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Abstract: Semantic segmentation of street view images is an important step in scene understanding
for autonomous vehicle systems. Recent works have made significant progress in pixel-level labeling
using Fully Convolutional Network (FCN) framework and local multi-scale context information. Rich
global context information is also essential in the segmentation process. However, a systematic way to
utilize both global and local contextual information in a single network has not been fully investigated.
In this paper, we propose a global-and-local network architecture (GLNet) which incorporates global
spatial information and dense local multi-scale context information to model the relationship between
objects in a scene, thus reducing segmentation errors. A channel attention module is designed to
further refine the segmentation results using low-level features from the feature map. Experimental
results demonstrate that our proposed GLNet achieves 80.8% test accuracy on the Cityscapes test
dataset, comparing favorably with existing state-of-the-art methods.
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1. Introduction

Image semantic segmentation is a computer vision task in which each pixel of an image is assigned
to a corresponding object label. Semantic segmentation provides richer information, including object’s
boundary and shape, than other object segmentation techniques such as object detection which produces
only object bounding boxes. Therefore, semantic segmentation of street view images is important
to the development of vision sensors for autonomous vehicle systems that require rich information
for scene understanding [1,2]. Many state-of-the-art semantic segmentation methods are based on
fully convolutional networks (FCN) [3]. FCN is an end-to-end, pixel-wise fully convolutional neural
network for image semantic segmentation which replaces the fully connected layer in a conventional
convolutional neural network (CNN) with convolutional layers and then restores the output to the
original image size by up-sampling the final convolutional layer using a deconvolution operation [4].
However, consecutive pooling operations at the encoding stage usually lead to the reduction of
feature resolution, which in turn will degrade final segmentation performance. As shown in the
first row of Figure 1, small objects such as poles and traffic light are missing due to loss of detailed
information resulted from pooling operations. To address this issue, dilated convolution (also called
atrous convolution) has been proposed to replace the down-sampling and up-sampling operations in
order to gain a wider field of view while preserving full spatial information [5–7].
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Local context information is an important component in semantic segmentation for segmenting 
complex street view scenes that contain different objects with similar features. The second row in 
Figure 1 shows a portion of the ‘truck’ object that has been mistakenly classified as a ‘car’ object 
because it has a similar appearance to cars. Consequently, local context information should be 
explicitly encoded in the semantic segmentation models [6]. Another important factor affecting 
segmentation is the existence of objects in multiple scales. With regard to this, different scales of an 
image are generated to extract multi-scale features, and the features are then merged to predict the 
results [8–10]. In [11] and [12], dilated convolution layers with different rates were used to capture 
object features at multiple scales, and the experimental results indicated that using multiple 
field-of-views can improve overall segmentation accuracy. 

 

Figure 1. Some semantic segmentation issues observed in the Cityscapes dataset. (a) Missing small 
and thin objects. (b) Incorrect segmentation of similar parts. (c) Incomplete segmentation of large 
objects. 

Convolutional operations process one local neighborhood at a time as in a conventional CNN 
[13,14], which may cause incomplete segmentation of large objects. As shown in the third row of 
Figure 1, with local convolutional operations, parts of the road near roadside area were wrongly 
predicted as sidewalk due to the lack of global context information. To resolve this, global contextual 
information has been utilized in scene segmentation and been shown to be effective in reducing false 
segmentation [15]. However, a systematic way to integrate both global and local contextual 
information in a single network has not yet been fully investigated. 

In this paper, we propose a global-and-local context network (GLNet) for semantic 
segmentation of street view images for autonomous vehicle systems, which incorporates both global 
and local contextual information in a single network. An overview of the proposed GLNet is shown 
in Figure 2. The global context module captures semantic of spatial interdependencies while the 
local context module uses dilated convolution of different rates to extract dense multi-scale features 
that are important for a network to adapt to different object sizes. GLNet fuses the outputs of the two 
modules to capture both global and local contextual information to help the network recognize the 
relationships between objects in a scene, helping eliminate false alarms. Furthermore, CNN 
low-level features are used through channel weighting to restore the edges and fine details of the 
segmentation results. 

Figure 1. Some semantic segmentation issues observed in the Cityscapes dataset. (a) Missing small and
thin objects. (b) Incorrect segmentation of similar parts. (c) Incomplete segmentation of large objects.

