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Abstract

Mild cognitive impairment (MCI) is an intermediate stage of brain cognitive decline, associated 

with increasing risk of developing Alzheimer’s disease (AD). It is believed that early treatment of 

MCI could slow down the progression of AD, and functional brain network (FBN) could provide 

potential imaging biomarkers for MCI diagnosis and response to treatment. However, there are 

still some challenges to estimate a “good” FBN, particularly due to the poor quality and limited 

quantity of functional magnetic resonance imaging (fMRI) data from the target domain (i.e., MCI 

study). Inspired by the idea of transfer learning, we attempt to transfer information in high-quality 

data from source domain (e.g., human connectome project in this paper) into the target domain 

towards a better FBN estimation, and propose a novel method, namely NERTL (Network 

Estimation via Regularized Transfer Learning). Specifically, we first construct a high-quality 

network “template” based on the source data, and then use the template to guide or constrain the 

target of FBN estimation by a weighted l1-norm regularizer. Finally, we conduct experiments to 

identify subjects with MCI from normal controls (NCs) based on the estimated FBNs. Despite its 

simplicity, our proposed method is more effective than the baseline methods in modeling 

discriminative FBNs, as demonstrated by the superior MCI classification accuracy of 82.4% and 

the area under curve (AUC) of 0.910.
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I. Introduction

Mild cognitive impairment (MCI) is often regarded as a prodromal stage of Alzheimer’s 

disease (AD) [1]. In some recent statistical researches, in each year, nearly 10–15% MCI 

patients tend to progress to probable AD [2, 3]. An early treatment is believed to be 

important to slow down the progression of AD, either at the MCI stage or during the 

preclinical state [4]. Therefore, identifying which individuals have MCI and what 

biomarkers relate to MCI are major goals of current researches.

Rapid advances in neuroimaging techniques provide great potentials for the study of MCI. 

As a widely used non-invasive technique for measuring brain activities [5–7], functional 

magnetic resonance imaging (fMRI) has been successfully applied to explore early diagnosis 

of MCI before the occurrence of clinical symptoms. The popular diagnosis models include 

Bayesian network [8], support vector machine (SVM) [9], deep neural networks [10], multi-

task and sparse learning [11], graph learning [12], multi-view learning [13], etc. However, 

due to the randomness and the asynchronization of the spontaneous brain activities, it is hard 

to train these models directly using the fMRI data. In contrast, functional brain network 

(FBN) [14–17], which is estimated based on fMRI data, can instead provide more reliable 

measurements. In fact, several recent researches have shown that MCI is closely related to 

the alterations in the “connections” of FBNs [1]. Putting another way, estimating a “good” 

FBN plays a crucial role in MCI identification.

The most widely-used FBN estimation models are based on the second-order statistics (or 

correlations), and, according to a recent review [17], these correlation-based methods are 

generally more sensitive than complex high-order methods. Therefore, in this paper, we 

mainly focus on correlation-based methods, and will briefly review several representatives 

including Pearson’s correlation (PC) [18], sparse representation (SR) [19, 20], and their 

variants in Section II.

Despite its seeming appeal to MCI identification, estimating an ideal FBN is still a 

challenging problem, due to poor quality and limited quantity of observed fMRI data from 

the community of MCI study. In particular, some existing fMRI data are acquired using 

older scanners. The resultant blood oxygen level dependent (BOLD) signals therefore tend 

to be heavily noisy, and only contain limited (e.g., ~100) time points or volumes. On the 

other hand, high-quality data are recently available, i.e., from the human connectome project 

(HCP). However, the current HCP only gathers data of healthy participants, and generally 

follows different distributions from other existing datasets. Thus, it cannot be directly 

incorporated into the MCI dataset.

