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Abstract

Fiber bundles have become widely adopted for use in endoscopy, live-organism imaging, and other 

imaging applications. An inherent consequence of imaging with these bundles is the introduction 

of a honeycomb-like artifact that arises from the inter-fiber spacing, which obscures features of 

objects in the image. This artifact subsequently limits applicability and can make interpretation of 

the image-based data difficult. This work presents a method to reduce this artifact by on-axis 

rotation of the fiber bundle. Fiber bundle images were first low-pass and median filtered to 

improve image quality. Consecutive filtered images with rotated samples were then co-registered 

and averaged to generate a final, reconstructed image. The results demonstrate removal of the 

artifacts, in addition to increased signal contrast and signal-to-noise ratio. This approach combines 

digital filtering and spatial resampling to reconstruct higher-quality images, enhancing the utility 

of images acquired using fiber bundles.

1. INTRODUCTION

Fiber bundles have been widely adopted in the optics community as a conduit for light 

delivery, and if the spatial arrangement of the fibers within the bundle is consistent at both 

distal and proximal ends, fiber bundles can be used for imaging. In contrast to single-core 

optical fibers, fiber bundles consisting of thousands of individual fibers provide the benefit 

of having a large field of view due to larger bundle diameters (500 μm–1.5 mm), in addition 

to allowing for selective illumination of subsets of fibers within the bundle. Individual fibers 

in these bundles range from a few micrometers to tens of micrometers in diameter, which 
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makes them ideal for illuminating selective regions on a given sample. These fibers are 

single-mode fibers surrounded by a cladding material, which also acts as the material used to 

separate individual fibers. These are also individually surrounded by a clad jacket and then 

fused to form coherent bundles. This technology has been used for endoscopy [1–3], optical 

coherence tomography [4,5], fluorescence imaging [6–13], nonlinear optical imaging 

[14,15], and increasingly for neural imaging in optogenetics research [9,12,16,17]. The 

inherent disadvantage of these fiber bundles is the superimposed pixilation artifact due to the 

inter-fiber material that is not optically transparent or light conducting. This artifact obscures 

underlying object features, making it difficult to interpret imaging results. Different methods 

have been proposed to reduce this artifact [18,19], ranging from spatial interpolation 

techniques [1,20], mosaicking [2,3], and reduction of the artifact in the spatial Fourier 

domain [4,21–23]. Implementation of computational techniques has also been demonstrated, 

such as speckle-based correlations [6], high-resolution estimates from low-resolution, 

smoothened images [24], generation of a transmission matrix [25], and compressive sensing 

reconstruction [5,26]. More recently, deep learning has also been suggested as a technique 

for reducing these artifacts [27]. The study and results presented here offer a combined 

sampling and computational approach for reduction of the superimposed artifact. Rather 

than repositioning the sample or translating the fiber to mosaic images, as previously 

demonstrated [2,3], we performed on-axis rotation of the fiber bundle over the sample and 

reconstructed the final image from rotationally sampled image data. In the context of lateral 

mosaicking, previous work has demonstrated that this spatial resampling provides robust 

image reconstruction compared to spatial interpolation alone [28]. As it can be difficult to 

limit lateral movement while imaging with fiber bundles due to the high degrees of freedom 

possible during movement, additional methods beyond co-registration of lateral translation 

are necessary to correct for imperfect registrations due to bundle rotation. We thus present an 

extension of this mosaicking approach for fiber bundle reconstruction that integrates 

corrections to translations and rotations into the co-registration algorithm, with a heavy 

emphasis on bundle rotations.

In principle, by rotating the fiber bundle over the fixed field of view, the fluorescence or 

reflected light from the object is acquired from different locations. By affine co-registration 

of each of these images post-acquisition, and by averaging or acquiring larger pixel 

intensities at subsequent registrations for each of these images, the final image of the object 

can be reconstructed, even with the superimposed fiber patterns introduced while imaging. 

Experimental verification for this reconstruction technique demonstrates a higher signal-to-

noise ratio (SNR) and contrast-to-noise ratio (CNR) for the acquired images, and improved 

resolution.