Local context information is an important component in semantic segmentation for segmenting
complex street view scenes that contain different objects with similar features. The second row in
Figure 1 shows a portion of the ‘truck’ object that has been mistakenly classified as a ‘car’ object
because it has a similar appearance to cars. Consequently, local context information should be explicitly
encoded in the semantic segmentation models [6]. Another important factor affecting segmentation
is the existence of objects in multiple scales. With regard to this, different scales of an image are
generated to extract multi-scale features, and the features are then merged to predict the results [8–10].
In [11,12], dilated convolution layers with different rates were used to capture object features at multiple
scales, and the experimental results indicated that using multiple field-of-views can improve overall
segmentation accuracy.

Convolutional operations process one local neighborhood at a time as in a conventional
CNN [13,14], which may cause incomplete segmentation of large objects. As shown in the third
row of Figure 1, with local convolutional operations, parts of the road near roadside area were wrongly
predicted as sidewalk due to the lack of global context information. To resolve this, global contextual
information has been utilized in scene segmentation and been shown to be effective in reducing false
segmentation [15]. However, a systematic way to integrate both global and local contextual information
in a single network has not yet been fully investigated.

In this paper, we propose a global-and-local context network (GLNet) for semantic segmentation of
street view images for autonomous vehicle systems, which incorporates both global and local contextual
information in a single network. An overview of the proposed GLNet is shown in Figure 2. The global
context module captures semantic of spatial interdependencies while the local context module uses
dilated convolution of different rates to extract dense multi-scale features that are important for a
network to adapt to different object sizes. GLNet fuses the outputs of the two modules to capture both
global and local contextual information to help the network recognize the relationships between objects
in a scene, helping eliminate false alarms. Furthermore, CNN low-level features are used through
channel weighting to restore the edges and fine details of the segmentation results.
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Figure 2. An overview of the proposed GLNet. First, a CNN is applied on the input image and the 
feature map from the last convolution layer of CNN is kept. Next, global module and local module 
are deployed on the feature map to capture both global and multi-scale context information. Finally, 
the channel attention module restores edges and fine details of the segmented objects using low-level 
features. 

2. Related Work 

Many recent image semantic segmentation methods have been based on fully convolutional 
networks (FCN) [3], which train on an end-to-end network for pixel-wise prediction, achieving 
state-of-the-art result. For instances, encoder-decoder networks such as SegNet [16] and U-Net [17] 
have been proposed to enhance semantic segmentation results. The encoder gradually reduces the 
spatial dimension of feature maps to extract salient features. On the other hand, the decoder 
increasingly up-samples the feature map back to the original spatial resolution of the input image 
and produces pixel-wise segmentation result. However, the encoding process usually causes the 
reduction of feature resolution, which in turn degrades final segmentation performance. 

The use of contextual information is important to pixel-level prediction tasks. Objects in 
complex scenes exhibit large-scale changes, which introduces great challenges for advanced feature 
representations. In [11] and [12], dilated convolutions were used to expand the receptive field and to 
encode multi-scale context information. Zhao et al. [18] proposed a pyramid scene parsing network 
to capture multi-scale context information by aggregating feature maps of different resolutions 
through a pyramid pooling module. DeepLabv3+ [19] used parallel Atrous Spatial Pyramid Pooling 
(ASPP) which connects parallel dilated convolutions of different rates on the feature map to 
effectively encode multi-scale information. Zhou et al. [20] designed a multi-scale deep context 
convolutional network for semantic segmentation which combines the feature maps from different 
levels of network. Although multi-scale context information help to capture different scales objects, 
it cannot leverage the relationship between objects in a global view, which is also essential to scene 
segmentation. 

DANet [21] uses self-attention to capture long-range global context by exploring orthogonal 
relationships in both spatial and channel dimensions using non-local operator [15]. Convolution is 
essentially a local operation. Non-local operations extract long-range dependencies directly from 
any two positions in an image. The position attention module of DANet selectively aggregates the 
features of each location by weighted summation of all locations. CFNet [22] adds an extra global 
average pooling path to determine whole scene statistics. However, both models do not incorporate 
local multi-scale features in their networks. Self-attention is also used in OCNet [23] to learn 
pixel-level object context information to enhance context aggregation. Attempt to incorporate 
additional depth information for improving semantic segmentation has also been explored in [24] 
and [25]. Our proposed method incorporates rich global spatial information and dense local 
multi-scale context information to model the relationship between objects in a scene to reduce 
segmentation errors. 

