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Abstract

Purpose: The purpose of this study was to develop an auto‐planning platform to be

interfaced with a commercial treatment planning system (TPS). The main goal was

to obtain robust and high‐quality plans for different anatomic sites and various dosi-

metric requirements.

Methods: Monaco (Elekta, St. Louis, US) was the TPS in this work. All input param-

eters for inverse planning could be defined in a plan template inside Monaco. A

software tool called Robot Framework was used to launch auto‐planning trials with

updated plan templates. The template modifier external to Monaco was the major

component of our auto‐planning platform. For current implementation, it was a rule‐
based system that mimics the trial‐and‐error process of an experienced planner. A

template was automatically updated by changing the optimization constraints based

on dosimetric evaluation of the plan obtained in the previous trial, along with the

data of the iterative optimization extracted from Monaco. Treatment plans gener-

ated by Monaco with all plan evaluation criteria satisfied were considered accept-

able, and such plans would be saved for further evaluation by clinicians. The auto‐
planning platform was validated for 10 prostate and 10 head‐and‐neck cases in

comparison with clinical plans generated by experienced planners.

Results: The performance and robustness of our auto‐planning platform was tested

with clinical cases of prostate and head and neck treatment. For prostate cases,

automatically generated plans had very similar plan quality with the clinical plans,

and the bladder volume receiving 62.5 Gy, 50 Gy, and 40 Gy in auto‐plans was

reduced by 1%, 3%, and 5%, respectively. For head and neck cases, auto‐plans had

better conformity with reduced dose to the normal structures but slightly higher

dose inhomogeneity in the target volume. Remarkably, the maximum dose in the

spinal cord and brain stem was reduced by more than 3.5 Gy in auto‐plans. Fluence
map optimization only with less than 30 trials was adequate to generate acceptable

plans, and subsequent optimization for final plans was completed by Monaco with-

out further intervention. The plan quality was weakly dependent on the parameter

selection in the initial template and the choices of the step sizes for changing the

constraint values.
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Conclusion: An automated planning platform to interface with Monaco was devel-

oped, and our reported tests showed preliminary results for prostate and head and

neck cases.
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1 | INTRODUCTION

Due to the increasing number of patients, automated treatment planning

is highly demanded in radiation oncology. A variety of knowledge‐based
and learning‐based auto‐planning methods have been explored in order

to improve both the workflow efficiency and plan quality consistency.

Scripting‐based auto‐planning has been commercially available on sev-

eral treatment planning systems (TPSs). Current methods were primarily

focused on how to control the scripts, possibly by guidance with pre-

dicted rewards for achievable dosimetric goals based on a prior knowl-

edge. Wang1,2 proposed an autopilot scheme via scripting by recording

the interactions between planners and TPS, such as the step sizes for

adjusting dosimetric parameters in each optimization. Such an approach

allowed the system to mimic the process of planning by a skilled planner.

A potential drawback was that most adjustment steps were fixed. A

more flexible method was introduced by Yan3,4 using an AI‐guided coor-

dination for parameter adjustments of various variables, and clinical

application of this fuzzy inference system (FIS) was implemented for

site‐specific cases.5 Furthermore, a further adaptive neuro fuzzy infer-

ence system (ANFIS) was advanced by Stieler,6 which generated an

increased learning capability over FIS for complicated planning cases

with more efficient use of the prior data. Breedveld7,8 developed a lexi-

cographic multicriteria optimization method called Erasmus‐iCycle for

deriving a Pareto optimal solution in an acceptable time and connected

this with Monaco. A distinguished feature of Erasmus‐iCycle was its

beam angle optimization for IMRT. The Erasmus‐iCycle planning was val-

idated for the treatment of spinal metastases by VMAT9 and for prostate

cancers.10 This method required a wish‐list creation with treatment site‐
specific clinical data. Model generalization could be a difficulty for large‐
scale clinical application since less organized data of physician preferred

treatment protocol should be required. A powerful database seemed

necessary for clinical implementation of the technology. As in Fan,11 the

kernel density estimation method12 was used in combination with opti-

mized training datasets for auto‐planning breast and rectal cancer cases.