Motivated by the transfer learning (TL) approach that can employ information from a source 
domain to help the problem in a target domain, in this paper, we propose to encode the 

information from HCP (source domain), and transfer it for guiding the FBN estimation in 

the MCI identification (target domain). More specifically, we first construct an FBN based 

on the high-quality HCP data. Then, we regard the HCP-based FBN as a network template, 

and transfer its connection information to the target domain (i.e., FBN estimation based on 
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the low-quality data) by a weighted l1-norm regularized learning framework. Finally, we 

conduct experiments and illustrate that our proposed method works well on MCI 

identification task. For facilitating efforts to replicate our results, we also share the pre-

processed data and source codes in https://github.com/Cavin-Lee/TransferLearning_FBN.

In summary, we highlight the contributions of this paper as follows:

1. To our best knowledge, this is the first work that employs the idea of transfer 

learning (TL) in FBN estimation, which in fact provides an effective way to 

reduce the requirements of data acquisition by fusing the information from 

existing data sources.

2. Technically, we propose a simple method to conduct TL approach by a weighted 

l1-norm regularized framework. In this way, we can obtain FBNs with the link 

strength information shared by high-quality HCP data, which tends to result in 

higher reliability of built FBNs.

3. Compared with the traditional regularized FBN estimation model in which the 

regularizer is pre-specific based on some prior information, the proposed method 

in this paper designs a data-driven regularizer that reduce the manual 

intervention and provide more accurate information due to the high-quality data 

from source domain.

The rest of this paper is organized as follows. In Section II, we first introduce our data 

preparation pipeline and review several representative FBN estimation models/frameworks. 

Then, we propose the TL-based FBN estimation approach with its motivation, model and 

algorithm. In Section III, we describe experimental setting and evaluate our proposed 

method by experiments on MCI identification. In the end of this section, we also discuss our 

findings and prospects of our work. In Section IV, we conclude the paper.

II. Materials and Methods

A. Data Preparation

Two datasets are adopted in our experiments, since we aim to transfer information from one 

dataset into another dataset. In particular, we select the HCP1 as the data source, because it 

provides data with high quality and enough time courses. In contrast, a dataset shared in a 

recent study from Neuroimaging Informatics Tools and Resources Clearinghouse (NITRC2) 

[21] is adopted as the target data. Compared with the HCP data, the NITRC data have a 

lower spatial resolution and only contains 80 time courses. In what follows, we give more 

details of these two datasets involved in this study.

For calculating the template FBN, we use 76 participants from HCP cohort as the source 

data for constructing the template network. These are all the data we can get from HCP 

website when we conducted our experiments. In fact, 20 participants are enough for 

estimating a stable template, because we empirically found that the variances of functional 

1https://www.humanconnectome.org/study/hcp-young-adult
2http://www.nitrc.org/projects/modularbrain/
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connections tend to be zero with the increase of participant size, as shown in the Fig. S1. 

The IDs of these 76 participants are given in the supplement file, TABLE SIV3. Specifically, 

the resting-state fMRI in HCP, as the data source, was scanned by 3T Siemens scanner at 

Washington University, with phase encoding in a right-to-left (RL) direction. The scanning 

parameters are TR = 720 ms, TE = 33.1 ms, flip angle = 52, imaging matrix = 91×109, 91 

slices, resulting in 1200 volumes and voxel thickness = 2×2×2 mm. The preprocessing of the 

HCP data includes distortion correction, motion correction, registration, normalization and 

so forth. In addition, the HCP data is fixed by ICA method. For detailed discussion on the 

preprocessing pipelines on HCP data, please refer to [22–24].

Moreover, the NITRC data were obtained by 3T Siemens scanners (TRIO) with the 

following parameters: TR/TE = 3000/30 mm, acquisition matrix size = 74×74, 45 slices, and 

voxel thickness = 2.97×2.97×3 mm with 180 repetitions. The preprocessing pipeline of the 

NITRC data is based on Statistical Parametric Mapping (SPM8) toolbox4 and DPARSFA 

(version 2.2) [25]. In particular, the first 10 volumes of each subject are removed for signal 

stabilization. The slice acquisition timing and head motion correction operations are adopted 

for the remaining images [26]. In order to remove the low- and high-frequency artifacts, the 

fMRI series are band-pass filtered (0.01–0.08Hz). Then, regression of ventricular and WM 

signals as well as six head-motion profiles are conducted to further reduce the effects of 

nuisance signals. For spatial normalization of the fMRI data, the T1-image is first co-

registered to the averaged motion corrected fMRI data, and then segmented using DARTEL 

