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Abstract

Immune response is one of the functions that have been more strongly targeted by natural selection 

during human evolution. The evolutionary genetic dissection of the immune system has greatly 

helped to distinguish genes and functions that are essential, redundant or advantageous for human 

survival. It is also becoming increasingly clear that admixture between early Eurasians with now-

extinct hominins such as Neanderthals or Denisovans, or admixture between modern human 

populations, can be beneficial for human adaptation to pathogen pressures. In this review we 

discuss how the integration of population genetics with functional genomics in diverse human 

populations can inform about the changes in immune functions related to major lifestyle 

transitions (e.g., from hunting and gathering to farming), the action of natural selection to the 

evolution of the immune system, and the history of past epidemics. We also highlight the need of 

expanding the characterization of the immune system to a larger array of human populations – 

particularly neglected human groups historically exposed to different pathogen pressures – in 

order to fully capture the relative contribution of genetic, epigenetic and environmental factors to 

immune response variation in humans.

Introduction

Over the last decade, it has become increasingly clear that understanding the different ways 

in which natural selection can act informs the biological relevance of immune genes, which 

can be essential, redundant or adaptable (Quintana-Murci, et al. 2007; Barreiro and 

Quintana-Murci 2010; Quintana-Murci and Clark 2013; Quintana-Murci 2019). Purifying 
selection removes deleterious alleles from the population, and genes evolving under this 

regime, e.g. STAT1, TRAF3, IFNG or TLR3, fulfill functions that are essential and non-

redundant (Barreiro, et al. 2009; Manry, et al. 2011; Vasseur, et al. 2012; Deschamps, et al. 

2016). Mutations in such highly-constrained genes usually lead to severe disorders, for 

example, HSV-1 encephalitis, pyogenic bacterial infections, or Mendelian susceptibility to 
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mycobacterial disease (see (Casanova and Abel 2013, 2018) for extensive reviews). 

Selective constraints have relaxed for other genes such as some type-I IFNs, MBL2 or 

TLR5, in which loss-of-function variants can reach high population frequencies and evolve 

neutrally (or quasi-neutrally), reflecting higher immunological redundancy (Quintana-Murci 

and Clark 2013; Casanova and Abel 2018).

Advantageous alleles can increase in frequency in the population by positive or balancing 
selection, highlighting cases of genetic adaptation (Quintana-Murci and Clark 2013; Key, et 

al. 2014; Fan, et al. 2016). Signals of positive selection have been detected at gene variants 

associated with malaria resistance (DARC, G6PD, CD36, GYPA, GYPB, GYPE), weaker 

inflammation/NF-κB signaling (TLR10-TLR1-TLR6 cluster), antiviral responses (type-III 

IFNs), or immunity to Lassa virus infection (LARGE and IL21), among others infectious or 

immune phenotypes (see (Grossman, et al. 2013; Quintana-Murci and Clark 2013; 

Brinkworth and Barreiro 2014; Fumagalli and Sironi 2014; Karlsson, et al. 2014) and 

references therein).

Immune functions have been particularly affected by balancing selection (Andres, et al. 

2009; Leffler, et al. 2013; DeGiorgio, et al. 2014; Teixeira, et al. 2015; Siewert and Voight 

2017), a rare type of selection that can act at different time depths. It can maintain 

polymorphisms over millions of years, as is the case for vertebrate MHC or the ABO group 

in primates (Lawlor, et al. 1988; Klein, et al. 2007; Segurel, et al. 2012), but it can also act in 

recent times, as attested by the iconic sickle-cell mutation (HbS) (Allison 1954; Ackerman, 

et al. 2005). A recent report has estimated that HbS appeared ~20,000 years ago, informing 

the time at which malaria started to be a health burden in Africa (Laval, et al. 2019).

A subtler mechanism of adaptation is through polygenic selection, in which selection acts 

simultaneously on advantageous alleles at multiple loci (Pritchard, et al. 2010). Signals of 

this selective regime have been reported for various traits (Turchin, et al. 2012; Berg and 

Coop 2014; Field, et al. 2016; Gouy, et al. 2017; Racimo, et al. 2018), including gene sets 

and immune pathways associated with the IL-6 signaling pathway, malaria, cytokine–
cytokine receptor interaction, and pathogenic Escherichia coli infection (Daub, et al. 2013).

