Skip to main content
. 2020 May 6;9(5):592. doi: 10.3390/plants9050592

Table 6.

Summary of the partial least squares discriminant analysis (PLS-DA) and partial least squares support vector machines (PLS-SVM) analysis. The described datasets were also used in principal component analysis (PCA).

Analysis Treatments Dataset Size PLS-DA SVM Accuracy (%) Confusion Matrix
Var (%) RMSECV c Gamma Ts CV
Pot experiment:
Treatment—pooled BfL:BfH:PC:NC 119 32.50 0.356 0.34 0.03 96.3 87.2 Table S6
Untreated vs. treated NC:PC, BfL, BfH 119 82.16 0.192 0.01 0.01 100 100 Table S7
B. firmus-inoculated vs. non-inoculated BfL, BfH:NC, PC 119 56.50 0.319 0.01 0.02 100 97.4 Table S8
B. firmus inoculum size BfL:BfH 64 55.44 0.274 0.01 0.01 100 100 Table S9
Microplot experiment:
Treatment—pooled BfH:PC:NC 82 79.10 0.298 0.24 0.02 98.9 96.3 Table S10

Var—explained variance of the selected PLS components; RMSECV—root mean squared error of cross-validation of selected PLS components; c—SVM cost of classification parameter; gamma—SVM Gaussian kernel parameter; Ts—training set; CV—cross-validation; NC—negative control; PC—positive control (nematicide); BfL—low B. firmus inoculum; BfH—high B. firmus inoculum.