[27], which produces a deformation field projecting each subject from the original individual 

space to standard Montreal Neurological Institute (MNI) space. In the end, the time course 

with FD > 0.5 mm is scrubbed for alleviating the impact of the head movement on the 

signal. Note that, for estimating reliable FBN, an enough number of time courses is needed, 

i.e., 805. According, 45 subjects with MCI and 46 NCs are selected in this study.

Finally, for both HCP and NITRC data, the pre-processed BOLD time series are partitioned 

into 90 ROIs (excluding the cerebellum region) based on the automated anatomical labeling 

(AAL) atlas [28]. As a result, we get two data matrices XH ∈ R1200×90 and X ∈ R80×90 for 

HCP and NITRC, respectively.

B. Related Work

After preprocessing the observed data, the subsequent task is FBN estimation. In this 

section, we first review two specific correlation-based FBN estimation methods, and then 

introduce a general FBN estimation framework.

1) Pearson’s Correlation—As we know, PC is the most popular and the simplest 

scheme for estimating FBN. To start with, we first define the data matrix (i.e., BOLD signal 

matrix) X ∈ RT×N, where T is the number of volumes and N is the number of ROIs. The 

3The relationships across the participants are not considered in this paper. Instead, we randomly select 76 participants for avoiding the 
artifacts, since we find that the estimated network template has been already stabilized.
4http://www.fil.ion.ucl.ac.uk.spm
5We only use the first 80 time points of each subject to be consistent with each other, which actually provides an experimental 
condition for validating the FBN construction in small sample size cases.
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fMRI time series associated with the ith ROI is represented by xi ∈ RT, i = 1, …N. Then, the 

edge weights of the FBN W = W ij ∈ RN × N can be calculated by PC as follows:

W ij = xi − xi
T xj − xj

xi − xi
T xi − xi xj − xj

T xj − xj
. (1)

The PC-based FBN tends to have a dense topology, since the BOLD signals commonly 

contain noises. In practice, a threshold is generally used to sparsify the estimated FBN by 

filtering out some potential noisy or weak connections. For more details of the thresholding 

scheme, please refer to Section 3.2.1 in [29].

Without loss of generality, we suppose that the BOLD signal xi has been centralized and 

then normalized by xi ≜ xi − xi / xi − xi
T xi − xi . As a result, PC can be simplified to the 

form W ij = xiTxj, and this form exactly corresponds to the solution of the following 

optimization problem:

minW W − XTX F
2 , (2)

where ⋅ F  denotes the F-norm of a matrix. According to a previous study [18], we can 

further introduce an l1-norm regularizer W 1 into Eq. (2) for obtaining sparse PC-based 

FBN.

2) Partial Correlation via Sparse Representation—Despite its simplicity and 

popularity, PC can only model the full correlation, and neglect the interaction among 

multiple ROIs. To address this issue, partial correlation is proposed by regressing out the 

confounding effects from other ROIs [30]. Nevertheless, the partial correlation approach 

may be ill-posed due to the involvement of inverting the covariance matrix Σ = XT X. A 

popular solution is to incorporate an l1-norm regularizer into the partial correlation model, 

resulting in the SR-based FBN estimation scheme as follows.

minW∑i, j = 1
n xi − W ijxj

2 + λ∑i ≠ j W ij , (3)

Equivalently, it can be further rewritten as the following form:

minW X − XW F
2 + λ W 1,

s.t. W ii = 0, ∀i = 1, 2, …, n (4)

where the constraint Wii = 0 aims to avoid the trivial solutions. It should be noted that the 

optimal solution W*of Eq. (4) may be asymmetric. To be consistent with PC, the SR-based 