In the following, we will not review how natural selection has targeted specific immune 

functions or pathways in humans, as comprehensive reviews of genes evolving under 

different selection types and the immunological and clinical consequences of such patterns 

can be found elsewhere (Barreiro and Quintana-Murci 2010; Casanova and Abel 2013; 

Quintana-Murci and Clark 2013; Brinkworth and Barreiro 2014; Fumagalli and Sironi 2014; 

Karlsson, et al. 2014; Casanova and Abel 2018; Quintana-Murci 2019). Instead, we will 

focus on the most recent data showing how ancient and modern admixture have participated 

in human adaptation to pathogen pressures, how human populations differ in the way they 

respond to infection, and on the genetic, epigenetic and evolutionary drivers of immune 

response variation in humans (Figure 1).
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Borrowing beneficial immune alleles from archaic hominins

Advantageous alleles can be found in other species or populations, which can act as 

“donors” of adaptive variation. There is increasing evidence that archaic, now-extinct 

hominins with whom humans admixed served as donors (Gittelman, et al. 2016; Racimo, et 

al. 2017). The genomes of individuals of non-African ancestry carry today the legacy of 

ancient admixture, with ~2% Neanderthal ancestry in Eurasians, <1% Denisovan ancestry in 

East and South East Asians, and up to 6% Denisovan ancestry in some Oceanian populations 

(Dannemann and Racimo 2018) (Figure 2A). Although archaic introgression was generally 

selected against (Sankararaman, et al. 2014; Sankararaman, et al. 2016; Petr, et al. 2019), 

some cases of beneficial introgression, i.e. adaptive introgression, have been reported for 

genes relating to body morphology, metabolism, and responses to environmental conditions 

including pathogens (Gittelman, et al. 2016; Racimo, et al. 2017).

An early study proposed that some HLA haplotypes of modern humans were acquired 

through admixture with Denisovans or Neanderthals (Abi-Rached, et al. 2011). Since then, 

multiple immune genes with signals of adaptive introgression have been reported: STAT2, 

the OAS1–3 (Figure 2B) and the TLR6-1-10 gene clusters or TNFAIP3 (Mendez, et al. 

2012, 2013; Sankararaman, et al. 2014; Dannemann, et al. 2016; Deschamps, et al. 2016; 

Gittelman, et al. 2016; Sams, et al. 2016; Racimo, et al. 2017). Archaic variants at these 

genes can reach high population frequencies, as reported for TLR6-1-10 in Asia (~39%) or 

TNFAIP3 in Melanesia (~60%). These studies highlight the beneficial role of admixture 

between humans entering Eurasia ~60,000 years ago and ancient human forms who were 

present in the region and possibly adapted for a longer time period.

Modern admixture as a vehicle of rapid adaptation

The history of humans is also characterized by pervasive admixture between modern human 

populations, particularly over the past 4,000 years (Hellenthal, et al. 2014). In contrast with 

archaic introgression, the role of modern admixture in genetic adaptation, i.e. adaptive 
admixture, has only recently started to be explored. Admixture between different African 

populations has been accompanied by the exchange of adaptive alleles such as the lactase 

persistence allele or HLA variants (Busby, et al. 2017; Patin, et al. 2017). The role of HLA 
as a substrate for adaptive admixture is further attested by the excess of African ancestry at 

the HLA locus in recently admixed Hispanic/Latino groups (Tang, et al. 2007; Rishishwar, et 

al. 2015; Zhou, et al. 2016). Likewise, the Duffy-null allele at DARC, which protects against 

vivax malaria and reaches very high frequency in Africa, supports the beneficial role of 

admixture, as high African ancestry has been detected in admixed populations from Pakistan 

and Madagascar, where vivax malaria is endemic (Hodgson, et al. 2014; Laso-Jadart, et al. 

2017; Pierron, et al. 2018).