Figure 2. An overview of the proposed GLNet. First, a CNN is applied on the input image and
the feature map from the last convolution layer of CNN is kept. Next, global module and local
module are deployed on the feature map to capture both global and multi-scale context information.
Finally, the channel attention module restores edges and fine details of the segmented objects using
low-level features.

2. Related Work

Many recent image semantic segmentation methods have been based on fully convolutional
networks (FCN) [3], which train on an end-to-end network for pixel-wise prediction, achieving
state-of-the-art result. For instances, encoder-decoder networks such as SegNet [16] and U-Net [17]
have been proposed to enhance semantic segmentation results. The encoder gradually reduces
the spatial dimension of feature maps to extract salient features. On the other hand, the decoder
increasingly up-samples the feature map back to the original spatial resolution of the input image and
produces pixel-wise segmentation result. However, the encoding process usually causes the reduction
of feature resolution, which in turn degrades final segmentation performance.

The use of contextual information is important to pixel-level prediction tasks. Objects in
complex scenes exhibit large-scale changes, which introduces great challenges for advanced feature
representations. In [11,12], dilated convolutions were used to expand the receptive field and to encode
multi-scale context information. Zhao et al. [18] proposed a pyramid scene parsing network to capture
multi-scale context information by aggregating feature maps of different resolutions through a pyramid
pooling module. DeepLabv3+ [19] used parallel Atrous Spatial Pyramid Pooling (ASPP) which connects
parallel dilated convolutions of different rates on the feature map to effectively encode multi-scale
information. Zhou et al. [20] designed a multi-scale deep context convolutional network for semantic
segmentation which combines the feature maps from different levels of network. Although multi-scale
context information help to capture different scales objects, it cannot leverage the relationship between
objects in a global view, which is also essential to scene segmentation.

DANet [21] uses self-attention to capture long-range global context by exploring orthogonal
relationships in both spatial and channel dimensions using non-local operator [15]. Convolution is
essentially a local operation. Non-local operations extract long-range dependencies directly from any
two positions in an image. The position attention module of DANet selectively aggregates the features
of each location by weighted summation of all locations. CFNet [22] adds an extra global average
pooling path to determine whole scene statistics. However, both models do not incorporate local
multi-scale features in their networks. Self-attention is also used in OCNet [23] to learn pixel-level
object context information to enhance context aggregation. Attempt to incorporate additional depth
information for improving semantic segmentation has also been explored in [24] and [25]. Our proposed
method incorporates rich global spatial information and dense local multi-scale context information to
model the relationship between objects in a scene to reduce segmentation errors.
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3. Method

In this section, we describe the proposed GLNet network in detail. The overall network structure
of GLNet is shown in Figure 2. First, an Xception [26] network with 65 layers is used as the backbone
to extract features from the input image. Next, the feature map from the last convolution layer of the
Xception network is input into both the global module and the local module and the outputs from
the two modules are fused to generate the segmentation result. Lastly, the channel attention module
refines the segmentation result by utilizing the low-level features from the Xception network.

3.1. Global Module

The global module is intended to capture the spatial dependencies of the feature map. To this end,
we have adopted the non-local operations proposed in [15] and the details of the global module are
shown in Figure 3. In the global module, the response at a feature location is weighted by features
at all locations in the input feature map. The weights are determined based on the feature similarity
between two corresponding locations. Thus, any two positions with similar features can contribute to
each other regardless of the distance between them.
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Objects in a scene usually exhibit large-scale changes, posing a difficult challenge for feature 
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DeepLab [19] handled this problem using an Atrous Spatial Pyramid Pooling (ASPP) module in 
which dilated convolutions with different rates are applied to the input feature map and the results 
are fused to account for different object scales. However, the ASPP module is not dense enough to 
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Figure 3. The global module. The number of channels of the CNN feature map is first reduced to 1/8 of
the input channels before generating the attention map, and the weighted result is reverted back to the
shape of the input feature map.

The last layer of the Xception network is first convolved with a 1 × 1 convolution to reduce the
number of channels from 2048 to 256, or 1/8 of the original number of channels. This produces a H ×W
× nc feature map, where H, W are the height and width of the feature map, and nc denotes the number
of channels. Three copies of the feature map (A, B, C) are generated and reshaped to N × nc, where N
= H ×W. As shown in Figure 3, feature map A is then transposed and multiplied by feature map B,
and the resulting N × N matrix is passed through softmax function to produce the spatial attention
map. Finally, feature map C is multiplied by the attention map and the result is reshaped back to H ×
W × nc. As a result, the output of the global module is a feature map weighted by the global spatial
interdependencies among pixel locations.