To set up appropriate objectives and constraints for specified

plan acceptance criteria is the key to achieve an acceptable result in

inverse planning. There are two main problems for auto‐planning
with a validated TPS that does not provide a complete auto‐planning
solution. One is to automatically drive the TPS to work through its

internal optimization process with a selected set of objectives and

constraints, and the other is to optimize the parameters of these

objectives and constraints for initializing the TPS automatically by

repeated planning trials. With Monaco, the first problem can be

solved using a plan template, which selects the optimization condi-

tions such as the beam arrangement and the cost functions used.

The second problem is to search for an optimal set of parameters

for Monaco optimization. A clinically acceptable plan can be gener-

ated automatically with the optimal parameter set.

Monaco optimization is performed in two stages,13 the fluence

map optimization (FMO) in Stage I, and MLC segmentation followed

with segment shape and segment weight optimization in Stage II. As

a practical matter, auto‐planning only needs to obtain an acceptable

FMO plan. The Stage II optimization is performed only once for the

interest of efficiency.

This work aimed at improving the efficiency and robustness of

auto‐planning of IMRT. The automation process used a clinically vali-

dated TPS and it was driven by a plan template and scripting, similar

to previous techniques like the AutoPlan14 in Pinnacle (Philips Medi-

cal System) and Erasmus‐iCycle. An auto‐planning platform was

developed that included a rule‐based template modification module

to allow a quick adaptation to different clinical sites and planning

protocols through an application program interface (API). The rule‐
based program applied a set of general strategies, mimicking the

workflow by an experienced planner. For cases with a new planning

protocol, the system could automatically generate an initial plan tem-

plate based on a clinically accepted Monaco plan complied with the

planning protocol. The “model” case could be the work by an experi-

enced planner, only it was required to use a minimal set of con-

straint functions and parameters. Essentially the initial template

defined the space of optimization, for example, certain type of cost

functions and geometric parameters involved. Subsequently, the plan

template was automatically updated based on a systematic plan eval-

uation along with a standard procedure for changing the constraint

parameters. The repeated trials were performed until the result could

meet all acceptance criteria.

2 | MATERIALS AND METHODS

2.A | Retrospective Planning study

In this study, 10 prostate cases and 10 head and neck cases treated

with simultaneous‐integrated boost (SIB) were selected for a feasibil-

ity test for our auto‐planning system. The patients were treated at

Peking University First Hospital using Volumetric Modulated Arc
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Therapy (VMAT) from June 2016 to December 2017. Clinical plans

created by two dosimetrists with Monaco v5.11 were used for com-

parison. The detailed dose prescription for the target volumes and

critical structures of the two case groups were listed in Tables S1

and S2, respectively, in the supplementary materials. For a valid

comparison, the automatically generated plans were scaled to cover

95% of the PTV volume by the prescription dose, which was the

accepted dose level for the clinical plans. The maximum number of

segments, minimum segment size, and minimum MU in MLC

sequencing for auto‐planning were identical as used for the clinical

plans. The clinical plans and automatically generated plans were

compared by a two‐sided Wilcoxon signed‐rank test to assess the

statistical significance (P < 0.05).

2.B | Sensitivity Analysis

In IMRT optimization, to find how various constraints should be

adjusted to meet all dose constraints simultaneously could be a very

cumbersome and time‐consuming procedure. A helpful tool for

avoiding fruitless trials is the sensitivity analysis, since it shows the

essential conflicts and trade‐offs between goals and constraints. The

sensitivity analysis in Monaco15 is based on the values of the

Lagrange multipliers λi, as in Eq. (1), which is the optimality condition

for the formal constrained optimization problem

rφf
� ¼ � ∑

m

i¼1
λ�i rφgi ; ((1))

where f and g are the objective and constraint functions with

respect to dose D(φ) and beamlet weight φ. The differentials of the

objective with respect to the changes of the constraint functions

estimate the impact of the constraints to the target dose coverage.

