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Abstract

Background: The interactions between proteins and aptamers are prevalent in
organisms and play an important role in various life activities. Thanks to the rapid
accumulation of protein-aptamer interaction data, it is necessary and feasible to
construct an accurate and effective computational model to predict aptamers
binding to certain interested proteins and protein-aptamer interactions, which is
beneficial for understanding mechanisms of protein-aptamer interactions and
improving aptamer-based therapies.

Results: In this study, a novel web server named PPAI is developed to predict
aptamers and protein-aptamer interactions with key sequence features of proteins/
aptamers and a machine learning framework integrated adaboost and random
forest. A new method for extracting several key sequence features of both proteins
and aptamers is presented, where the features for proteins are extracted from amino
acid composition, pseudo-amino acid composition, grouped amino acid
composition, C/T/D composition and sequence-order-coupling number, while the
features for aptamers are extracted from nucleotide composition, pseudo-nucleotide
composition (PseKNC) and normalized Moreau-Broto autocorrelation coefficient. On
the basis of these feature sets and balanced the samples with SMOTE algorithm, we
validate the performance of PPAI by the independent test set. The results
demonstrate that the Area Under Curve (AUC) is 0.907 for prediction of aptamer,
while the AUC reaches 0.871 for prediction of protein-aptamer interactions.

Conclusion: These results indicate that PPAI can query aptamers and proteins,
predict aptamers and predict protein-aptamer interactions in batch mode precisely
and efficiently, which would be a novel bioinformatics tool for the research of
protein-aptamer interactions. PPAI web-server is freely available at http://39.96.85.9/
PPAI.

Keywords: Aptamer, Protein-aptamer interaction, Sequence features, Adaboost,
Random forest
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Background
Nucleic acid aptamers against proteins have attracted tremendous attention since they

were discovered, the interactions between proteins and aptamers are one of hotspots of

biochemistry, molecular biology, bioinformatics and biophysics [1]. Due to the high af-

finity and specificity of nucleic acid aptamers, protein-aptamer interactions have be-

come more significant for targeted drug therapy of complex diseases and have a

perform a variety of functions [2–5]. Aptamers are typically identified in vitro from ran-

dom libraries of DNA or RNA molecules using an iterative process of Systematic Evo-

lution of Ligands by Exponential Enrichment (SELEX) [6], which consists of several

repeated rounds of binding, partition and amplification. The aptamers have the merits

of easy synthesis and good stability, their specific bindings to proteins play an import-

ant role in various life activities of the organisms. Although the experimental aptamer

screening technology has been further developed recently, it still has more disadvan-

tages such as time-consuming, expensive and labor-intensive. For this purpose, effective

computational methods for predicting aptamers and protein-aptamer interactions are

urgent and necessary.

In recent several years, machine learning methods have been widely used in the pre-

diction of protein-aptamer interactions, some computational models have been devel-

oped, for example, Li et al. [7] developed a random forest-based protein-aptamer

interaction prediction model, Zhang et al. [8] presented a novel model based on the en-

semble method in 2016. However, there are still certain limitations in above models. In

the Li′s model, feature extraction of the sequences was relatively simple and it did not

balance the training samples, which resulted in high prediction accuracy for large sam-

ple class and low accuracy for small sample class. The same datasets were adopted in

Zhang’s model and it extracted different features based on the multiple feature extrac-

tion strategy and reconstructed training dataset. To reconstruct the training dataset,

the positive and negative samples were split into three groups according to the ratio 1:

1, each group was consisted of 580 positive samples and 580 negative samples. These

three data sets were facilitated as training sets of three random forest models and the

averaged results of the three random forest classifiers were accepted as the final predic-

tion results. Zhang’s model also balanced the accuracy of large sample class (i.e. nega-

tive samples) and that of small sample class (i.e. positive samples), but the negative

samples of each random forest classifier is less due to the split of training data, which

led to a decrease of the overall accuracy.