Understanding the adaptive nature of admixture between populations with different modes 

of subsistence or exposed to different ecologies can also inform about both immune 

functions related to lifestyle transitions, and past epidemics. In this context, the study of 

hunter-gatherers and farmers from Africa — the continent that harbors the largest groups of 

active hunter-gatherers — has been particularly informative. For example, it has been shown 
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that rainforest hunter-gatherers, who share an extensive history of admixture with farmers 

(Patin and Quintana-Murci 2018), acquired the HbS allele through adaptive admixture over 

the last 6,000 years only (Laval, et al. 2019). This suggests that rainforest hunter-gatherers 

started to be exposed to malarial pressures in recent times, alongside their first contacts with 

agrarian communities. Nonetheless, it has also been shown that selection has maintained 

adaptive variation in rainforest hunter-gatherers in the face of recent gene flow from farmers, 

as immune response genes are enriched in both selection signals and local hunter-gatherer 

ancestry in admixed populations (Lopez, et al. 2019). In southern Africa, San hunter-

gatherers that have frequent contact with farmers present stronger selection signals at 

immune genes than those that are more isolated, supporting the notion that incoming groups 

can bring new pathogens to which local populations can rapidly adapt (Owers, et al. 2017).

Back to the past through ancient DNA to understand immune relevance

Sequencing the genome of individuals who lived at different time periods allows to measure 

the action of selection directly, and can inform the nature of genes that contributed to host 

adaptation during particular epochs, e.g. the Neolithic transition, before and after major 

epidemics, etc. (Skoglund and Mathieson 2018). A pioneering study compared allele 

frequency changes in individuals living in Europe between 8,500 and 2,300 years ago, and 

showed that immune genes such as the TLR6-1-10 cluster, the HLA region and SLC22A4 
carry variants that have increased in frequency during this time period by positive selection 

(Mathieson, et al. 2015). Another study, which sequenced the genome of a 7,000-year-old 

individual, has concluded that pathogen-driven selection at genes such as TLR1, CD14, 

IFIH1, CASP12 and NOS2A occurred before changes in skin pigmentation in Mesolithic 

Europeans (Olalde, et al. 2014).

The arrival of Europeans to the Americas, which has been linked to the introduction of new 

pathogens (Thornton 1997), also represents an excellent model to understand rapid 

adaptation to environmental change. The sequencing of ancient samples of Native 

Americans dating from pre-Columbian times has revealed signals of positive selection at 

immune loci, the strongest being detected at the HLA-DQA1 (Lindo, et al. 2016). Yet, the 

selected alleles appear to have decreased in frequency, by purifying selection, in the 

corresponding modern population from the Northwest Coast of North America, suggesting 

that the European arrival triggered pathogen-related environmental changes that made these 

variants deleterious for Native Americans. Likewise, purifying selection targeting a 

deleterious allele has been detected by a recent study that has identified a variant in TYK2 
that confers predisposition to tuberculosis (Boisson-Dupuis, et al. 2018), this variant having 

decreased in frequency in Europe from ~9% to 4% over the last 4,000 years.

Natural selection and population variation in immune response

The population genetic studies described above have helped to identify genes for which 

patterns of genetic diversity are not compatible with neutral evolution. However, in the 

absence of functional studies it remains unclear the nature of the immune phenotypes that 

have been selectively advantageous, and how they have diverged across populations. Recent 

studies have started to fill this gap by combining population genetics approaches with 
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quantitative trait loci (eQTL) mapping, in innate immune cells exposed to different immune 

stimuli or live infectious agents (Nedelec, et al. 2016; Quach, et al. 2016). These studies 

have functionally defined the extent to which immune responses are differentiated across 

individuals of different genetic ancestries, the genetic variants that account for such 

differences, and the evolutionary mechanisms (neutral genetic drift vs. positive selection) 

that led to their establishment in modern human populations.

Hundreds of genes for which the transcriptional response of phagocytic cells varies 

significantly between European- and African-ancestry individuals have been identified. 

Interestingly, increased African ancestry has been found to be associated with a stronger 

transcriptional response to immune stimulation, particularly in response to immune stimuli 
that signals via TLR1 (Nedelec, et al. 2016; Quach, et al. 2016; Sanz, et al. 2018). This is 

largely explained by a non-synonymous variant in TLR1, shown to cause dampened 

inflammatory immune responses due to hindered NF-kB signalling and activation (Figure 

3B) (Barreiro, et al. 2009; Quach, et al. 2016). The allele associated with reduced 

inflammation is almost absent in African populations but is found at very high frequency in 

European populations (Derived Allele Frequency (DAF)Africa = 0.04, DAFEurope = 0.67). In 

addition to this major trans-regulatory hub shown to control the expression levels of 

hundreds of genes (Figure 3A), cis-eQTLs were shown to explain, on average, ~30% and 

50% of the ancestry-related differences in expression in macrophages and monocytes, 

respectively (Nedelec, et al. 2016; Quach, et al. 2016). Collectively, these findings highligh 

the key role played by host genetic factors to differences in immune response detected 

between populations.