2. METHODS

A. Theory

The fiber-pattern artifact itself can be modeled as a super imposed binary pattern over the 

imaging sample. More specifically, this binary pattern can be defined as
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A(r, θ, t) = circ r
a , θ, t * δ r + kfr, θ + kfθ, t , (1)

where r denotes radial position, θ angular rotation, and t is time. The term circ(r, θ, t) is 

defined as the circular function, δ(r, θ, t) is the Dirac delta function, a is a coefficient to 

define the radial width, k is an integer multiple for the number of fibers present in each 

dimension (given as 51), and fr and fθ are the spatial frequency, or inter-fiber spacing, on the 

image. In this work, the asterisk (*) will denote the convolution operation. Given this 

definition, we can model the superimposed artifact on the image as

I(r, θ, t) = e
−(r2)
2σ2 * S(r, θ, t)A(r, θ, t), (2)

where I(r, θ, t) is the image acquisition, and S(r, θ, t) is the signal expected from the object 

without the superimposed pattern. Here, σ denotes the width of the Gaussian function, which 

is modeled as the point-spread function (PSF) of the fibers, convolved with the fiber 

geometry. The imaging process also introduces artifacts inherent in imaging, as well as 

autofluorescence generated by the fiber glass material within the bundle. This also can be 

modelled according to

I(r, θ, t) = e
−(r2)
2σ2 * S(r, θ, t)A(r, θ, t) + ϵ(r, θ, t) + γ(r, θ, t), (3)

where (r, θ, t) denotes the background noise, and γ(r, θ, t) denotes variations in noise over 

time. Variations in inter-fiber spacing and diameter inherent in fiber production will also 

conveniently be integrated into this term. For simplicity, hereon these variables will be 

combined into ∈. This artifact can be removed by background subtraction:

I(r, θ, t) − ϵ(r, θ, t) = S(r, θ, t)A(r, θ, t); (4)

however, background subtraction alone does not replace the image signal that was lost in the 

inter-fiber regions. For simplicity, this background-subtracted image could be combined as 

one variable and defined as

Ie(r, θ, t) = I(r, θ, t) − ϵ(r, θ, t); (5)

hence,

Ie(r, θ, t) = e
−(r2)
2σ2 * S(r, θ, t)A(r, θ, t) . (6)

Practically, dividing Ie by A is effectively dividing the signal by the low values (effectively 

zero) from in between the fibers, increasing the true image signal and making the artifact 

more pronounced. This result becomes more pronounced when a binary mask is used in lieu 
of the signal intensities imposed by imaging on the detector with the fiber bundle. This 

makes background subtraction and division an unsuitable solution. By taking the Fourier 

transform, this becomes a deconvolution problem:
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Ie kr, kθ, t = e
−(r2)
2σ2 S kr, kθ, t * A kx, ky, t . (7)

Unfortunately, deconvolution in the frequency domain yields very poor results, as the exact 

superimposed pattern will be required and binarized to remove this artifact. In practice, this 

becomes very difficult, cumbersome, and computationally intensive. To correct for this, an 

algorithm was designed to reconstruct the images through a series of low-pass and median 

filtering. This removes any image distortion introduced through consecutive resampling, as 

well as corrects for the reduced intensity from blurring, throughout all the acquired images. 

Through a sequence of rotations and translations, consecutively acquired images are co-

registered and summed (for simulations), averaged, or acquired from the maximum intensity 

for each pixel between images (real fiber bundle data) to collect image signals from regions 

that would have otherwise been obscured in a static (non-rotated) single image due to the 

artifact. Maximum projection was a necessary step to facilitate co-registration in this work, 

and was thus adopted for the experimental cases. Additionally, the effect of summing or 

using the projection approach for co-registered images instead of solely averaging is also 

investigated, should averaging remove some significant image features. Translated images 

can be defined as

Itrans(r, θ, t) = Ie(r + Δr, θ + Δθ, t) . (8)

If we define N number of translated and/or rotated images, the final reconstructed image can 

be defined by

Irecon = ∑
n = 1

N Itrans, n(r + Δr, θ + Δθ, t) + Ie(r, θ, t)
N , (9)

assuming adequate co-registration of Itrans(r, θ, t) by Δr and Δθ, where these correspond to 

translations from previous images. In the case of summing co-registered images, this 

becomes

Irecon = ∑
n = 1

N
Itrans, n(r + Δr, θ + Δθ, t) + Ie(r, θ, t) . (10)

Assuming the maximum projection case, this becomes

Irecon = ∑
n = 1

N
max Itrans, n(r + Δr, θ + Δθ, t) + Ie(r, θ, t) . (11)

B. Experimental Setup

The imaging setup consisted of a 488 nm wavelength optically pumped semiconductor laser 