In order to predict aptamers and protein-aptamer interactions more accurately, in re-

sponse to the above problems, we improved the processing of building datasets and

extracting more sequence features, integrated predictive capabilities of two machine

learning methods, and developed a novel web server named PPAI. In our study, there

was a prominent imbalance ratio between positive samples and negative samples which

could lead to the inherent learning biases [9]. Therefore, the SMOTE [10] method was

first to utilize to amplify small sample data for the unbalanced datasets, the balanced

dataset could avoid biases in the machine learning. Moreover, PPAI also stores more

known protein-aptamer interactions into its database for making user query at easy. In

previous studies, more useful features based on structural and evolutionary information

did not fully understand or used [7, 8]. Multiple useful features can preserve enough

discriminative information for protein-aptamer interaction pairs [11], the combination
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of various features from different heterogeneous features is a good strategy for enhan-

cing the performance and robustness of a predictor [12]. Based on the multiple feature

extraction strategy, multiple key sequence features of proteins and aptamers were syn-

thesized. After analyzing the unique secondary structure characteristics of the aptamers

deeply, we screened negative samples and selected the optimal feature set for predicting

aptamers. In general, an ensemble method that integrated diverse learning polices of

multiple basic classifiers could outperform its component classifiers [13]. Therefore, an

ensemble method combining the adaboost and random forest method was developed

to predict protein-aptamer interactions in PPAI.

Results
The performance of protein-aptamer interaction prediction

Experiments were performed to show both the accuracy of our classifier and effect-

iveness of feature extraction in depth. The performance comparison based on the

same dataset can reflect the performance of a predictor more reliably. To better

evaluate performance of PPAI objectively, we compared PPAI with Li’s model on

the same datasets, using various combination of features and machine learning

classifier. The method and features of Li’s model given in the published article

were utilized to repeat the experiment and reproduce the model. The Receiver-

operating characteristics (ROC) curve was drawn through the reproduced model.

The detailed prediction results are shown in Table 1 and Fig. 1. According to

Table 1, PPAI has better predictive performance in terms of area under ROC curve

(AUC) by comparing Li’s features versus ours features. After balancing training set

with the SMOTE method, more balanced sensitivity and specificity were obtained.

Moreover, better AUCs could be achieved after introducing SMOTE (Fig. 1). We

have also adopted the statistical method to test whether such improvement of

AUC should be significant by using the pROC package of R software. The result of

statistical test has shown that while the improvement of Li’s method is not signifi-

cant (DeLong’s test. P = 0.471), applying SMOTE indeed significantly enhance the

prediction performance of our method (DeLong’s test, P = 0.0401). The ROC curve

was drawn by plotting Sn versus Sp at different thresholds, it can more intuitively

compare the performance of the above models [14]. Where both F1 value and

AUC (Area under ROC curve) are improved, the overall prediction performance is

also improved. Furthermore, As the Zhang’s ensemble model has no tool or open

source code, its threshold is fixed leading to a single point in Fig. 1 that corre-

sponds to its performance in the ROC curve.

Table 1 Performance comparison using different combination of machine classifier and features

Method Sn Sp MCC Acc F1 AUC

Li’RF (Li’s features) 0.483 0.871 0.372 0.774 0.517 0.759

PPAI (Li’s features) 0.572 0.924 0.538 0.836 0.636 0.827

Li’RF (ours features) 0.458 0.915 0.422 0.800 0.535 0.783

PPAI (ours features) 0.641 0.903 0.557 0.842 0.664 0.849

Li’RF (Smote) (ours features) 0.648 0.818 0.441 0.775 0.592 0.801

PPAI (Smote) (ours features) 0.796 0.810 0.555 0.806 0.675 0.871
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Accuracy and AUC of our model reaches 0.806 and 0.871 respectively, both higher

than two previous models. Moreover, our model obtains a more balanced performance

with Sn (0.796) and Sp (0.810). To further explore the important features that contrib-

ute to the prediction performance, we also extracted the feature importance scores

from the model. The top protein features and top nucleotide features are shown in

Additional file 1: Supplementary Tables S1-S2, respectively. Notably, features from vari-

ous encodings constitute the top feature set, emphasizing the importance of using mul-

tiple sequence feature encodings.