Interestingly, immune response eQTLs have been shown to be strongly enriched for 

signatures of recent natural selection (Nedelec, et al. 2016; Quach, et al. 2016), suggesting 

that a significant fraction of population differences in responses to infection results from past 

events of local adaptation. Notably, the trans-eQTL at TLR1 shows some of the most 

compelling signatures of positive selection in the human genome, suggesting that selection 

has favored a lower inflammatory response in humans that left Africa (Barreiro, et al. 2009; 

Quach, et al. 2016). This observation highlights the possible evolutionary trade-off between 

mounting a strong inflammatory response to fight pathogens in a high-pathogen load 

environment (Guernier et al., 2004) while avoiding the detrimental consequences of acute 

and chronic inflammation, which can lead to tissue damage, inflammation and 

autoimmunity.

Recent studies have also identified several genes for which ancestry-associated differences 

in immune response can be attributed to alleles that were introgressed from Neanderthals to 

European-ancestry individuals – especially among genes involved in antiviral response 

(Nedelec, et al. 2016; Quach, et al. 2016; Sams, et al. 2016). The OAS gene cluster provides 

one particular example of a genomic region harboring adaptively-introgressed variants 

important for antiviral activity that reach frequencies above 40% in Eurasian populations 

while absent in Africans (Figure 2B) (Mendez, et al. 2013; Sams, et al. 2016). Positive 

selection of a Neanderthal haplotype has led to the reintroduction of an ancestral splice 

variant of OAS1 associated with higher enzymatic activity (Sams, et al. 2016). The adaptive 

potential of this variant is supported by its association with reduced infectivity with West 
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Nile virus (Lim, et al. 2009), higher resistance to HCV infection (El Awady, et al. 2011; 

Kwon, et al. 2013); and variable symptomology of tick-borne encephalitis (TBE) virus-

induced disease (Barkhash, et al. 2010). That West Nile, HCV, and TBE are all Flaviviruses 

suggests that this family of virus are the main selective drivers. Strikingly, RNA viruses such 

as Flaviviruses have also been proposed to be the main cause of adaptive introgression 

between modern humans and Neanderthals (Enard and Petrov 2018).

The impact of agricultural practices on the evolution of the immune system

The transition from hunter gathering to farming, which began ~12,000 years ago in 

Mesopotamia (Harris 1967; Diamond 2002; Zeder 2008; Vigne 2011), has been associated 

with profound changes in human ecology (Braidwood 1960; Diamond and Bellwood 2003). 

Such changes were hypothesized to have precipitated major new infectious disease burdens. 

With animal husbandry came the continuous, close proximity to livestock, providing 

opportunity for novel or expanded zoonotic transmission (Wolfe, et al. 2007) of pathogens 

potentially including rotavirus, measles virus, and influenza (Suzuki and Nei 2002; 

Matthijnssens, et al. 2008; Furuse, et al. 2010). With the transition to agriculture came a 

concomitant increase in population size (Gignoux, et al. 2011); high population sizes are 

critical requirements for several infectious agents (e.g. measles, rubella, etc.) to spread and 

persist (Anderson and May 1991). Finally, the physical changes to the environment enacted 

by humans through the course of agriculture (e.g., land clearing and irrigation) also may 

have precipitated increases in the number of vector-borne diseases (McNeill 1989), such as 

Plasmodium falciparum malaria (Sundararaman, et al. 2016; Otto, et al. 2018).