3.2. Local Module

Objects in a scene usually exhibit large-scale changes, posing a difficult challenge for feature
representation in semantic segmentation since multi-scale information must be properly encoded.
DeepLab [19] handled this problem using an Atrous Spatial Pyramid Pooling (ASPP) module in which
dilated convolutions with different rates are applied to the input feature map and the results are fused
to account for different object scales. However, the ASPP module is not dense enough to deal with
large object scale changes in complex scenes.

To resolve this, we propose a local module based on DenseASPP [12] to extract dense multi-scale
features that are important for a network to adapt to large-scale variations. The local module combines
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the advantages of parallel and cascaded dilated convolutions to obtain larger and denser receptive
field than ASPP, thus achieving superior multi-scale representation of objects in a scene. The details
of the local module are depicted in Figure 4. Similar to the global module, the feature map from
the Xception network is first convolved with 1 × 1 convolution to reduce the number of channels
to nc (1/8 of the input channels) before it is fed to the local module. Next, the input feature map is
sequentially convolved with dilated convolution with increasing dilation rates from 3, 6, 12, to 18.
To lessen network complexity, dilation rate 24 is not included here as in DenseASPP. The input to each
dilated convolution layer is formed by concatenating the input feature map with the outputs from
previous convolutions and then convolved with 1 × 1 convolution to maintain the number of channels
at nc. Lastly, the outputs from the four dilated convolutions are concatenated together with the input
feature map and result is again reduced to nc channels before outputting to the next processing step.
Compared with DenseASPP, the total number of parameters of the local module is reduced from 6.48 M
to 2.01 M. It can be seen from Figure 4 that the output of the local module is a feature map that contains
dense multi-scale feature information for the input image.
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Figure 4. The local module. The output of each dilated convolutional layer is concatenated with the
input feature map and convolved with 1 × 1 convolution to maintain fixed channel number before
going into the next dilated convolution layer.

3.3. Channel Attention Module

The Global-Local module extracts high level multi-scale semantic information. However, details
of objects may be lost during the down sampling process in the initial stage of the CNN network.
The low-level feature maps produced by CNN before the max pooling layer should preserve detailed
information including edges and other fine details of the objects in the image. To recover the finer
details of objects, we propose a channel attention module which fuses the output from the Global-Local
module and the low-level feature map of CNN, as shown in Figure 5.

The output of the Global-Local module is up-sampled to match the dimension of the low-level
feature map of CNN before the fusion process. In addition, Squeeze-and-Excitation (SE) block [27] is
applied to both feature maps to obtain cross channel information and learn the channel-wise attention.
The SE block generates a weight between 0 and 1 per channel through sigmoid function, and the
weights are then used to perform dynamic feature reweighting via channel-wise multiplication between
the weights and the feature maps. As a result, the channel attention module also explores channel
dependency in the feature map, which has been proven useful for image classification and segmentation
tasks [28].
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4. Experiments

In this section, we describe the implementation details and discuss the experimental results of
the proposed GLNet network. Comprehensive experiments and ablation studies on the Cityscapes
dataset [29] were carried out to evaluate the proposed network, and the performance improvements of
the modules are highlighted.

4.1. Implementation Details

The implementation of GLNet is built upon the TensorFlow framework. The pre-trained weights
of Xception-65 [26] were drawn from the Imagenet [30]. The original image size was 1024 × 2048,
while the input image size was randomly cropped to 768 × 768. We adopted the learning rate policy
from [6,18] where the current learning rate is calculated as follows:(

1−
iter

max_iter

)power
, (1)

where iter and max_iter represent the current training step and the overall training iterations, respectively.
An initial learning rate of 0.01 was used throughout the experiments, whereas max_iter was set at
90,000 steps and power is set to 0.9. Furthermore, the batch size was fixed at 8 in our experiments.

The loss function is defined as:

loss =
∑N

n=1
lmce((Xn), Yn), (2)

where Xn are the training images and Yn are the corresponding ground truth, and lmce denotes the
multi-class cross-entropy loss for predictions.