The performance of aptamer prediction

Besides predicting protein-aptamer interactions, PPAI offered function of predict-

ing aptamers for nucleotide sequences that user input. In order to verify the per-

formance of the aptamer prediction model, the experiment was conducted on an

independent test set. To our best knowledge, we cannot find the similar method

to be compared with it, so only the performance of PPAI was reported (see

Fig. 2).

As shown in Fig. 2, the accuracy on the independent test set reached 0.847, and the

F1 value reaches 0.849, which suggests the accuracy and practicability of the decision

model constructed in this experiment. In order to more intuitively reflect the predictive

performance of this model, ROC curve was drawn and the AUC was further calculated

to evaluate the performance of aptamer prediction in the independent test (Fig. 3),

where PPAI has achieved an AUC of 0.907.

Fig. 1 ROC curves illustrating the overall performance comparison results using different combination of
machine classifier and features
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Overview of PPAI web server

In order to facilitate the community, we developed a web server named PPAI. De-

pends on user inputs, PPAI provides three major functions. First, if users input a

name or a sequence of a protein/aptamer in the ‘Query’ page of PPAI, the query

function is provided. After data collection, we all gathered 704 aptamers and 156

proteins data in PPAI for users to query (see Additional file 1: Supplementary Ta-

bles S3-S4). If users submit an aptamer name/sequence, the tabular result is firstly

Fig. 2 The performance of the aptamer prediction model

Fig. 3 ROC curve of the model of aptamer prediction
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provided, which includes the number of protein-aptamer interactions and the asso-

ciated proteins. For each associated protein in the tabular results, user can also

click the interesting protein name to view its details from Uniprot database. User

can also input a protein name/sequence, PPAI provides its detail information

which involved gene, organism, recommended name, entry id of Uniprot, the num-

ber of aptamers and the corresponding aptamer names. For example, the user can

enter the name or sequence of the aptamer ‘9,572,845-PKR protein-3′, and click

the ‘submit’ button to get information about the aptamer. The result is shown in

Additional file 2: Supplementary Figure S1. The user can further click on the name

of the protein of interest in the ‘Protein’ column of the result table to get informa-

tion about that protein. Second, for aptamer prediction, users can choose ‘Predict

Aptamer’ page which supports prediction of aptamers from a sequence list of

DNA/RNA. The sequences of DNA and RNA should be submitted separately be-

cause the threshold values for DNA and RNA feature calculation are different. For

example, if the user submits nucleic acid sequences in FASTA format (here we use

the sequences of several known aptamer and non-aptamers as the examples), PPAI

will give a prediction result for each sequence. It should be noted that the submit-

ted file name should not contain special characters such as “()”, “.” and so on, so

as not to cause the program to encounter the file error. The prediction result con-

tains three columns, which are the sequence name, the prediction result (‘yes’ rep-

resents that it is an aptamer, and ‘no’ represents that it is not an aptamer), and

prediction score (the probability that the sequence is an aptamer). The example re-

sult is shown in Additional file 2: Supplementary Figure S2. Third, if users have

both interesting protein sets and aptamer sets, protein-aptamer interaction predic-

tion is enabled in the ‘Predict Pairs’ page. Users should submit the aptamer file

and protein file separately, and PPAI will give a prediction for each possible inter-

action pairs between each aptamer and each protein. Here we used the aptamers

17,030,508-Bovinefactor-IX-1 and 9,452,437-oligoadenylatesynthetase-4, together

with 9 proteins as the example input. The result is shown in Additional file 2:

Supplementary Figure S3. Each prediction result includes aptamer name, protein

name, prediction result and predicted score. It should also be noted that the pre-

dictions of DNA-protein pairs and RNA-protein pairs should be done separately,

because the physicochemical properties of DNA and RNA are not the same during

feature extraction. Furthermore, the submitted file name should not contain special

characters such as “()”, “.” and so on, so as not to cause the program to encounter

the file error. One key point for the successful determination of protein-aptamer

pair was the selecting of an appropriate threshold. In the simulation experiment

with 3000 random sample pairs, we found 0.44 is an optimum threshold to predict

the true protein-aptamer pairs, users can also reset the threshold according to their

own needs. In general, higher threshold will increase specificity but will also miss

more true positives.