A recent study has reported the first functional comparison of immune responses between a 

rainforest hunter-gatherer population from southwest Uganda and their agriculturalist 

neighbors (Harrison, et al. 2019). While their results demonstrate that positive selection has 

contributed to differences in immune responses between the two groups, interestingly, they 

do not support the long-standing hypothesis that selective pressures imposed by pathogens 

were particularly acute for agriculturalist populations. Instead, most selection signatures 

accounting for population differences in immune responses were observed in the hunter-

gatherer population. Thus, while the advent of agriculture likely led to the emergence of new 

pathogens, other infectious diseases might have simultaneously been a stronger selective 

pressure among hunter-gatherers.

Several studies suggest indeed that viral burden is higher in hunter-gatherer populations as 

compared to agriculturalist (Johnson, et al. 1993; Gonzalez, et al. 2000; Harrison, et al. 

2019), which might account for the increased divergence in immune response observed 

between hunter-gatherers and farmers to viral as compared to bacterial stimulus (Harrison, et 

al. 2019). Importantly, these groups diverged more than 60,000 years ago (Patin and 

Quintana-Murci 2018), long before the agriculture emergence in Africa. A substantial 

proportion of the functional genetic divergences observed may thus reflect pre-agriculture 

responses to long-standing ecological differences facing each lineage. Future work on other 

pairs of populations differing in their subsistence patterns are needed to fully understand the 

impact of the agricultural revolution on the evolution of the human immune system.
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Not all is about genetics: epigenetics of infection

Although genetics plays a significant role in driving inter-individual variation in immune 

responses, most of the variance observed at the population level remains unaccounted for 

when considering genetics alone (Aguirre-Gamboa, et al. 2016; Li, et al. 2016; Bakker, et al. 

2018; Piasecka, et al. 2018). Other factors have been linked to variation in immune 

responses, including sex, age (Bakker, et al. 2018; Piasecka, et al. 2018), and gut 

microbiome diversity (Schirmer, et al. 2016). Although less studied, epigenetic variation is 

also likely to play an important role at explaining immune response variance. DNA 

methylation, in particular, has been shown to dynamically change in response to infection 

(Marr, et al. 2014; Zhang, et al. 2014; Ichiyama, et al. 2015; Pacis, et al. 2015; Sinclair, et al. 

2015; Wiencke, et al. 2016; Pacis, et al. 2019). For example, the response of dendritic cells 

and macrophages to bacterial infection has been shown to be associated with rapid and 

active demethylation at thousands of loci, primarily at distal enhancer elements (Pacis, et al. 

2015; Pacis, et al. 2019). Although the causal role of some of these epigenetic changes 

remain to be functionally defined (Martin, et al. 2019; Pacis, et al. 2019), some of them may 

be long-lasting – potentially irreversible – which might alter the ability of immune cells to 

respond to secondary immune challenges.

The idea of an epigenetically-driven innate immune memory is increasingly discussed 

(Netea, et al. 2016; Netea and van der Meer 2017). For example, monocytes stimulated with 

β-glucan are able to mount faster and stronger gene transcriptional responses upon re-

stimulation with non-related immune stimuli (Netea, et al. 2016; Netea and van der Meer 

2017). Interestingly, both BCG vaccination (Kaufmann, et al. 2018) and β-glucan (Mitroulis, 

et al. 2018) are able to epigenetically reprogram stem cells in the bone marrow leading to the 

generation of differentiated monocytes/macrophages with enhanced pro-inflammatory 

potential and increased ability to fight against subsequent bacterial infections. Thus, it is 

tempting to speculate that life-course variation in exposure to certain pathogens might lead 

to long-lasting epigenetic alterations that ultimately contribute to population variation in 

innate immune responses.

Population epigenomic studies are, however, still lagging behind, and most of these 

hypotheses remain to be formally tested. So far, the field of population epigenomics has 

been limited to the study of DNA methylation variation. These studies have globally shown 

that both genetic ancestry (Fraser, et al. 2012; Heyn, et al. 2013; Husquin, et al. 2018) and 

differences in lifestyle (e.g., farming vs hunting and gathering) (Fagny, et al. 2015) are 

associated with changes in DNA methylation at thousands of CpG sites. Interestingly, the 

bulk of CpG sites (~70%) showing differential methylation between individuals of African 

and European ancestry have been found to be associated with methylation quantitative trait 

loci (or meQTLs), indicating that populations differences in DNA methylation are simply a 

downstream consequence of divergence at the DNA sequence level. Future work will help to 

determine the extent to which variation in DNA methylation and other epigenetic marks 

across individuals have a direct impact on the ability of innate immune cells to response to a 

pathogenic encounter.
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Conclusions and perspectives

Our increased ability to combine classical population genetics tools with immunogenomic 

approaches is providing unique insights into how natural selection has impacted the 

evolution and function of the human immune system. Yet, much more work is needed to 

fully comprehend the role of selection at shaping population variation in immune responses. 