(Sapphire 488 LP, Coherent), directed into a 1 m long, coherent fiber bundle (1534702, 
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Schott) with a 530 μm diameter (430 μm working area) via a 0.5 NA objective lens with 20× 

magnification (UPLFLN 20×, Olympus) [Fig. 1(A)]. The light from this laser was used to 

illuminate the object, and any resulting reflectance or fluorescence was detected by an 

EMCCD camera (iXon Ultra EMCCD, Andor). The fiber bundle had an outer diameter of 

0.53 mm, with 4500 individual fibers arranged in a hexagonal packing arrangement, with 

each individual fiber within the bundle being 7.5 μm in diameter. The space between the 

fibers, regions with semi-opaque cladding-like material, appears as black spaces and 

obscures regions of the object from detection. Although the cladding-like material is not 

completely opaque to light, this does not significantly impede imaging quality, as the 

fluorescence intensity on neighboring pixels on average is similar. The coherently arranged 

fibers within the bundle allow for imaging of the object by guiding light to and from the 

object, but also contribute a background noise signal due to autofluorescence from the 

fiber[29].

A filter wheel with a 525 ± 25 nm filter was placed in front of the EMCCD camera to isolate 

the fluorescence when imaging fluorescence samples, attenuate excitation light, and to 

reduce background autofluorescence inherent from the glass fibers within the bundle. 

Additionally, the settings on the EMCCD camera were adjusted such that the framerate was 

15 Hz, with a 512 × 512 pixel image size. The distal end-face of the fiber bundle was 

positioned at the surface of the object. The proximal end-face of the fiber bundle was placed 

at the focus of the objective to focus the light to the EMCCD camera for imaging.

C. Image Conditioning and Reconstruction

Following acquisition of the images from the fiber bundle, images were run through an 

algorithm designed to reduce the pixilation artifact introduced by the individual fiber 

packing arrangement in the bundle, as shown in Fig. 1(C). Initially, a reference image of the 

fiber bundle without a sample was used to calculate the average background intensity 

throughout the fiber bundle. The bundle was then positioned on the sample, and following 

image acquisition, the fiber bundle background was subtracted from each individual image 

to reveal the underlying object features. The algorithm proceeds by taking the 2D FFT of 

each successive image in the series. Each image is then low-pass filtered with a circular, 45-

pixel-radius binary mask in the Fourier domain to remove higher-order, periodic peaks. This 

mask constitutes 8.78% of the total image size (512 × 512 pixels). This significantly reduces 

the high-frequency content introduced from the artifact. Subsequently, the inverse Fourier 

transform is taken, and the artifact is further reduced by running each image through a 

median filter with a window size of 16 × 16 pixels. This window size was chosen, as it 

resulted in superior image quality without further blurring object features, as higher-order 

windows would do. Improvement in image quality was quantified using SNR and CNR. This 

results in a smoothened representation of the object for each image. These filtering steps 

were necessary to enhance object features in the image to facilitate co-registration, as the 

honeycomb artifact is too prominent to allow for adequate co-registration even in the 

presence of signal from the individual fibers. Next, each individual image in the acquisition 

was co-registered by a phase-based affine registration [30] to the initial (reference) image 

using the “imregcorr” function in MATLAB. For each co-registration, a 2D correlation 
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coefficient was determined between the registered image and the reference to determine the 

strength of the co-registration, quantified as

R =
∑i ∑j (Xij − μX)(Y ij − μY )

(∑i ∑j (Xij − μX)2)(∑i ∑j (Y ij − μY )2)
, (12)

where X and Y are each individual image, μx and μy are the means for images X and Y, 

respectively, and i and j represent individual indices along each dimension on the image. Co-

registrations where this coefficient was below 0.7 were ignored and not included in the final 

reconstruction. This cutoff was determined based on poor reconstruction efficiency below 

this threshold, and minimal image improvement at thresholds above this. This was also 

quantified using SNR and CNR at various correlation coefficients. The final reconstructed 

image was then generated by taking the average of all successful co-registrations. This 

process was also performed by acquiring the maximum pixel intensity between images, 

rather than averaging. In this case, the images were co-registered using an intensity-based 

co-registration that iteratively registers images using a Mattes mutual information metric 

[31]. Successful co-registration is determined upon convergence to a global maximum 

between two images, using a One Plus One Evolutionary optimizer [32]. This increases 

computation time, but more adequately co-registers images and, consequently, leads to 

increased image quality. This was necessary for this approach because even slight mis-

registrations from a simple phase-based registration mechanism after summing leads to 

significant spill over between regions of high signal intensity and dark pixels, often resulting 

in poor reconstruction quality. This was not as much of an issue during the averaging 

process, and hence, was not a necessary step. Figure 1(C) provides a visual overview of the 

conditioning process prior to image registration. All image processing and reconstruction 

were performed on an Alienware Area-51 R2 PC with an Intel Core i7–5820K CPU 

operating at 3.3 GHz, with 16GBRAManda64-bitprocessor.