PPAI used MySQL database to store the datasets, and its interface was implemented

by HTML and CSS. EasyUI framework was adopted to enhance the page load and re-

sponse faster. The asynchronous submission and partial refresh mode of PPAI were re-

alized with Jquery+AJAX. The scripting language was C#, both extraction of sequence

feature and calculation of predicted score were performed by Python.
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Discussion
Through the comparison experiments of different machine learning algorithms and fea-

tures, the effectiveness of the algorithm and feature space mentioned in this paper is

proved. The model constructed in this study for protein-aptamer interaction prediction

has higher accuracy and more balanced sensitivity and specificity compared with two

previous models, suggesting that PPAI has a fairly good prediction performance in pre-

dicting protein-aptamer interactions. The ROC curves of each model in Fig. 1 more in-

tuitively reflect that the prediction performance of the PPAI model is superior to other

models. Besides, above results effectively demonstrated its potential ability of predicting

aptamers, it was beneficial for understanding the functions of aptamers and improving

aptamer-based therapies. In addition, based on the current situation of lack of tools for

protein-aptamer prediction, a user-friendly PPAI system was developed that provides

query functions, protein-aptamer interaction prediction functions, and aptamer judg-

ment functions.

Methods
Datasets

In line with previous studies of predicting protein-aptamer interactions, we also down-

loaded the datasets constructed by Li [7] which adopted the data from Aptamer Base

database [15] (see Additional file 1: Supplementary Table S5). It is the largest data set

currently available, and it was adopted by most existing methods. Aptamer Base was a

collaborative database including protein-aptamer interactions, detailed experimental

conditions and reference literatures. The dataset was divided into a training dataset and

an independent testing dataset in advance. We first discarded problematic data whose

sequence contained B, N, or a mixture of U and T. For easy to compare, the same data-

sets were adopted in our study, the training set was composed by 561 positive samples,

1682 negative samples, and the test set contained 143 positive samples and 421 nega-

tive samples. The positive samples are the protein-aptamer pairs with interaction, and

the negative samples are the protein-aptamer pairs without interaction. There was an

extremely imbalance between the number of positive samples and the number of nega-

tive samples, which would cause biases in the machine learning [16]. Therefore, the

SMOTE algorithm [10, 17] was employed to balance the samples in our study. In

SMOTE algorithm, the oversampling of the small sample was not done by simply copy-

ing the known samples, but by synthesizing new samples according to the feature space

which could solve the overfitting problem resulting by simple copy effectively. In order

to ensure the validity of the prediction, the SMOTE method was only utilized to bal-

ance the training set, and the independent test set was solely consisted of real samples.

After amplifying the small class samples, the training set for predicting the protein-

aptamer interactions included 1681 positive samples and 1682 negative samples. In

addition, because our models are based on the sequence information of aptamers and

proteins, if there is sequence redundancy in the data set, it may cause biases in predic-

tion performance. To check this, we have also used CD-HIT to remove redundant se-

quences (50% identity threshold for proteins and 80% identity threshold for

nucleotides) in the dataset and re-analyzed the performance. The results suggest that

the prediction performance is acceptable either before or after removing sequence
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redundancy, while the better performance of our method can be still observed (Add-

itional file 1: Supplementary Table S6).

As for the prediction of aptamers, 704 positive samples and 700 negative samples

(350 DNAs and 350 RNAs) were chosen as training dataset and independent testing

dataset for predicting the aptamers (Additional file 1: Supplementary Table S7). The

positive samples refer to known aptamers, and the negative samples refer to randomly

generated nucleotide sequences that show highly distinct secondary structure charac-

teristics compared with known aptamers. The most important difference between apta-

mers and common RNAs/DNAs was that aptamers were easily folded into a

pseudoknot, and the stem-ring structures were mostly convex rings and circle rings.

Aptamers often had a large contact area to specifically bind to the target molecule with

high specificity [18]. In our study, the RNAfold [19] was utilized to predict secondary

structure with randomly generated sequences, those sequences that did not conform to

the secondary structure pattern of the aptamers were assigned as the negative samples.