FBN is simply defined as W* = W* + W * T /2. Of course, different strategies[31] can be 

used to symmetrize the estimated FBN, but this goes beyond the main focus of this paper.
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3) Regularized FBN Estimation Framework—According to the above description, 

both PC- and SR-based FBN estimation models can be summarized into the following 

regularized FBN learning framework:

minWf(X, W) + λR(W), s.t. W ∈ Δ, (5)

where f (X, W) is the data-fitting term for capturing some statistical “structures” of the data, 

andR (W) is the regularization term for stabilizing the solutions and encoding biological 

priors of FBN. In addition, for obtaining a better FBN, some specific constraints such as 

symmetry or positive semi-definiteness may be included in Δ for shrinking the search space 

of W. The λ is a regularization parameter to control the balance between the first (data-

fitting) term and the second (regularization) term.

In fact, many recently-proposed FBN estimation models [32–35] can be unified under this 

regularized framework with different design of the two terms in Eq. (5). The popular data-

fitting terms include W − XTX F
2

 used in Eq. (2) and X − XW F
2  used in Eq. (4), while the 

popular regularization terms include l1-norm [30], trace norm and their combination [21], 

etc. Beyond unifying the existing methods, the regularized framework also provides a 

platform for developing new FBN estimation methods. In the following section, we will 

propose our TL model based on this framework.

C. NERTL: Network Estimation via Regularized Transfer Learning

1) Motivation—As discussed earlier, a well-estimated FBN can provide potentially 

effective measurements for identifying MCI and exploring MCI-related biomarkers. 

However, the lack of ground truth and our limited understanding of the brain make it hard to 

estimate a “good” FBN. In practice, several strategies are believed to be helpful for 

improving the estimation of FBNs, mainly including 1) acquisition of high-quality fMRI 

data, 2) application of sophisticated data preprocessing pipeline, and 3) introduction of 

reasonable priors into the network modeling, etc.

There is no doubt that high-quality data lie at the most fundamental extreme for FBN 

estimation. However, in the community of MCI study, most of the accumulated data were 

acquired by low-end scanners (at least from the current perspective), thus generally 

containing short time series with limited volumes and complex noises. Although more 

advanced imaging technologies are now available to acquire high-quality data for MCI study 

[36, 37], this is obviously a time-consuming and laborious work with high costs (e.g. 

maintenance of the system or equipment cost). What’s worse is that, compared with rich 

data accumulation, it is exceedingly difficult to recruit a great amount of participants with 

MCI.

On the other hand, nowadays many “big” data with high quality have been collected from 

the healthy participants and shared by, for example, HCP. A natural problem is whether the 
high-quality HCP data can be used to estimate better FBNs for improving MCI 
identification. Unfortunately, the high-quality HCP data cannot be directly added into the 

low-quality MCI data, since they do not meet the independent and identically distributed 

(i.i.d) condition (i.e. collected from different subjects and scanners). However, it is fortunate 
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that TL provides a way of mapping the information/knowledge from the source domain to 

the target domain without the request of i.i.d assumption [38]. Therefore, in this paper, we 

consider the high-quality HCP data as the source domain and the low-quality data involved 

in the MCI study as the target domain, and expect to design a method that can effectively 

employ the information or knowledge in the source domain to help the problem in the target 

domain. Finally, we summarize our basic motivation or idea in Fig. 1. Compared with the 

traditional FBN estimation method, the proposed framework provides a “guider” that, in the 

view of TL, employs the information from the source domain (high-quality HCP data) to 

help the FBN estimation based on low-quality data in the target domain.

2) The Proposed Model and Algorithm—To realize the above idea, in this paper, we 

propose a scheme named NERTL for conducting Network Estimation based on Regularized 

TL. More specifically, NERTL estimates FBN in two sequential steps. First, it constructs an 

FBN H based on the high-quality HCP data, and considers it as a “good” network template 

that provides more reliable structures than the FBN based on low-quality data. The template 

FBN H is estimated by Pearson correlation, since it can naturally model the pairwise 

functional connectivity strength[39]. Then, the second step is to transfer the structural 

information from the high-quality data. Specifically, NERTL uses the link strength 

information in the template network H as the guidance by introducing a weighted sparse 

prior, and results in the following FBN learning framework:

minWf(X, W) + λ∑i ≠ jγij W ij , (6)