D. Rotation and Sampling

Prior to imaging, the distal end of the fiber bundle was positioned above the object, and 

background fluorescence generated from the fiber bundle was detected for 30 s. Post-

acquisition, images in a series were averaged and the fluorescence background was 

subtracted from the averaged images of the object. This process for removal (subtraction) of 

autofluorescence is shown in Fig. 1(C), where the bundle was positioned over a “5” on a 

USAF resolution target, representing an object. For the image reconstruction experiments, 

the fiber bundle was positioned over the object of interest. The distal end of the fiber bundle, 

which was mounted in a calibrated rotational mount, was then rotated from 0° up to 45° 

[Fig. 1(B)], then back down to 0°, while collecting CCD images at 15 Hz. This was repeated 

five times, taking approximately 25 s for all five cycles. Each cycle thus took approximately 

5 s, for a total of 75 frames per cycle. Each step, on average, yielded a 5° rotation between 

frames (data not shown). Upon sampling, the images were background-subtracted using the 

background-fluorescence image detected prior to imaging. The image sequence was then 

processed using the algorithm to generate the reconstructed image. The SNR and CNR are 

defined and calculated for these data as follows:
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SNR = 20log10
μsig

σbackground
, (13)

CNR = 20log10
μsig − μbackground

σbackground
, (14)

where μsig is the mean signal from the region of interest (ROI), μbackground is the mean 

background signal, and σbackground is the standard deviation of the signal from the 

background.

E. Simulations

To verify this technique prior to experimental conditions, simulations were performed in 

MATLAB to determine the effectiveness of the algorithm for removing the artifact. Stock 

MATLAB images were loaded and superimposed with a binary mask that replicated the 

pattern introduced by imaging with fiber bundles. The artifact was superimposed by 

multiplication of the mask (51 × 51 pixels, total of 2601 modeled fibers) with the stock 

image [Figs. 2(A)–2(C)]. Once this artifact was introduced, the fiber pattern was run through 

a slightly modified version of the algorithm that “samples” this original image multiple 

times by on-axis rotations and translations, translating/rotating back to its original position, 

and then reconstructing by summing the registered images, and lowpass filtering to remove 

the radial disk-like pattern shown in Fig. 2(D). This involves translation and rotation of the 

original image, followed by superimposing the binary fiber bundle pattern on each modified 

image. The samples were rotated a full 360◦ in one-degree increments, generating a total of 

360 sampled images of the object. In the simulations involving translation, the images were 

randomly translated along ±x and ±y by up to 10 pixels, in addition to being rotated. The 

simulated images were then run through the algorithm, as described in Section 2.C. The two-

dimensional Pearson’s correlation coefficient was calculated between the reconstructed and 

original image to determine the strength of the image reconstruction.

F. Brain Tissue Imaging

Brain slices in these studies were acquired from transgenic mice with green fluorescence 

protein (GFP)-labeled neurons under an IACUC approved protocol at the University of 

Illinois at Urbana-Champaign. GFP-labeled mice were anesthetized with ketamine/xylazine, 

followed by transcardial perfusion of chilled cutting solution (234 mM sucrose, 11 mM 

glucose, 26 mM NaHCO3, 2.5 mM KCl, 1.25 mM NaH2PO4, 10 mM MgCl2, 0.5 mM 

CaCl2). Coronal slices (500 μm thick) were sectioned and then incubated in artificial 

cerebral spinal fluid (aCSF, 26 mM NaHCO3, 2.5 mM KCl, 10 mM glucose, 126 mM NaCl, 

1.25 mM NaH2PO4, 2 mM MgCl2, and 2 mM CaCl2) at 33oC, and incubated at 25°C in 

aCSF thereafter. Slices were continuously perfused with 95% oxygen, 5% CO2. For 

imaging, slices were kept in aCSF in a Petri dish, and the distal end of the fiber bundle was 

positioned at the cut surface of the slice for imaging.
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3. RESULTS

A. Simulations

Representative simulation results using the algorithm are shown in Fig. 2, along with their 

respective correlation coefficients. The images show the effect of this algorithm for images 

that were rotated and reconstructed [Fig. 2(D)], rotated, reconstructed, then low-pass filtered 

[Fig. 2(E)], and after images that were rotated, translated, and low-pass filtered [Fig. 2(F)]. 