Because the accuracy of RNAfold’s prediction of secondary structure is about 70% ~

80%, there might be false negative samples. In order to reduce false negatives as much

as possible, the negative samples were screened based on both the minimum free en-

ergy and the secondary structure, which could effectively reduce the occurrence of false

negative samples. The aptamer has a more stable structure, and its minimum free en-

ergy is smaller. The characteristics of the secondary structure of aptamers were fully

analyzed, and negative samples were selected from various aspects such as stem-loop

structure and number of unpaired bases. These distinctions of secondary structures

were obvious and not likely to be confused between aptamers and non-aptamers. The

distribution of the lengths of aptamers (DNA or RNA) was shown in Fig. 4, about 80%

of the sequence lengths were between 30 nt and 80 nt, the most common aptamer

lengths are 40 nt, 30 nt, 50 nt and 80 nt. Based on the above, the lengths of the

Fig. 4 Length distribution of positive sample aptamer sequences
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aptamers in the generating 700 negative samples were according with the length assign-

ments of the aptamers in the 704 positive samples.

Feature extraction

Converting an input sample sequence into a set of numerical features is a crucial prob-

lem in designing a predictor. Previous studies [7, 8] had shown that pseudo-amino

acids and pseudo-nucleotides were effective features for predicting protein-aptamer

interaction pairs. The specific binding between aptamers and proteins is closely related

to their respective physicochemical properties, which are crucial factors for their sec-

ondary structures [20]. The secondary structures of nucleic acid strands are the main

and effective features for distinguishing the aptamers from the common nucleic acid

strands. In general, a single feature extraction strategy can only represent partial sam-

ples’ characteristics, multiple feature extraction strategies can enhance the prediction

accuracy. Based on above description, this study combined several key physicochemical

features of proteins and aptamers in both the aptamer prediction and the protein-

aptamer interaction prediction, and these features were calculated by the iFeature [21]

package and the pseKNC [22] package, respectively.

Based on the large numbers of experiments, the considered features of proteins in

our study included amino acid composition [23], pseudo-amino acid composition [24],

grouped amino acid composition [25], C/T/D composition [26] and sequence-order-

coupling number. Amino acid composition means the frequency that is the number of

times that each amino acid occurred in the sequences composed by 20 kinds of amino

acids. The pseudo-amino acid composition is originally proposed by Chou to predict

protein properties [24]. Pseudo amino acid composition has been proved to be an ef-

fective feature for many biological problems [7, 27, 28]. Twenty kinds of amino acids

are divided into 5 groups in grouped amino acid composition according to their physi-

cochemical properties such as hydrophobicity, charge and molecular size. Each group is

defined as

f gð Þ ¼ N gð Þ
N

; g∈ g1; g2; g3; g4; g5f g ð1Þ

where g1, g2, g3, g4, g5 represent aliphatic group, aromatic group, positive charge

group, negative charged group and uncharged group and N(g) is the number of amino

acid in each group.

C/T/D is a pattern of amino acid distributions of specific structural or physicochemi-

cal properties in a protein or peptide sequence. C/T/D composition means the ratio of

amino acids of specific nature to the total number of amino acids. The physicochemical

properties of seven amino acids were used in this study, which were hydrophobic, stan-

dardized van der Waals volume, polarity, polarizable, secondary structure, positive/

negative charge and solubility. Each attribute is further divided into 3 groups according

to its property. The calculation of the attributes is defined as

f rð Þ ¼ N rð Þ
N

; r∈ r1; r2; r3f g ð2Þ

Where r1, r2, r3 represent polar, neutral and hydrophobic and N(r) is the number of

amino acid type r in the encoded sequence.
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Sequence-order-coupling number is the distance between two amino acids calculated

by the physicochemical distance matrix of amino acids. The distance matrix used the

physicochemical matrix of Schneider-Wrede [29] and the chemical matrix of Grantham

[30]. The calculation of each distance matrix is defined as

f d ¼
XN−d

i¼1
di;iþd
� �2

; d ¼ 1; 2; 3…λ ð3Þ

where di,i + d is the distance between two amino acids in a given distance matrix, and λ

(default is 30) is the maximum distance of the amino acids.