Where f (X, W) and ∑i ≠ jγij W ij  are the data-fitting term and regularization term, 

respectively. The data-fitting term f (X, W) models the statistical information, while the 

regularization term ∑i ≠ jγij W ij  encodes the sparsity prior, and meanwhile transfers the 

information from the high-quality data to the current problem. The parameter λ controls the 

balance between the two terms in the objective function. Particularly, the parameter γij plays 

a key role in the link information transferring, which imposes a “penalty” on each edge 

weight Wij of the FBN. If two ROIs have a strong link in the template network H then the 

link between these two ROIs should be penalized less in the FBN estimation model. On the 

contrary, the weak link in H should correspond to more penalty on weights of the target 

FBN. Thus, we define γij as follows:

γij = e−ℎij2 , (7)

where hij is the connection weight between ROI i and ROI j in the template network H In 

this way, NERTL can transfer the link strength information from the template network to the 

target FBN under estimation.

By instantiating f (X, W) Eq. (6), we can get at least two specific NERTL models. If 

adopting W − XTX F
2

 in the PC-based method as the data-fitting term, we have the PC+TL 

model as follows:
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minW W − XTX F
2 + λ∑i ≠ jγij W ij . (8)

Similarly, if adopting the SR-based model in NERTL scheme, we have SR+TL model as 

follows:

minW X − XW F
2 + λ∑i ≠ jγij W ij . (9)

In the view of the consistent human evolution and the different individual development, the 

brain network can be decomposed into common and personalized parts. In the proposed 

framework, the regularization term transfers the link strength information from the high-

quality data for modeling the common part of FBN, while the data-fitting term models the 

individual part of FBN that may contain potentially discriminative information. Therefore, 

the proposed method can not only reduce the requirement of the data, but also estimate 

FBNs with better performance for discriminating MCI.

Based on the regularized FBN estimation framework, in the following, we give the 

optimization algorithm for estimating FBN by PC+TL and SR+TL methods. First, for the 

data-fitting termf(X, W) = X − XW F
2 (or W − XTX F

2
, its gradient w.r.t W is 

∇Wf(X, W) = 2XTXW − XTX or W−XTX . Therefore, we have the following update formula 

for W, according to the gradient descent criterion:

Wk = Wk − 1 − αk ∇Wf X, Wk − 1 , (10)

where αk denotes the step size of the gradient descent. The initial value of the step size αk is 

set to 0.001, and it will be adaptively updated in the following steps according to the used 

SLEP toolbox6.

Then, for the regularization term λγij‖W‖1 in both PC+TL and SR+TL, it is non-

differentiable, which makes the problem nontrivial. In this study, we adhere to the proximal 

method [40], due to its simplicity and efficiency in solving these convex but non-

differentiable problems. The proximal operator for weighted l1-norm is defined as follows 

[18]:

pr(W) = sgn W ij × max abs W ij − λγij, 0 N × N, (11)

where sgn (Wij)and abs (Wij) return the sign and absolute value of Wij, respectively. As a 

result, two main steps are involved for solving the proposed FBN estimation methods, as 

given in the following Algorithm I.

6http://www.yelab.net/software/SLEP
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Algorithm I

Estimating FBN Based on NERTL

Input: X, λ, H
Output: W

Initialize W0;

while not converged

           Wk+1 = Wk − αk∇Wf(X,Wk);

           Wk+1 = pr(Wk+1); // based on Eq. (11).

end

return W;

III. Experiments and Results

A. Experimental Setting

In this study, we estimate FBNs based on NITRC data using different methods including PC, 

SR, and the proposed PC+TL and SR+TL. For PC+TL and SR+TL, they need a pre-specific 

network “template”. In addition, we introduce two traditional regularized methods, including 

low-rank approximation (LR) and ridge regression (RR) as baseline for more comprehensive 

comparison. Therefore, we first construct a set of FBNs by conducting PC, mainly due to its 

simplicity, on HCP source data. Then, we obtain the FBN template by averaging the FBNs 

across all selected subjects. Note that, there is a regularization parameter λ in all of these 

models, which may significantly affect network structures and then ultimate classification 

results. Thus, we set parameter λ by a linear search in the range of [0.001, 0.05, 0.1, 0.15, 

…, 0.9, 0.95, 0.99].