Figure 2(F) demonstrates the amount of blur introduced from this co-registration. Many of 

the features from this simulation are blurred, but the structure of the sample can be 

adequately visualized. Additionally, there is a Gaussian-like decay in the intensity radially 

outward from the center of the image, post-reconstruction. As a result of this unanticipated 

artifact, the outer regions of the reconstructed images are not easily discernable, making 

interpretations along these sections difficult. This problem partially arises as a consequence 

of the “imrotate” function used in MATLAB, which cuts off some of the outer regions of the 

image upon rotation due to the rectangular geometry of the images. Imperfections in the co-

registration also can result in this blurring effect, causing distortions to the image intensity, 

and hence the registration efficiency. Because of this, the artifact is less of a problem 

experimentally, but the Gaussian-like decay in intensity nonetheless affects interpretation 

along the perimeter of the image. The correlation coefficients between the original and 

reconstructed images were lower than expected, especially given the strong visual 

correspondence between them. This partially can be attributed to the Gaussian edge effect 

introduced in the reconstruction, fine features that are lost in registration, and notable 

differences in intensity distribution from the center to the outer edge of these images. It can 

also be due to imperfections in co-registration, since numerically altering each registered 

image by averaging over time could cause distortions from the original to the final, re-

constructed image.

B. Resolution Target

Results with the resolution target demonstrate not only clarity of the object, but also a 

significant retention of object features [Fig. (3)]. In addition to the reconstruction of the 

underlying object features, edges are also very well preserved, especially in comparison to 

images reconstructed using only low-pass and median filtering [Figs. 4(A) and 4(B)]. Low-

pass filtering alone results in significant intensity fluctuations along the surface of the object. 

Median filtering removes these artifacts, but edges are not very sharp, and gaps along the 

object surface arise from the gaps imposed by the fiber bundle artifact. The reconstructed 

image shows more prominent edges, with many of the aforementioned gaps removed as a 

result of the spatial resampling after bundle rotation. The increased number of homogeneous 

features further allows for the display and accurate distinction of neighboring object 

features[Figs.3(D)–3(I)], which is especially visible in the Mattes mutual co-registered 

images [Figs. 3(D)–3(I)]. A reference resolution target image was used for optimization of 

image quality by quantifying the SNR and CNR of there constructed image using various 

median filter sizes and Pearson’s coefficients [Figs. 3(J)–3(K)]. It is clear that optimal image 

quality was obtained when a window size of 16 × 16 was used, along with a Pearson’s 

coefficient of 0.7, leading to the use of this combination of these conditioning metrics for all 

subsequent analyses. The line profile of a bar on the USAF target[Fig.4(A)]shows the results 
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before any processing, after low-pass filtering, and after reconstruction with the presented 

algorithms. In addition to increasing the contrast of the underlying object features, the line 

profiles reveal inhomogeneities in intensity along the object surface, and single objects can 

be identified. Furthermore, image quality enhancement is further demonstrated using SNR 

and CNR comparisons for each object [Figs. 4(C) and 4(D)]. We observe a universal 

increase in both SNR and CNR with each reconstruction technique, with the fiber bundle 

rotation resulting in an even greater increase overall. More specifically, these SNR values 

were 6.26, 10.91, 13.02, 9.98, and 13.29 dB for the raw, low-pass filtered, median filtered, 

average reconstruction, and Mattes mutual reconstruction techniques, respectively. The CNR 

resulted in values of 5.26, 9.91, 12.01, 8.98, and 12.14 dB for the raw, lowpass filtered, 

median-filtered, average reconstructed, and Mattes mutual reconstruction, respectively. 

There is a statistically significant difference between the averaging reconstruction method 

proposed here and all other datasets, with the exception of the Mattesmutual method.