The training data came from the Cityscapes dataset, which is comprised of 5000 annotated urban
street scenes (2975 for training, 500 for validation and 1525 for testing) for pixel-level semantic labeling.
Intersection over union (IoU) and pixel accuracy averaged across the 19 classes in the dataset were
used as performance metrics for evaluating the methods. The GLNet takes about 6 h of training time
using a single NVIDIA Tesla® V100 GPU with batch size fixed at 8.
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4.2. Ablation Study

An extensive ablation study on the Cityscapes dataset is conducted to determine the effectiveness
of the various modules and the design choice of the proposed GLNet.

4.2.1. Effect of Global Context Information

Before examining the overall performance of the proposed GLNet network, we first investigate
the effect of incorporating global context information on semantic segmentation, which is one of the
main objectives of this study. Figure 6 shows the sample segmentation results when incorporating
global context information versus results without the global context information. The first column is
the input images. The second column shows visualizations of the attention maps generated by the
Global-Local module, which are the results of fusing the outputs from both the global and the local
modules (see Figure 2). The third column shows the same attention map, excluding the output from
the global module.
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Figure 6. Visualization results of incorporating global context information versus without global
context information.

It can be seen in Figure 6 that the attention maps that incorporated global context information are
less noisy than those without global context information. The segmentation results in column 4 and 5
confirm that without the global context information, it is more problematic to segment larger objects,
such as the truck in the first row, the bus in the second row, and the road in the last row. This indicates
that using information from local context alone and ignoring the global scene context will result in
misclassified pixels.

4.2.2. GLNet Modules

In this experiment, we tested the effects of the various modules in GLNet on the overall performance
of the network. The results are summarized in Table 1 and the visualization results are shown in
Figure 7. The first test was to compare the proposed local module with the ASPP module used in
DeepLabv3+ [19]. The local module increased the mean IoU by 0.5% over the ASPP module on the
Cityscapes dataset. The first and second columns in Figure 7 show a slight decrease in false classification
of pixels using the proposed local module. The above results suggest that dense multi-scale features
extracted by the local module have positive influence on the overall segmentation results.

Next, we tested the effect of applying the channel attention module on the segmentation
performance, which fuses low-level feature using SE block. With the inclusion of SE block, the mean
IoU increased about 1%, from 77.6% to78.4%. Finally, when all three modules in GLNet were activated,
the mean IoU improved to 80.1%, 3% higher than using only the ASPP module of DeepLabv3+ [19].
By visually examining the segmentation results in Figure 7, we can see that the proposed GLNet
architecture has significantly fewer segmentation errors, especially for large objects and for the
background area. This is due to the inclusion of global information in the feature extraction process.
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Table 1. Performance evaluation on Cityscapes val. set.

BaseNet ASPP Local Global SE Mean IoU%

Xception-65 X 77.1%
Xception-65 X 77.6%
Xception-65 X X 78.4%
Xception-65 X X X 80.1%

Note: ASPP denotes ASPP module [19], Local represents local module, Global represents global module, and SE
implies SE block [24].
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4.2.3. Global Module

As mentioned in Section 3, non-local block [15] was chosen to gather global attention in the
proposed global module. It is worth to experiment with other attention mechanisms for capturing
global attention in the feature map. The Convolutional Block Attention Module (CBAM) proposed
recently by Woo et al. [31] and the Pyramid Pooling Module in PSPNet [18] are selected here to
compare with the non-local block method. CBAM applies average pooling and max pooling along the
channel axis of the feature map and then the result is passed through a 7 × 7 convolution to capture
both cross-channel and spatial attentions [31]. Pyramid pooling module harvests different sub-region
representations and concatenates them into a feature representation that carries both local and global
context information [18].

The results of applying different methods for extracting global context information in the global
module are shown in Table 2. The results indicate that using non-local block offers a slight edge over
CBAM on the Cityscapes dataset. Pyramid pooling does not perform as well and has the lowest IoU
score. One possible explanation of the low performance for pyramid pooling is that in the original
PSPNet implementation, the number of output channels after concatenation is 3072, which has been
reduced to 256 channels in order to fit our network architecture. The reduction in channel number
might result in loss of feature information. Visualization results in Figure 8 confirm that non-local
block can handle large objects better than CBAM and pyramid pooling. For example, as shown in the
upper left column in Figure 8, CBAM and pyramid pooling misclassified portion of the truck object as
car pixels, whereas non-local block was able to segment the truck object correctly. Therefore, non-local
block is recommended to be used in the proposed GLNet network.