After obtaining the FBNs for all participants, we use them for identifying subjects with MCI 

from NCs. In this study, we select the upper triangular elements of the estimated FBN as 

input features to reduce the dimension, since the adjacency matrix of FBN is symmetric. 

Meanwhile, to alleviate the interference of the classification and feature selection procedure, 

we only adopt the simplest feature selection method (t-test with fixed p-value = 0.017) and 

the most popular support vector machine (SVM) [41] classifier (linear kernel with default 

parameter C = 1) in our experiment.

Further, the involved FBN estimation methods are tested by the leave-one-out (LOO) cross 

validation, for the reason of limited samples in the NITRC data. Specifically, in each 

iteration, only one subject is left out for testing, while the remaining subjects are used for 

selecting features and training the classifier. Specifically, an inner LOO cross validation is 

conducted on the training data for determining the optimal value of the regularization 

parameter λ, which is based on the classification accuracy in each inner loop.

7We simply adopted an empirical setting for the p-value, i.e., 0.01, according to several related papers [21–23]. Besides, we also made 
experiments under different p-values of 0.05 and 0.005. The experimental results are proposed in Tables SI and SII, respectively, in the 
supplement files.
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In the end, the classification performance of different methods is evaluated by a set of 

commonly used quantitative measures, including accuracy, sensitivity and specificity, which 

are defined as follows:

Accuracy = TP + TN
TP + FP + TN + FN , (12)

Sensitivity = TP
TP + FN , (13)

Specificity = TN
TN + FP . (14)

where TP, TN, FP and FN indicate true positive, true negative, false positive and false 

negative, respectively. Additionally, the receiver operating characteristic (ROC) curve and 

the area under curve (AUC) are also adopted for measuring the MCI classification 

performance [42].

B. Results

1) FBN Estimation—In this section, we first present the source FBN mapped onto the 

International Consortium for Brain Mapping (ICBM) 152 surface by BrainNetViewer 

toolbox [43], as shown in Fig. 2. For a better visualization, we only keep the top 10% 

strongest connections.

Then, for NITRC data, we show the averaged FBN of NCs estimated by 6 different methods 

in Fig. 3. It can be easily observed that the topological structure between the PC-based and 

SR-based FBNs is quite different, since they employ different data-fitting terms 

corresponding to full correlation and partial correlation, respectively. In contrast, the TL has 

a limited influence on the topological structure of the estimated FBN. However, based on a 

quantitative evaluation, we found that TL can improve some graph measurements of the 

estimated FBN, i.e., under the situation of 20% sparsity, the TL scheme can achieve 20.18% 

and 7.01% increase in modularity score [44] for PC and SR method, respectively.

2) MCI Classification—The MCI classification results on NITRC dataset is reported in 

TABLE I and Fig. 4. For PC- and SR-based FBN estimations, the proposed methods 

significantly outperform the baseline under the 95% confidence interval with p-value = 

0.0015 and 0.0021, respectively, based on the DeLong’s non-parametric statistical 

significance test [45].

In Fig. 5, we show the classification accuracy corresponding to different values of the 

regularized parameter, and found that most of the methods are sensitive to this parameter. 

However, compared with the traditional PC and SR methods, the proposed methods can 

achieve more stable results. In addition, the experimental results in Fig. 5 reveal that the 

proposed method can improve the final performance at most of the parametric levels. 

Especially the SR+TL achieves the best performance among all the comparison methods. 