Because of the large variance in SNR with the Mattes mutual method, it was significantly 

different from only the raw data. The same is true for the CNR. This is attributed to the large 

variability in SNR and CNR calculated in these experiments. Although there is no 

statistically significant difference between the SNR/CNR for the Mattes mutual information 

metric, it is clear from looking at the images that this method demonstrates a superior ability 

to resolve object features and preserve edges that is not present in the other metrics. The 

Mattes mutual metric is also superior to the averaging reconstruction method, in that it 

resulted in considerably less mis-registrations, as shown in Fig. 5(A). Consequently, this 

resulted in more details of the object being retrieved, thus improving reconstruction 

efficiency andSNR/CNR.

C. Computational Time

One of the primary factors for each of the reconstruction approaches proposed in this work 

is the computation time. The descriptive statistics for computation time are illustrated in Fig. 

5. The reconstruction algorithm utilizing the averaging method takes on average 6.08 s per 

frame, with a large distribution of processing times. In contrast, the Mattes mutual algorithm 

takes on average 5.28 s per frame, with a much more consistent frequency. Additionally, the 

Mattes mutual projection method results in considerably fewer mis-registrations [Fig. 5(B)], 

with a 36% mis-registration rate, compared to the average algorithm, which results in an 

80% mis-registration rate. In this work, mis-registrations include co-registrations that result 

in a 2D Pearson’s correlation below 0.7 between successive images. This discrepancy 

accounts for the dramatic difference in image quality seen between the two methods, and 

why so many object features are unveiled using this metric and method. Overall, the results 

presented demonstrate that with effective co-registrations, the image quality is greatly 

increased by bundle rotation and the implementation of the algorithms proposed. The 

primary weakness is the computation times, however. With the average for the Mattes 

mutual method, processing 500 images would take 3000 s (roughly 50 min), making real-

time processing impractical. This speed can be improved through the use of a lower-level 

programming language, GPU processing, use of a more powerful processor, or through the 

use of a more rapid and effective co-registration algorithm. By improving automated 

registration algorithms between successive frames, image quality would also improve, 
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demanding the need for more sophisticated image registration techniques than those used in 

this work.

D. Biological Object

Once the reconstruction algorithm was verified with a USAF resolution target, it was further 

verified by imaging GFP-labeled brain slices from a transgenic mouse line. Background 

autofluorescence from the tissue was prominent, but individual cell bodies could be 

discerned with the reconstruction technique (Fig. 6). This is most noticeable in the second 

slice [Figs. 6(F)–6(J)], where individual cell bodies that are otherwise low in intensity[Fig. 

6(F)]become more prominent[Fig. 6(I)].

Although median filtering after low-pass filtering provides good quality of resolved features, 

our technique reveals even more features. Low-pass filtering alone [Figs. 6(B) and 6(G)] 

does not facilitate visualization much, as many cell bodies are still hidden from view. 

However, after reconstruction [Figs.6(D) and 6(I)], all cellbodies are more resolved, even 

those previously not visualized. Many of the neuron bodies otherwise obscured by 

background fluorescence from the tissue were adequately resolved. This can be largely 

attributed to the registration process. Only regions with strong signal intensity will be 

adequately co-registered, as will the relative locations between successive images. Co-

registration promotes localization of all cell bodies between images, but does not do so with 

background noise. Thus, the signal becomes much more pronounced over the noise. Overall 

increased contrast of individual neurons enhances the visualization of individual cell bodies 

compared to the superimposed fiber pattern, or even after low-pass and median filtering. 

This was problematic only with the maximum projection method [Figs. 6(E) and 6(J)]. This 

is likely due to imperfections in co-registration that, rather than averaging and removing 

inadequate co-registrations, result in a spill-over effect where these imperfections add up, 

resulting in poor image reconstruction. This is still present even when higher scorrelation 

coefficients are used as a cutoff, therefore presenting an inherent problem with sparse 

samples. Despite this, the proposed averaging method does adequately resolve individual 

cell bodies, and acts as an efficient method for reconstruction. These results demonstrate that 

the described technique and algorithm are robust for different samples, and can be used to 

obtain images with enhanced contrast.

4. DISCUSSION

This paper demonstrates the use of fiber bundle rotation and translation for image 

reconstruction and depixelation of fiber bundle images. An algorithm was developed to 

reconstruct images acquired through a fiber bundle system, which not only guides light to 

and collects light from fluorescent and/or reflective samples, but also allows for rotation and 

translation of the fiber bundle for rapid and more comprehensive spatial sampling. The 

resulting algorithm corrects for the superimposed honeycomb artifact introduced from fiber 

bundle imaging. We have shown significant increases in the SNR and CNR of the images 

using this technique, in addition to retention of the resolution after reconstruction, resulting 

in an overall improvement in image quality.
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The correlation coefficients between simulations and their original images—around 0.30–

0.35, are low primarily because of the loss of finer features following the reconstruction. 