The details of relevant argument can be found in Alber et al.16 The

information is provided in Monaco along with the specified value

(Isoconstraint) and current objective value (Isoeffect) of each con-

straint function, as shown in Fig. 1. For facilitating repeated

optimization trials automatically, the objectives and constraints can

be adjusted based on dosimetric evaluation of the current plan. This

is combined with the trajectories of the Isoconstraints, Isoeffects,

and the sensitivities with the weighting adjustment by Monaco for

the current plan. In particular, the determination of proper step sizes

for changing the parameters of the constraint functions is a critical

component for auto‐planning, since the TPS only adaptively changes

the relative weights of constraint functions.

2.C | Auto‐planning platform

The auto‐planning platform consisted of four main components that

were interfaced with the Monaco TPS, as seen in the flowchart in

Fig. 2. Repeated planning trials were performed so the results could

be evaluated improved, just as for a human planner to carry out the

process of planning. The major components of our auto‐planning
platform directly interacted with TPS. This made it possible to exer-

cise the same strategies of an experienced planner through template

modification with a Python program. Each component is introduced

as the following.

2.C.1 | Robot Framework

The Robot Framework (RIDE) was used to automatically operate the

TPS. It was similar to a scripting program that enabled three func-

tions for this work: (a) to automatically load a new plan template; (b)

to automatically launch the optimization process; (c) to automatically

export the dose–volume histogram (DVH) results. RIDE could be

seen as a toolbox outside the Monaco TPS. Manual operation with

the TPS, such as initializing a new plan, and importing or exporting

planning parameters for decisions with updating the IMRT con-

straints for that next planning trials were replaced by a robot. Each

step of the workflow of a planning trial performed with a mouse

click by a planner was written as a batch of keywords in RIDE, as

illustrated by the screen capture in Fig. 3.

F IG . 1 . The sensitivity window in Monaco. (Conflicts between constraints and goals).
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2.C.2 | Evaluation System

For inverse planning, a dosimetric goal on a target volume or OAR

was termed as a prescription item. A prescription item could be the

maximum, or minimum dose on a volume, or a dose–volume point.

How a specific prescription item was achieved in a plan was parame-

terized by an index, noted as “Diff_result”. For example, for at least

95% of PTV volume to receive the prescribed dose, the Diff_result

was defined as the ratio of the achieved percentage volume covered

by the prescribed dose and 95%. For OARs, a “Diff_result” value

equals to or less than 1 means that the corresponded goal was fully

met. Overall the prescription items could then be evaluated with a

spider chart,17 as shown in Fig. 4. The primary focus in our

automated planning was to meet every prescription item or drive its

“Diff_result” index close to 1 as much as possible, rather than using

a numerical score for ranking the plans. A ranking system could be

strongly dependent on physicians’ preference and specific patient

anatomy, especially the overlapping and distance between the target

volume and an adjacent OARs.18 Therefore, a plan would be consid-

ered “acceptable” by the evaluation system if every prescription item

was met.

2.C.3 | Template Modifier

The template modifier updated the IMRT parameters in a new tem-

plate for the next planning trial. The decisions were based on the

F IG . 2 . The auto‐planning platform.

F IG . 3 . Capture of keywords in Robot Framework.
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plan evaluation results and sensitivity analysis data from TPS for the

current plan. It was developed with Python (Python 3.6) following a

“divide‐and‐conquer” strategy, as often employed by experienced

Monaco users. The objective and constraint functions were imposed

and modified in three steps, as shown in Fig. 5. Constrained opti-

mization mode was selected in Monaco TPS.

The first step was only for the cases with multiple target vol-

umes and different prescribed dose levels. The purpose was to

achieve an adequate dose coverage to the primary target and to sat-

isfy the required dose conformity and uniformity for all targets.

Monaco uses a geometric parameter called the shrink margin that

allows for reduction of the volume on which the associated con-

straint function is applied. The shrink margins can control the dose

fall‐off where a target overlaps with another structure, either a sec-

ondary target with lower prescribed dose or an OAR. Optimal shrink

margins for individual constraint functions were determined by

improving the conformity in the secondary targets as much as possi-

ble while keeping the coverage and required uniformity in the pri-

mary target. When Monaco indicated that an overdose constraint

had a high impact on the primary target, the constraint would be

relaxed by increasing the shrink margins accordingly.