Therefore, we believe that the proposed NERTL scheme could transfer some useful 
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information (e.g., the more reliable topological structure) from the high-quality source data 

for guiding the current FBN estimation, or improving the discrimination of the estimated 

FBNs. In each inner LOOCV loop, we selected the optimal parameter λ with the highest 

classification accuracy. Here, we report the count of selected optimal parameter λ in each 

loop as shown in Fig, 6. We can find that the result of the optimal parameter selection seems 

following a Gaussian distribution and the optimal parameter is mainly concentrated around 

λ = 0.5.

For further illustrating the robustness of the proposed TL scheme on the data with different 

quality/quantity levels, a verification experiment is designed. In particular, we generate 

several fMRI datasets by randomly removing a fixed number of time points (i.e., 20, 15, 10, 

5, 0) to simulate the data with different levels of quality/quantity for testing. The result is 

given as follows:

Based on the generated data, we can find that the proposed TL scheme can provide robust 

biomarkers and a stable MCI classification accuracy even based on the poor-quality data. 

Under the situation of removing 20 volumes, the average decrease in accuracy of PC, PC

+TL, SR and SR+TL methods are 5.71, 2.97, 9.89 and 3.52, respectively.

3) Discussion—Although acquiring high-quality data is beneficial to estimate better 

FBNs, it may be expensive and even impossible for some specific studies. Therefore, with 

the help of a powerful “guidance” from newly available high-quality data, we aim to 

discover more reliable brain patterns under poor data, and propose a simple TL scheme 

NERTL towards better FBN estimation. It should also be noted that the SR-based method 

outperforms the LR method after transferring information from high-quality data in the 

source domain, which further illustrates the effectiveness of the proposed TL scheme. Based 

on the generation data, we can find that the proposed TL can provide robust biomarkers even 

under the poor-quality data. Specifically, the proposed scheme is adopted on the correlation-

based FBN models and verified by MCI identification task on the NITRC dataset. Note that, 

the proposed scheme is also suitable for the high-quality data, we further conduct 

experiment on ADNI dataset, and the result is provided in the supplement file, TABLE SIII, 

which also illustrates the effectiveness of the proposed method.

Now, a natural problem is which features (i.e., connections or corresponding ROIs in FBN) 

contribute to improve the discrimination of the estimated FBNs. Here, we only take SR+TL 

as an example due to its high discrimination, and select the most discriminative connections 

for identifying MCI based on t-test. The top 58 most discriminative “connections” are 

visualized in Fig. 7 with the thickness of arc indicating the discriminative power that is 

inversely proportional to its p-values. Furthermore, we compare these discriminative 

connections with those from SR, and found that the NERTL provides 29 new discriminative 

connections as shown in Fig.8. From such a set of connections, we note that several of them, 

such as the connections in the default mode network across the regions of superiormedial 

frontal gyrus, medial orbitofrontal gyrus, parahippocampus, etc., may be biologically 

associated with MCI identification, according to previous study [46].
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In addition, compared with the estimated FBNs with or without NERTL scheme, we can 

easily find that the connections between Temporal, Frontal, Lingual, Cuneus and so forth 

regions are enhanced (in the view of absolute values), which may reveal some potential FBN 

patterns. However, it is beyond the scope of this paper. In the future, we plan to investigate 

this interesting problem by more well-designed experiments. In addition, according to 

previous studies [46, 47], these regions are generally involved in the default mode network 

[48], and believed to be biologically associated with MCI identification, which can further 

explain the improvement of the proposed method.

Note that, we only test our model on the AAL template as an easy example. Actually, we 

would like to emphasize that the proposed FBN estimation framework can be applied on any 

ROI template, such as AAL [28], Jiang246 [49] or the data driven ROI (e.g. GIG-ICA [50]). 

Note that, a distribution alignment operation is needed for the data driven based ROI, since 

the target domain and source domain do not follow the i.i.d assumption. However, this is 

beyond the scope of this paper. In the future work, we plan to investigate this interesting 

problem by distribution alignment design such as domain adaption or disentangling trick, as 

the data-driven approaches are more attractive for the FBN estimation.