On the other side, the features of aptamers were extracted from nucleotide compos-

ition, pseudo-nucleotide composition (PseKNC) and normalized Moreau-Broto auto-

correlation coefficient [31]. The nucleotide composition is the frequency at which each

nucleotide (A, C, G, T/U) appears in the sequence. The pseudo-nucleotide composition

is a feature proposed based on the pseudo-amino acid composition. The DNA/RNA se-

quence is converted into a set of discrete values. The calculating method of the

pseudo-nucleotide is described in reference [32]. The normalized Moreau–Broto auto-

correlation (NMBAC) was proposed by Feng et al. [31] to predict membrane protein

types. We used NMBAC to extract features from 11 physical and chemical properties

(shift, slide, rise, tilt, roll, twist, stacking- energy, twist, entropy, free energy, hydrophil-

icity) for protein-aptamer interaction prediction.

PPAI model based on integrated framework of adaboost and random forest

A novel model for PPAI was developed to predict aptamers and protein-aptamer inter-

actions with a machine learning framework integrated adaboost [33] and random forest

[34]. Adaboost combines multiple weak classifiers into the final strong classifier. It

would update the sample weights according to each training sample while training. For

the misclassified samples, the weights of them are increased, the training set will be

trained iteratively. The weight of each weak classifier will be calculated according to

the error rate, the higher the error rate, the smaller the weight. Finally, all weak classi-

fiers are weighted and summed to obtain final classification results. Normally, the clas-

sification result of each sample is often determined by a classifier with a larger weight.

The final model can be calculated from ht and αt using follow formula:

H xð Þ ¼ sign
XT

t¼1
αtht xð Þ

� �
ð4Þ

Where ht is the basic classifier and αt is the weight of it. Furthermore, αt is calculated

by εt which is the deviation of ht:

αt ¼ 1
2

ln
1−εt
εt

� �
ð5Þ

The adaboost classifier can often omit some unnecessary training data features and

focus on key features [35]. Besides that, the other advantage of adaboost method is that

the feature selection process can be omitted. The default basic weak classifier of ada-

boost algorithm is decision tree which has the shortcomings of the low accuracy and

classification efficiency for multi sequence features of proteins/aptamers. However, ran-

dom forest is a strong classifier that integrates multiple decision trees. In order to im-

prove the performance of predictive model, we adopted adaboost in combination with
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random forest. The random forest was modified as the basic classifier of adaboost. Fur-

thermore, it was found through experiments that the prediction performance of the

protein-aptamer interaction was not satisfactory when adopting the adaboost method

alone, while the prediction performance was greatly improved by utilizing the combin-

ation of adaboost and random forest, and was better than the current methods (Add-

itional file 1: Supplementary Table S8). Moreover, the prediction performance of

different machine learning algorithms (Bayes, SVM, decision tree, random forest, PPAI)

were also compared with the same set of features and the same datasets. The results

show that the prediction method proposed in this study (adaboost combined with ran-

dom forest) has the best prediction performance (see Additional file 1: Supplementary

Table S9). Adaboost algorithm was implemented with Python’s sklearn package. After

parameter optimization, in terms of the parameters of the random forest, the number

of trees adopted the value of 10, and the parameter of ‘max_depth’ was set to 150. The

adaboost method here mainly has three parameters, namely base_estimator, n_estima-

tors and learning_rate (which determines the end condition of iteration). These three

parameters are set to ‘random forest’, 300 and 0.75 respectively.

The extracted feature vectors were used as input to train the model in PPAI, and the

obtained model was tested with independent test dataset. The flowchart of protein-

aptamer interaction prediction in PPAI is shown in Fig. 5. The predict_proba is as re-

turn value of the model, which is a real and presents the possibility of positive sample.

Furthermore, we could adjust the threshold to optimize the prediction performance of

the model. Setting threshold of predicting protein-aptamer interaction was to deter-

mine whether a protein and an aptamer interacted with each other. It was judged as

‘yes’ (interaction) when the score was greater than or equal to the threshold, and it was

judged as ‘no’ (no interaction) while it was less than the threshold. The smaller the

threshold, the higher the sensitivity (Sn) and the lower the specificity (Sp). When the

threshold was 0.44, the Sn and Sp achieve the best balance, so 0.44 was set to the

Fig. 5 Flowchart of the prediction of protein-aptamer interactions in PPAI

Li et al. BMC Bioinformatics          (2020) 21:236 Page 11 of 15



default threshold of predicting protein-aptamer interaction. In essence, aptamer predic-

tion is a problem of binary classification like the prediction of protein-aptamer interac-

tions. Therefore, the similar machine learning method was also adopted in the model.