The second step worked in the same way as the first step, but

the purpose was to determine optimal constraints on the unspecified

normal tissue, often named “patient” or “body” in Monaco. A global

maximum dose was often used to impose a hard constraint, and

three or four quadratic overdose cost functions (CF) were used to

control the 90%, 80%, and 70% isodose surfaces in unspecified nor-

mal tissue, respectively. In subsequent trials, the CFs were only

adjusted with their specified parameters, defined as the Root Mean

Square (RMS) over certain dose level. The dose levels and the shrink

margins of the CFs on unspecified normal tissue were determined

such that Monaco optimization would see a moderate impact on

F IG . 4 . Spider Plots (a) and (b) of three
planning iterations starting from different
initial constraints on the OARs. If all
spokes of a plot (of the same color) are
inside the unit circle, the plan is considered
acceptable.

F IG . 5 . Display of the detailed flowcharts in the template modifier.
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target coverage. This would leave a space for reshaping the isodose

surfaces in the next step with the constraints on each OAR imposed.

In the last step, all the constraints came into effect. The OAR

constraints were adjusted adaptively to satisfy the OAR prescription

items without losing the target dose coverage. Multivariate dosimet-

ric evaluation and sensitivity analysis were performed to determine

how constraint parameters should be updated in mitigating the vari-

ous conflicts. The details of the process are illustrated in Fig. 6.

The maximum numbers of iterations for the three steps in Tem-

plate Modifier were set to 15, 15, and 30, respectively. The process

was limited to predefined maximum number of trials to avoid a dead

loop of fruitless trials.

2.C.4 | Initial Template

A preliminary initial template could be obtained from an example

Monaco plan for a similar case to obtain the basic setup information

such as delivery technique, dose calculation and MLC segmentation

settings, prescribed dose and fraction size, and constraint functions.

An initial template editor developed with Python was used to start a

new case. The first step was to check the names of the structures

defined in the new case and edit the structure names in the tem-

plate. The second step was to check each prescription item and aug-

ment the constraint function set, in order to facilitate auto‐planning
with staged selection and setting for the optimization parameters.

This would also allow the flexibility of using different cost functions

available in Monaco that may affect the detailed dose distribution

features, and the plan acceptance criteria for evaluation to be con-

sistent with the prescription for the new case. The template editor is

illustrated in Fig. 7.

2.D | Treatment planning performance

The flowchart of auto‐planning platform is shown in Fig. 8. The main

steps performed included (a) plan initialization by a template; (b)

dose calculation and fluence optimization; (c) export the plan data,

F IG . 6 . Illustration of details in the third
step (OARs adjustment).

F IG . 7 . Demonstration of the initial plan template file editor‐based prior information.
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including DVH evaluation, optimization parameters such as Isocon-

straints, Isoeffects, Monaco determined weights, and sensitivity for

evaluation; (d) updating parameters in the template for the next trial.

3 | RESULTS

Our tests were performed using a Monaco workstation equipped

with two Intel(R) Xeon(R) 2.5 GHz processors (48 cores) and 48 GB

RAM. The average optimization time was 30 min for prostate cases,

and 50 min for head and neck cases.

Most cases did not need manual interruption as once the initial

template was loaded into TPS, all the following steps were automati-

cally finished. Certain cases may need manual interruption if the

auto‐plan quality was not acceptable.

3.A | Prostate cases

The dose distributions of an automatically generated plan and the

clinical plan were very similar, as shown by an example in Fig. 9.

Better dose conformity and thus better OAR sparing were consis-

tently achieved with the automatically generated plans. The area

within the pink color isodose line was smaller. The final plans that

were judged acceptable had almost identical target dose coverage as

the clinical plans, as seen in the DVH comparison in Fig. 10. The

plan evaluation statistical analysis was presented in Table S3 in sup-

plementary materials. The auto‐planning achieved a slight

improvement for the bladder, even it started with relatively weaker

constraints than that for the PTV and the rectum.