IV. Conclusion

In this paper, we develop a novel and general approach named NERTL to transfer the 

information from the high-quality data into FBN estimation based on a weighted l1-norm 

regularized learning framework. The proposed method is quite meaningful, as it can 

sufficiently employ the data that do not meet the i.i.d assumption, and potentially relax the 

requirement of data acquisition. The experimental results on MCI classification demonstrate 

the effectiveness of the proposed method. To our best knowledge, the proposed method is 

the first attempt to use the idea of transfer learning for FBN estimation. In addition, the 

proposed TL scheme is a general module, meaning that, besides the PC- and SR- based 

models, it can be easily adopted on other FBN estimation models such as Bayesian network, 

and we can incorporate some other useful priors such as modularity, scale-free into the FBN 

estimation models. However, despite its effectiveness, the experiment in this paper is only a 

simply verification for the TL scheme. Thus, we acknowledge that is still contains several 

limitations. For example, we select the anatomical template as ROI to estimate FBNs, which 

may lead to disproportionately skewed due to the unbalanced ROI size. In the future, we 

plan to consider more suitable functional template to reduce the effects of ROI size towards 

a better result. Also, we plan to test more estimation approaches and priors, and conduct a 

more systematical study on FBN estimation in the TL view.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Given observed data, in the previous works, the improvement of the FBN estimation is 

mainly based on 1) high-quality data, 2) sophisticated preprocessing pipeline, and 3) 

reasonable priors. However, it is hard to obtain an “ideal” result, since the data acquisition is 

hard to control and the understanding of brain is limited. To alleviate this issue, in this paper, 

a basic idea is setting the FBN of the high-quality data as a “guider” to help the FBN 

estimation task, which can efficiently provide more useful information and thus can reduce 

the dependency for data. Specifically, in this paper, we employ the link-strength information 

of high-quality data for guiding the FBN estimation.

Li et al. Page 16

IEEE J Biomed Health Inform. Author manuscript; available in PMC 2021 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
The FBN template estimated on the HCP data. We only keep 10% strongest connections for 

a better visualization. The thickness of the line represents the weight of the connection. This 

figure is drawn by BrainNetViewer toolbox (https://www.nitrc.org/projects/bnv/).
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Fig. 3. 
The adjacency matrices of the estimated FBNs by (a) PC, (b) PC+TL, (c) LR, (d)RR, (e)SR 

and (f) SR+TL with λ = 0.5. Note that, all weights are normalized to the interval [−1 1] for 

convenience of comparison between different methods.
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Fig. 4. 
The ROC curve of the classification performance for PC, PC+TL, LR, RR, SR and SR+TL 

methods.
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Fig. 5. 
Classification accuracy based on 4 different methods and 21 different values of the 

regularized parameter, changing in the following range of [0.01, 0.05, 0.1, …, 0.95, 0.99] the 

results are obtained by LOO test.
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Fig. 6. 
The frequency of the selected loptimal values of parameter λ inner loops, where the 

horizontal axis represents the parameter values in the searching space.
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Fig. 7. 
The Classification results on the generated datasets, the horizontal axis represents the left 

volumes of the fMRI time course, the error bar represents the SD of the classification result. 

For each time length, we run 10 loops for validation.
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Fig. 8. 
The most discriminative connections between MCI and NC for the 90 ROIs of AAL 

template, which is selected by t-test (p<0.01). This figure is created by a Matlab function, 

circularGraph, shared by Paul Kassebaum. http://www.mathworks.com/matlabcentral/

fileexchange/48576-circulargraph
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Fig. 9. 
29 discriminative connections caused by TL, which is compared between SR and SR+TL.
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Table I

CLASSIFICATION PERFORMANCE CORRESPONDING TO DIFFERENT FBN ESTIMATION 

METHODS ON NITRC DATASET.

Method AUC Accuracy Sensitivity Specificity

PC 0.5986 59.34 60.00 58.70

PC+TL 0.7376 68.13 62.22 73.91

LR 0.8381 79.12 80.00 78.24

RR 0.7773 68.13 68.89 67.39

SR 0.8130 72.53 68.89 76.09

SR+TL 0.9106 82.42 82.22 82.61
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