Intensity fluctuations of the reconstructed images gradually decrease from the center of the 

image and radially outward. This happens to the point that features along the outer edge of 

the image are nearly indiscernible, which also contributes to this decreased coefficient. It 

should be noted that this intensity distribution is less pronounced in the images reconstructed 

through the actual fiber bundle system, although it is still present. This is due largely to the 

Gaussian intensity distribution of the incident light, and consequently, the back-scattered and 

fluorescent light. As more light is incident on the sample near the center, and less along the 

outer perimeter, this artifact manifests itself in a similar Gaussian intensity profile in these 

images.

This technique has been shown to be not only more effective than solely filtering in the 

frequency domain for fiber bundle pixilation artifact removal, but also more straightforward 

to implement with optical systems. The technique, however, does have some inherent 

limitations, with the primary one being computation time. On average, the algorithm takes 

about 10min to process the data and generate are constructed image—contingent on the 

number of images in an imaging sequence, sampling rate of the camera, etc. This poses 

limitations for real-time imaging of cellular structures, especially in the case of in vivo 
imaging. Finer samples also pose difficulties for this algorithm—in particular for the Mattes 

mutual reconstruction approach, as any imperfections in co-registration, which are more 

likely to happen for samples with similar underlying features, will impose their own artifacts 

upon reconstruction. As the results demonstrate, the choice of image registration metric and 

technique is pivotal to enhancing image quality using this approach. Mis-registrations in this 

work, defined as inter-frame correlations below 0.7, were considerably higher when 

averaging than when using the Mattes mutual registration approach, which resulted in poorer 

reconstruction. Hence, optimization of image registration algorithms may be necessary to 

ensure sufficient image quality for imaging. Although henhancedSNRmay facilitate this, the 

obscured honeycomb pattern will inherently lead to decreased SNR, so sophisticated image 

conditioning and enhancement are pivotal. The usability of this algorithm is also limited by 

memory capacity, which comes primarily from memory storage. The program is written so 

that the entire image sequence is loaded into the MATLAB workspace and processed 

thereafter. If the images immediately after acquisition at different orientations are 

temporarily stored prior to reconstruction, this time can be reduced. Additionally, rewriting 

the algorithm with lower-level programming languages such as C++ or Python, or 

parallelizing computation with GPUs, would also increase the processing speed of this 

technique.

This study assumes that the focus remains planar throughout the duration of imaging. 

Should there be significant changes in the focus, image quality could be disrupted, and 

improvements following image reconstruction may not be possible. Adaptive focusing to 

maintain axial positions while imaging, if adequately implemented, could facilitate this. The 

technique also inherently requires rotation of the fiber bundle to complete the reconstruction. 

However, fiber bundles are often handheld in biological imaging, or positioned within a 

cannula, where on-axis rotation is possible. Use of distal focusing optics would reduce the 

need for direct contact with tissue, reducing the possibility of tissue damage, which would 
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also impair image quality. The fiber bundle may also be coupled to a motor that rotates the 

bundle in a precisely defined manner. Reference landmarks or guide stars during imaging 

could also facilitate co-registration if implemented into fiber bundles. Coupling endoscopic 

imaging with a gyroscope or similar technology to have known rotation angles that are 

integrated into the reconstruction software would reduce the need for co-registration, 

promoting real-time processing with fewer computation demands. These imaging scenarios 

would promote the use of the reconstruction technique for real-time in vivo imaging, 

endoscopy, and other similar applications.