In some cases, an acceptable FMO could be reached in just two

trials, while in other cases, more iterations were needed to find an

acceptable solution, typically when there was significant overlapping

of the PTV and the critical structures.

3.B | Head and neck cases

A side‐by‐side comparison of an automatically generated plan and

the clinical plan is shown in Fig. 11. The automatically generated

plans were clinically acceptable with better OAR sparing, especially

for the parotid glands and the brain stem. The dose conformity was

better, but the target dose maximum was slightly higher. This was

because the system was required to meet all prescription require-

ments on the OARs. As seen in Fig. 12, parotid and cord dose were

significantly improved with a less conformal dose to PTV5096, but

PTV5096 conformity was not a prescribed item. The detailed statis-

tics information is listed in Table S4.

For a complicate case like head and neck treatment, auto‐plan-
ning needed 20–30 trials to obtain an acceptable plan, including sev-

eral attempts to choose different combination of cost functions in

the initial template. A layer of optimization for the constraint func-

tion set, and the presets of certain parameters, was performed. Tem-

plate optimization was conveniently done with our initial template

editor, along with the functionality in Monaco that allowed turning

on and off optimization conditions. It did not need to treat all

F IG . 8 . The whole flowchart of auto‐planning platform.
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parameter as optimization variables, which would increase the calcu-

lation time tremendously. Note that a single optimized initial tem-

plate was used for all 10 cases tested.

Our results showed that auto‐planning with FMO was adequate

to generate acceptable plans. The segment shape and segment

weight optimization in Stage II with Monte Carlo dose calculation

could reproduce similar dose statistics and distribution based on

beamlet approximation. A noticeable difference between the final

plan and the FMO plan was an increased maximum dose and a small

loss in the target dose coverage. The magnitudes of the differences

for prostate cases were less than in the head and neck cases,

respectively, indicating that a deteriorate plan quality in Stage II

optimization was associated with the complexity of the plan. The

detailed statistical comparison between fluence map optimization

and segment optimization was listed in Tables S5 and S6 in supple-

mentary materials.

4 | DISCUSSION

In this work, we developed a new auto‐planning platform for

Monaco TPS. The platform included an initial template editor, a

template modifier, and a plan quality evaluation system. The tem-

plate modifier was a rule‐based system in current implementation.

(a) (b)

(d)(c)

F IG . 9 . Dose distribution comparison of auto (b, d) and clinical (a, c) prostate planning (red line: 67.5 Gy isodose line; cyan line: 45 Gy
isodose line; orange line: 40 Gy isodose line).

F IG . 10 . Final DVH comparison
between auto and clinical prostate plan.
DVH, dose–volume histogram.
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(a) (b)

(d)(c)

F IG . 11 . Comparison of the isodose distribution of auto (a, c) and clinical (b, d) plans.

F IG . 12 . Final DVH comparison
between auto and clinical head and neck
plans. DVH, dose–volume histogram.
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Clinical implementation of our auto‐planning platform has the

potential to improve both the efficiency and the consistency of

the plan quality.

Currently, three different paradigms are used for auto‐planning,19

namely knowledge‐based planning (KBP), protocol‐based automatic

iterative optimization (PB‐AIO), and multicriteria optimization (MCO).

All of these paradigm have commercial implementation, such as Var-

ian Rapid Plan(KBP),20 Pinnacle AutoPlan (PB‐AIO), RayStation (a

posteriori MCO),21 and Erasmus‐iCycle (a priori lexicographic MCO).