The threshold was set to determine whether the submitted sequence was an aptamer of

one protein. By repetitious experiments, the best threshold was 0.48, and it was as the

default threshold of predicting aptamer in PPAI.

Performance evaluation criterion

The evaluation criteria of prediction performance adopted in this study were sensitivity

(Sn), specificity (Sp), accuracy (Acc) and Matthews correlation coefficient (MCC). They

are the most commonly utilized and basic evaluation index, which can show the predic-

tion accuracy of positive and negative samples and the prediction accuracy of all sam-

ples, which can be defined as

Sn ¼ TP
TP þ FN

ð6Þ

Sp ¼ TN
TN þ FP

ð7Þ

Acc ¼ TP þ TN
TP þ FP þ TN þ FN

ð8Þ

MCC ¼ TP � TN−FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP þ FPð Þ TP þ FNð Þ TN þ FPð Þ TN þ FNð Þp ð9Þ

where TP, FP, TN and FN represent true positive rate, false positive rate, true negative

rate and false negative rate, respectively.

Moreover, because the testing dataset was unbalanced which would lead to a biased

estimate of the accuracy, accuracy rate did not objectively evaluate the performance of

the PPAI. Therefore, the weighted average of the precision rate and the recall rate (F1)

is introduced as another criterion for performance evaluation, which is currently a

widely used and effective evaluation standard for unbalanced data. It is defined as

F1 ¼ 2� P � R
P þ R

ð10Þ

where P and R are called Precision and Recall, respectively. While the R is equal to Sn,

the Precision is defined as

P ¼ TP
TP þ FP

ð11Þ

In the case of imbalanced data sets, the prediction accuracy is often biased toward

the accuracy of the larger sample class (i.e. the negative samples for our cases), and

cannot objectively reflect the prediction performance of the model. Therefore, ROC

curve and AUC metric were introduced as the more appropriate evaluation criteria for

such imbalanced dataset. The ROC curve can more intuitively compare the prediction

Li et al. BMC Bioinformatics          (2020) 21:236 Page 12 of 15



performance of the models. The larger the area under the ROC curve (AUC), the better

the prediction performance.

Conclusions
It is important for biology research and drug design to accurately predict aptamers and

protein-aptamer interactions by using various kinds of key sequence features of pro-

teins and aptamers. In this paper, a novel ensemble method which is integrated with

adaboost and random forest has been developed with a combination of various se-

quence features extracted from amino acid composition, pseudo-amino acid compos-

ition, grouped amino acid composition, C/T/D composition, sequence-order-coupling

number, nucleotide composition, pseudo-nucleotide composition (PseKNC) and nor-

malized Moreau-Broto autocorrelation coefficient to predict aptamers and protein-

aptamer interactions. In order to solve the imbalance problem effectively, the SMOTE

method was adopted to obtain balanced training datasets. To facilitate the community,

a web server named PPAI was built with the abstracted sequence features and the ma-

chine learning framework mentioned above. PPAI has a user-friendly interface and

step-by-step guide. The reliable performance of PPAI has been demonstrated in verifi-

cation experiments with independent test datasets, we can draw a conclusion that PPAI

is an efficient tool to predict protein-aptamer interactions which is better than the

existing mainstream models. Comparing with other models, PPAI has two advantages:

(1) More sequence features were introduced, which acquired more discriminative infor-

mation for the predicitons; (2) The integration of adaboost and random forest, which

results in a better performance. However, there exist some limitations, one major limi-

tation is that the process of extracting sequence features is complex and time consum-

ing, which is mainly caused by relative complex extracting algorithm. One solution is

to improving things algorithmically and fixing inefficient code. Although limitations

exist, we believe the PPAI provides aptamer researchers a valuable and efficient tool to

predict protein-aptamer interactions.
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