Table 2. Performance on Cityscapes val. set of applying different methods in the global module.

BaseNet Non-Local CBAM Pyramid Pooling Mean IoU%

Xception-65 X 70.3%
Xception-65 X 78.9%
Xception-65 X 80.1%
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4.2.4. Fusion vs. Concatenation

Another experiment was to explore the use of concatenation operation versus fusion operation for
combining high-level feature and low-level feature and the results are shown in Table 3. The results
demonstrate that the performance of using fusion operation is slightly better than using a concatenation
operation. In-depth analysis of the segmentation results of individual object classes reveal that
concatenation operation actually produced slightly better segmentation of small objects and fine details,
thus providing nicer visualization results. Conversely, fusion operation generated better segmentation
results on larger objects such as buses and trucks. Since large objects occupy more pixels and contribute
more to the IoU calculation, as a result, the mean IoU under fusion operation is higher.

Table 3. Performance on Cityscapes val. set using concatenation operation versus fusion operation for
combining features.

BaseNet Concatenation Fusion Mean IoU%

Xception-65 X 79.9%
Xception-65 X 80.1%

4.3. Performance Comparison

4.3.1. Performance on Cityscapes Dataset

We have benchmarked our proposed GLNet with state-of-the-art methods on the Cityscapes test
set and validation set and the results are shown in Tables 4 and 5. All methods are trained with the
fine dataset of Cityscapes. For the test set, GLNet achieves a mean IoU of 80.8, the highest among
all the methods tested. Out of the 19 classes in the dataset, GLNet obtains or shares the best scores
for 13 classes. Similar results are reported on the validation set, where GLNet has the best overall
segmentation performance. Other methods, for example PSPNet [18], extract context information
through global average pooling, and concatenates the information in the final output feature map.
Although such an approach produces satisfactory segmentation results, but some fine details are
missing and it generates false edges in the results. The works in [11,12,19] use Atrous Spatial Pyramid
Pooling (ASPP) module to cope with different object scales. However, they do not carry enough global
context information to handle large objects. In contrast to the previous methods, the proposed GLNet
incorporates global and local context information, together with low-level feature to tackle complex
scenes that contain a mixture of fine and large objects.
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Table 4. Performance comparison on Cityscapes test set.
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FCN-8s [3] 65.3 97.4 78.4 89.2 34.9 44.2 47.4 60.1 65.0 91.4 69.3 93.7 77.1 51.4 92.6 35.3 48.6 46.5 51.6 66.8
DeepLab-v2 [6] 70.4 97.9 81.3 90.3 48.8 47.4 49.6 57.9 67.3 91.9 69.4 94.2 79.8 59.8 93.7 56.5 67.5 57.5 57.7 68.8
RefineNet [32] 73.6 98.2 83.3 91.3 47.8 50.4 56.1 66.9 71.3 92.3 70.3 94.8 80.9 63.3 94.5 64.6 76.1 64.3 62.2 70
DUC [33] 77.6 98.5 85.5 92.8 58.6 55.5 65 73.5 77.9 93.3 72 95.2 84.8 68.5 95.4 70.9 78.8 68.7 65.9 73.8
ResNet-38 [34] 78.4 98.5 85.7 93.1 55.5 59.1 67.1 74.8 78.7 93.7 72.6 95.5 86.6 69.2 95.7 64.5 78.8 74.1 69 76.7
PSPNet [18] 78.4 98.6 86.2 92.9 50.8 58.8 64.0 75.6 79.0 93.4 72.3 95.4 86.5 71.3 95.9 68.2 79.5 73.8 69.5 77.2
DenseASPP [12] 80.6 98.7 87.1 93.4 60.7 62.7 65.6 74.6 78.5 93.6 72.5 95.4 86.2 71.9 96.0 78.0 90.3 80.7 69.7 76.8
GLNet 80.8 98.7 86.7 93.4 56.9 60.5 68.3 75.5 79.8 93.7 72.6 95.9 87.0 71.6 96.0 73.5 90.5 85.7 71.1 77.3