Our work followed closely to a previous work by Breedveld7,8 on

the Erasmus‐iCycle, a multicriterial and beam orientation optimiza-

tion system. This system implemented a predefined wish‐list of plan
evaluation criteria with a plan template for Monaco. Several stud-

ies22,23 showed that Erasmus‐iCycle was able to produce better

results than human planners in reduction of dose on critical struc-

tures. We realized that a lack of flexibility in template writing for

auto‐planning with Monaco could potentially hinder its general clini-

cal application and focused our effort in automation of template

modification. The difference of optimization workflow between Eras-

mus‐iCycle and our platform is illustrated in Fig. 13. As seen in

[Fig. 13(a)], the optimization process of planning template in Eras-

mus‐iCycle was separated from Monaco, and once the planning opti-

mization finished, the patient‐specific plan template was generated

from the plan and optimized into Monaco TPS. To avoid the differ-

ence between the external optimization and TPS inner optimization,

all our plan optimization directly utilized the inner calculation and

optimization engine in Monaco TPS, as shown in [Fig. 13(b)]. The

template in our system served like a messenger between an external

“virtual planner” and the TPS. The efficiency of optimal parameter

search was helped with extracting the data from Monaco optimiza-

tion process. The information extracted should reflect important

geometric features of individual cases that have influences to the

final results.

As seen in Fig. 14, for majority of our testing head and neck

cases, most dose–volume indices converged to their objective values

with no more than 30 iterations. However, as in any plan optimiza-

tion, not all desired dosimetric goals could always be guaranteed.

For example, the dose to parotid glands could converge in several

iterations while the dose–volume metrics for the brain stem or spinal

cord could not be consistently decreased but kept oscillating. When

the optimization routine failed to meet a dosimetric constraint, two

approaches could be attempted to mitigate the problem. One was to

set the limit for the number of iterations, for example, 30–40 as in

our implementation, in order to avoid the system being trapped in a

dead loop. The performance of the initial template in terms of

obtained overdose, relative impact, isoconstraints, and isoeffect from

the iterative trials could be analyzed. Alternative template design

could use a different beam configuration or a new set of constraint

functions. The other was to set the priority of OARs with manually

fixed constraint function weightings. For example, the constrains for

the spinal cord or brain stem in head and neck cases could be set

with an artificially high relative priority.

The differences between FMO and the fully Monte Carlo calcu-

lated plan could be accepted by dose rescaling to meet the dose

coverage requirement for the targets, as shown in Fig. 15. Zheng24

et al showed that the dose differences between FMO and the final

optimization may be predictable. It is therefore possible to factor in

an estimate for such differences in plan evaluation for Stage I opti-

mization, as seen in Fig. 16.

Since it is difficult for a planner to track the planning process, a

trial‐and‐error decision to change an optimization condition can be

inefficient. Thus, reproducibility for the results is poor in general,

especially among different planners. With auto‐planning, all the opti-

mization parameters can be tracked and stored. After repeated plan-

ning trials are done, a planner can track each iteration history and

evaluate multiple acceptable plans. Our parameters tuning method

F IG . 13 . (a) The flowchart of Erasmus‐iCycle; (b) the flowchart of our auto‐planning.
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was different from popular neural network approach in that it does

not require training data. We summarized the planning strategies

into detailed steps and rules, and constructed all of them with

python codes. Ten prostate and 10 head and neck cases were all

used for validating the feasibility of our parameters tweaking

method.

Currently, our auto‐planning platform was merged to Monaco

6.0 and with the help of inner scripting, the whole planning

F IG . 14 . Change of dose–volume indices with iteration number for a head and neck case.

F IG . 15 . Comparison between FMO and segmentation optimization (without and with rescaling 95% dose coverage to PGTVnx6996).
FMO, fluence map optimization.
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workflow was more efficient and robust. In future work, we plan to

introduce reinforcement learning model, as illustrated by Fig. 16, to

drive the whole IMRT parameters modification in each planning trial

to avoid the underfitting problems. However, the action space may

be tremendously large, and therefore, it needs an efficient and

robust search method.

5 | CONCLUSION

An auto‐planning platform to interface with Monaco was developed

and tested with VMAT planning for prostate and for head and cases.

Our preliminary work was focused on mimicking the interaction

between an experienced planner and the TPS for specific treatment

sites. This study showed that template‐based automation was feasi-

ble for clinical application showing acceptable results.
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