5. CONCLUSION

In this work, we present an imaging technique and algorithm for reconstruction of fiber 

bundle images to reduce the inherent pixilation artifact that obscures object features during 

imaging. A simulated framework was developed to reconstruct images that would be 

hindered by this artifact, and the use of this algorithm was demonstrated for reconstructing 

images of a USAF resolution target, showing an increased SNR and CNR relative to simple 

Fourier-filtering techniques. Finally, this algorithm and method were used on biological 

images of fresh mouse brain slice tissue expressing GFP. This framework provides an 

alternative way for image reconstruction and removal of fiber bundle artifacts. With future 

integration and computational acceleration, this technique and algorithm can be widely 

adopted for a variety of imaging applications.
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Fig. 1. 
Fiber bundle imaging setup and processing algorithm flow chart. (A) Setup for imaging of 

resolution target and brain slices. Output from the laser is passed through a beam expander 

and then passed by a dichroic mirror to a 20× objective, which focuses the light onto the 

proximal face of the fiber bundle. The back-scattered light or fluorescence from the object is 

collected by the objective and directed to the CCD camera via a dichroic mirror. (B) The 

bundle itself is manually rotated over the object incrementally during image acquisition to 

sample previously obscured features for image reconstruction. (C) The conditioning process 

is highlighted at each step. The image of the sample is first background-subtracted to correct 

for background fluorescence, and then passed through a series of filters.
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Fig. 2. 
Simulated fiber bundle artifact and removal. (A) Simulated image of a sample with 

biological features. (B) Binarized mask representing the fiber array within the fiber bundle. 

(C) Resulting effect of the artifact shown as the product of the images in (A) and (B). (D)–

(F) Representative results of algorithm efficacy by rotation of the superimposed fiber 

pattern. There is a concentric artifact after summing of subsequent images after rotation (D), 

which is easily removed after low-pass filtering (E) to yield the final, reconstructed image. 

When translation and rotation are both integrated, the reconstructed image (F) still yields 

strong reconstruction efficiency. Correlation coefficients (R=#) shown in red text are 

between the reconstructed image and the original image, showing the degree to which the 

algorithm is successful in retaining information from the original image.
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Fig. 3. 
Comparison of the original and reconstructed images of features on a USAF resolution 

target. Three different locations are shown, one in each column. Results demonstrate the 

degree to which the algorithm is able to reveal object features that are otherwise obscured 

because of the superimposed fiber-pattern artifact, which is apparent in (A)–(C). More 

specifically, some regions do not appear in the original images, but can be seen after 

reconstruction [compare (B) and (E)]. Furthermore, regions with “dead” fibers, or fibers that 

do not transmit light, such as those seen in the number “5,” are effectively interpolated and 
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show intensity after reconstruction [compare (A) and (D)]. These voids are more 

prominently filled when reconstruction involves taking the maximum value at each pixel 

between multiple images, as shown in (G)–(I). The image conditioning process for 

experimental data is optimized by selection of the optimal median window size (J) and inter-

frame Pearson’s coefficient (K) that yields optimal image quality, as quantified using SNR 

and CNR. Scale bars represent 50 μm.
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Fig. 4. 
Improved resolution following reconstruction. (A) Profiles of USAF resolution target 

showing increased ability for resolving discrete neighboring bars. Original unfiltered data 

and low-pass filtered data provide false perceptions of two separate objects, based on their 

line profiles. The proposed reconstruction method, however, demonstrates a clear distinction 

between the discrete objects (bars). (B) Edge preservation and image quality are both 

enhanced after applying the algorithm. The reconstructed image shows much more refined 

edges, morphology, and uniform intensity distribution than after median filtering without 
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image registration. (C) CNR and (D) SNR values of various techniques for removal of the 

superimposed fiber pattern, tested on a USAF resolution target. Significance stars between 

red bars represent P < 0.05. Values are given as mean ± S.E. (n= 5). Scale bars represent 50 

μm.

RENTERIA et al. Page 20

Appl Opt. Author manuscript; available in PMC 2021 January 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. 
Algorithm performance. (A) Mis-registration distribution and (B) computational processing 

time distribution of the two algorithms proposed in this work. The Mattes mutual approach 

(projection) results in considerably fewer mis-registrations than the averaging method, and is 

much more consistent in its processing time.
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Fig. 6. 
Reconstructed images of brain slices from transgenic mice expressing GFP, and 

corresponding line plots for each image. Two separate brain slices [(A)–(E) and (F)–(J)] are 

shown after (B), (G) low-pass filtering; (C), (H) median filtering; (D), (I) averaging with the 

proposed reconstruction technique; and (E), (J) using the maximum projection method in the 

proposed technique. Notice how in the sparser neural samples, imperfections in image 

registration lead to poorer image reconstruction (E), (J), compared to the less sparse 

resolution targets. The vertical axes of the profile plots have gray-scale value units, and the 

horizontal axes represent distance, in micrometers. Scale bars in images represent 50 μm.
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