Table 5. Performance comparison on Cityscapes val set.
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FCN-8s [3] 57.3 93.5 75.7 87.2 33.7 41.7 36.4 40.5 57.1 89.0 52.7 91.8 64.3 29.9 89.2 34.2 56.4 34.0 19.7 62.2
ICNet [10] 67.2 97.3 79.3 89.5 49.1 52.3 46.3 48.2 61.0 90.3 58.4 93.5 69.9 43.5 91.3 64.3 75.3 58.6 43.7 65.2
DeepLab-v2 [6] 69.0 96.7 76.7 89.4 46.2 49.3 43.6 55.0 64.8 89.5 56.0 91.6 73.3 53.2 90.8 62.3 79.6 65.8 58.0 70.2
PSPNet [18] 76.5 98.0 84.4 91.7 57.8 62.0 54.6 67.4 75.2 91.4 63.2 93.4 79.1 60.6 94.4 77.2 84.6 79.4 63.3 75.1
DeepLab-v3+ [19] 77.1 98.2 85.1 92.6 56.4 61.9 65.5 68.6 78.8 92.5 61.9 95.1 81.8 61.9 94.9 72.6 84.6 71.3 64.0 77.1
DenseASPP [12] 79.5 98.6 87.0 93.2 59.9 63.3 64.2 71.4 80.4 93.1 64.6 94.9 81.8 63.8 95.6 84.0 90.8 79.9 66.4 78.1
GLNet 80.1 98.4 86.7 93.1 59.5 62.7 68.4 73.0 81.7 92.9 64.4 95.3 84.0 65.4 95.3 82.6 90.6 81.0 67.9 79.7

Recently, DANet [21] reached a new state-of-the-art performance level of 81.5 on the Cityscapes
dataset. However, DANet relies on extra strategies such as data augmentation, multiple feature maps
of different grid sizes, and segmentation map fusion to further improve its performance [21]. Such
improvement strategies can also be used in other methods. Therefore, DANet has not been included
here for comparison. Without the extra steps, DANet achieved a mean IoU of 77.57, which is lower
than our score.

The main difference between the proposed GLNet and existing segmentation methods is that
GLNet explicitly models global contextual information, local contextual information, and low-level
features in a single network and systematically combines the information for semantic segmentation
of complex street view scenes. The benefit of incorporating all three pieces of information in one
network enables GLNet to simultaneously dealing with large objects and background, and paying
attention to fine details. Figure 9 shows visualization results of DenseASPP and GLNet, which are the
top two performers in Table 4. Although the performance improvement of GLNet over DenseASPP
is incremental in terms of mean IoU, it can be seen from Figure 9 that GLNet generates much better
visualization results compared to DenseASPP. GLNet was able to segment large objects such as sidewalk
and vegetation as well as small objects such as pedestrians and light poles equally well, whereas
DenseASPP produced unsatisfactory results.
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4.3.2. Network Size and Inference Speed

Network size in terms of number of parameters and inference speed in frame per second (FPS)
of the proposed GLNet and several other methods are listed in Table 6. The tests were running on
NVIDIA GeForce GTX 1080 with Tensorflow Cuda 9.0. The test images were 1024 × 2048 raw images
from the Cityscapes validation set. It can be seen from Table 6 that the number of parameters of the
GLNet is slightly fewer than the DeepLab methods [6,19], and it is much lower than FCN [3] and
PSPNet [18]. The inference speed of GLNet is comparable to DeepLab and PSPNet with 1.24 FPS. The
difference in inference speed is partially owing to the fact that different backbone networks are used in
different models. For instance, Xception-65 is used as the backbone in GLNet while DeepLab uses
ResNet-101 as the backbone network.

Table 6. Network size and inference speed.

Method Params FPS

FCN-8s [3] 134.4 M 2.70
DeepLab-v2 [6] 43.9 M 1.38

PSPNet [18] 67.6 M 1.13
ICNet [10] 6.7 M 5.58

DeepLab-v3+ [19] 41.2 M 2.08
GLNet 39.8 M 1.24

5. Conclusions

We have proposed the GLNet which integrates global spatial information and dense local
multi-scale context information in a single model for semantic segmentation of complex street view
scenes. The global context module captures semantic of spatial interdependencies whereas the local
context module extracts dense multi-scale features, and the output of the global-local module is
fused with low-level features to recover fine scene details. Experimental results on the Cityscapes
dataset have demonstrated superior performance of the proposed GLNet over existing state-of-the-art
methods. This study highlights the importance of incorporating both global and local contextual
information in image semantic segmentation. We hope this insight can contribute to future semantic
segmentation works.
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