For example, most population-level studies have focused only on individuals of European or 

African ancestry. Broadening the characterization of the immune system to a larger array of 

human populations — particularly neglected human groups historically exposed to different 

pathogen pressures — is required to capture the full extent of variation in immune responses 

across the globe. Moreover, one should move beyond the phenotypic characterization of 

immune responses based on gene expression to include other phenotypes, such as variation 

in the epigenome as well as more in-depth immune profiling of different cellular populations 

and their immune activation state based on multi-dimensional proteomic measurements.

From a theoretical standpoint, improved tools are needed for detecting alternative selection 

regimes, notably polygenic adaptation and adaptive admixture – whether archaic or modern. 

Limiting the search of selection signals to classical sweeps – as it has been done so far – will 

probably provide only a glimpse of the actual role played by natural selection to the 

evolution of the immune system. A perpetual challenge in the field has been the 

identification of the specific pathogen(s) that have exerted pressure at different time periods. 

Ancient DNA has the great potential to fill this gap. By analyzing ancient DNA samples 

corresponding to different time points across major historical events (e.g., the various 

outbreaks of plague), we might be able to shed light on the host and microbial factors 

underlying susceptibility to infectious disease and the effects of selection on these factors 

(Skoglund and Mathieson 2018)

Finally, most studies so far have characterized inter-individual variation in immune 

responses in isolated cell types. These studies, therefore, fail to capture the critical 

interactions observed in vivo between the many different immune cell types such as those 

found in circulating blood or complex tissues (Brodin, et al. 2019). By leveraging new 

technological advances in single-cell sequencing, we will be able to generate a more realistic 

landscape of the diversity of immune responses across human groups, what cell types 

contribute the most to such variation, and what role natural selection has had to the 

diversification of immune responses in humans.
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Figure 1. 
Summary of the different factors contributing to population variation in immune responses 

that are discussed in this review.
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Figure 2. Ancestry-associated differences in immune response are under genetic control.
A) Manhattan plot representing the number of trans-regulated genes (y-axis) in monocytes. 

The different colors represent the conditions under which gene expression levels were 

measured: NS – non-stimulated; LPS – lipopolysaccharide (TLR4 agonist); Pam3CSK4 

(TLR2 agonist); R848 (TLR7/8 agonist); IAV (flu virus). The purple box highlight the non-

synonymous variant in TLR1 that regulates in trans over 400 genes in response to 

Pam3CSK4. B) Effect of the TLR1 trans-eQTL, rs5743618, on genome-wide distributions of 

inter-population response differences to Listeria, Salmonella infection of macrophages. The 

x-axis represents the absolute difference in the log2 fold change response to Listeria 

infection (top panel) and Salmonella (bottom panel) between European and African 

individuals. Positive values indicates that the transcriptional response was stronger among 

African ancestry individuals, whereas a negative value indicates a stronger response among 

European ancestry individuals. Regressing out the effect of rs5743618 (gray distributions) 

reduces differences between populations, suggesting that the weaker proinflammatory 

response observed in Europeans is in part explained by this single trans-eQTL.
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Figure 3. The role of introgression in the evolution of the immune system.
A) Beneficial genetic variation can be acquired from other species or populations through 

admixture. Adaptive introgression from archaic humans is represented by blue arrows, while 

adaptive admixture between modern human populations is represented by orange arrows. B) 

Worldwide distribution of Neanderthal vs modern human haplotypes for the OAS1 gene – 

one of the most emblematic cases of adaptive introgression in humans. Specifically, we 

show the allele frequencies for the two alleles of rs1557866, a SNP which derived allele is of 

Neandertal origin (blue) and that is a strong proxy of individuals harboring the Neandertal 

haplotype in the OAS region. The map was generated using the tool described by (Marcus 

and Novembre 2017).
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