, ex
vivo cellular respiration (using e.g. Seahorse or Oroboros instruments)
[120,121] of muscle fibers would be a more direct, controlled and re-
peatable procedure to assess oxygen consumption and energy produc-
tion rates. To our knowledge, no cellular respiration analyses of skeletal
muscle are currently available, but mitochondrial respiration have been
analyzed in skinned myofibers from rat myocardium in response to
chronic exhaustive exercise [121]. The overtraining resulted in a

reduced oxidative phosphorylation rate in myofibers from the over-
trained group [121]. In skeletal muscle, lower levels of the mitochon-
drial oxidative enzyme citrate synthase have been reported in rats with
OTS [122], indicative of reduced mitochondrial respiration that might
contribute to the impaired performance of skeletal muscle in OTS.

4. Prevention and possible treatment options

OTS may have devastating effects on an athlete's career and thus
prevention is of importance. Prevention includes carefully planned
training programs that include regular monitoring by coaches and the
athletes themselves to assess adaptation to training over both the short
and long term. Measures suggested to prevent overtraining include
minimizing abrupt increases in training loads, monitoring inadequate
dietary intake and too frequent competition, individualizing and peri-
odizing training plans, as well as allowing adequate post-exercise re-
covery and rest days into the training/competition program. Despite
careful prevention, it is possible that athletes develop OTS anyways,
and except providing adequate rest, no pharmacological treatment
strategies are currently available. However, based on the intramuscular
processes that appears to contribute to OTS, one obvious solution to
mitigate the syndrome could be the use of antioxidants to alleviate the
oxidative stress. We acknowledge that antioxidants (e.g., vitamin C and
E) given to healthy individuals can have detrimental effects on en-
durance training adaptations [94–96]. However, here we imply that
OTS more closely resembles a state of chronically elevated oxidative
stress, such as in chronic disease, rather than exercise adaptation.
Moreover, we have previously shown that the SOD/catalase mimetic
EUK-134 is an antioxidant that can counteract muscle weakness in-
duced by oxidative stress and thus could prove useful in improving
muscle performance in athletes with OTS [75,77]. Using the same ar-
gument but instead that OTS mimics a state of chronic inflammation, an
anti-inflammatory treatment option could be an alternative. However,
in any case, more research is needed before giving any specific re-
commendations with doses and length of treatment.

5. Conclusion

OTS has severe implications on training/competition performance
and hence may have devastating effects on an athlete's career. OTS is
caused by chronic imbalances between exercise-induced fatigue and
provision of sufficient post-exercise rest. Skeletal muscle accounts for
approximately 40% of your body weight and is essential for our ability
to move and breath. Here we showed that skeletal muscle is an im-
portant contributor to OTS with the long-lasting prolonged low-fre-
quency force depression developed following exhaustive exercise as a
potentially potent inducer of skeletal muscle weakness in OTS. Exercise
causes an increase in pro-inflammatory cytokines, which in turn can
increase muscle oxidative stress that results in a vicious cycle to further
elevate inflammation. Although the effects of post-translational mod-
ifications of proteins involved in muscle force generation have not been
examined in athletes with OTS, pathological conditions of chronic in-
flammation and increased oxidative stress have shown that oxidation of
calcium-handling and contractile proteins can cause long-term skeletal
muscle weakness and exacerbated fatigue. Other than providing ade-
quate rest, there is no effective pharmacological treatment to coun-
teract OTS and accelerate recovery. However, antioxidants and anti-
inflammatory compounds may show promise in neutralizing the ele-
vated oxidative stress and chronic inflammation in muscles of athletes
with OTS, although further research is required to determine the ef-
fectiveness of these pharmacological strategies to treat OTS. Finally,
novel animal models that mimic the progression from overreaching to
OTS is needed to achieve further mechanistic understanding of this
physical impairment, including deciphering the interaction between
inflammation and oxidative stress in the development of the decreased
muscle performance in OTS.
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