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Abstract: Glutathione S-Transferases (GSTs) comprise a diverse group of protein superfamily involved
in cellular detoxification of various harmful xenobiotics and endobiotics. Cyanobacteria, being the
primordial photosynthetic prokaryotes, served as an origin for the evolution of GSTs with diversity
in their structures, substrate recognition, and catalytic functions. This study analysed the diversity
of GSTs in cyanobacteria for the first time. Based on the sequence alignment and phylogenetic tree
analysis, 12 GST classes were identified, which are distributed variedly within cyanobacterial orders
such as four in Pleurocapsales, eight in Chroococcales, seven in Oscillatoriales, five in Stigonematales, and
nine in Nostocales. Detailed evolutionary analysis of cyanobacterial GSTs suggested that the order
Pleurocapsales served as the ancestry for GST evolution. The analysis also identified a conserved motif
S[GLNTARS][ADE]I[LAI] with signature residues, cysteine, serine, and tyrosine at the N-terminal end
that serves as the initiating residue for detoxification. Alternatively, the grouping of cyanobacterial
GSTs and their unique signature residues were located, which serve as a possible discriminating factor.
The study also described the mode of glutathione binding between the identified cyanobacterial GST
groups highlighting the differences among the GST classes. New GST sequence data may improve
further our understanding on GST evolution and other possible divergences in cyanobacteria.
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1. Introduction

Glutathione (GSH, reduced form) metabolism is considered as ancient as the history of life, dating
back to the evolution of the oxygen-containing atmosphere [1]. Several defence mechanisms have
evolved to remove the oxidizing agents that allow the organisms to adapt and survive, of which the
enzyme Glutathione S-Transferase (GST)-mediated reaction plays a pivotal role in cellular detoxification
of harmful xenobiotics and endobiotics [2]. GSH and GSTs are believed to have evolved in response to
the increase in oxygen in order to scavenge the generated reactive oxygen species [3].

Generally, detoxification enzymes act as a first line of defence against the environment characterized
by the presence of toxins and pollutants. The detoxification process is performed in three phases, phase
I enzyme oxidation, reduction or hydrolysis of the substrate, introducing a reactive group that can
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be attacked by phase II enzymes, which conjugate the active substrate with small molecules making
the conjugate more water-soluble for excretion from cells by phase III enzymes [4]. Among these
key enzymes, GSTs represent an integral part of the phase II step and detoxify xenobiotics through
catalysing the nucleophilic attack by GSH on electrophilic carbon, sulphur, or nitrogen atoms of
nonpolar xenobiotic substrates, thereby preventing their interaction with crucial cellular proteins and
nucleic acids. This generates water-soluble glutathione conjugates linked by a thioether bond (GS-R)
that can then be degraded, or excreted out of the cell [5,6].

GSTs are the largest superfamily of proteins found almost in all eukaryotes and restricted to certain
prokaryotic bacteria including cyanobacteria, proteobacteria, phototrophs and a few Gram-positive
bacteria [7]. GSTs are divided into three different families: (i) cytosolic GSTs, (ii) mitochondrial GSTs,
and (iii) microsomal (membranous) GSTs designated as MAPEGs (a membrane-associated protein
involved in ecosanoid and glutathione metabolism) [4]. Cytosolic GSTs, which constitute the largest
GST family are currently recognized as alpha, beta, delta, epsilon, zeta, theta, lambda, mu, nu, pi, sigma,
tau, phi, and omega [4,8]. Among cytosolic GST families, members of the same class possess sequence
identity greater than 40%, whereas 20% identity was found between classes [1]. The mitochondrial GSTs
are an evolutionary distant form of cytosolic GSTs that constitute different topology and subcellular
localization [9]. Distant classes of GSTs identified in bacteria are nu, zeta, and eta [10,11] and in
cyanobacteria are chi [12], and rho [13].

The structural features of GSTs are composed of two ligand binding sites, the first G-site specific
for GSH, which possess a conserved group of amino acid residues in the amino-terminal domain and
the second is the substrate binding H-site in the carboxyl-terminal domain, which is structurally much
more variable among GST classes [4]. The functional properties of amino acid residues forming the
G-site are highly conserved among the different classes of GSTs, while the binding pocket of the H-site
varies considerably among GST classes. This diversity governs the electrophile substrate specificity,
ability to pick, and catalyse a large number of structurally variable substrates [14].

Cyanobacteria are unique prokaryotes, which exhibit oxygenic photosynthesis and produce
reactive oxygen species (ROS) as a result of photosynthesis. GSH and the GSH-dependent GST
enzymes evolved concurrently to protect themselves against the ROS which they massively produce
by their active photosynthesis. These cyanobacteria were reported to possess high concentrations of
GSH in their cytosol and might have been the very first organism to harbour GSH-utilizing enzyme
GST [15]. Cyanobacteria are highly diverse with a comprehensive set of different morphotypes from
primordial unicellular form to multicellular heterotrichous form with genomic DNA ranging from
~1.2 to ~12 MB [16]. These large diversities may have a direct impact on the distribution and evolution
of cyanobacterial proteins including GSTs. However, cyanobacterial GSTs have been poorly studied.

Though, cyanobacteria may be very well the first organism to have harboured GSH utilizing
enzyme, ironically its GST has not been studied extensively so far. The puzzle of the evolution
of the cyanobacterial GSTs and the lines between the groups to date is incomplete. Considering
this fact, an attempt was made in this study, through genome-wide analysis and by examining the
multiple characteristics such as distribution, motif or signature patterns available in the sequences
using the phylogenetic approach. Nevertheless, details about the GST super-families in cyanobacteria
are essential to gain deeper insight information about the GSTs versatility in detoxifying the diverse
compounds. For this purpose, an extensive study was carried out to seek the complex pattern,
divergence, and distribution of GSTs in the cyanobacterial orders.

2. Materials and Methods

2.1. Sequences Retrieval

A dataset contain genome information of 126 cyanobacteria used by Shih et al. [17] was
selected for analysis in this study. The 126 cyanobacteria were comprised of Pleurocapsales (21),
Chroococcales (52), Oscillatoriales (29), Nostocales (18), and Stigonematales (6). Then, 405 GST protein
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sequences from 126 cyanobacteria were manually retrieved from the NCBI complete genome database
and the Cyanobacterial Knowledgebase [18] using the search term Glutathione S-Transferase/GST.
Further repeated and truncated sequences hailing from the same organism were removed manually.
Generally, cyanobacteria were grouped based on morphological complexity and taxonomic studies into
morphologically distinct evolutionary forms. For better understanding and accuracy, the alignment
and analysis of the GST sequences were separated into five orders: order I-Chroococcales, order
II-Pleurocapsales, order III-Oscillatoriales, order IV-Nostocales, and order V-Stigonematales [17].

2.2. Sequence Alignment and Phylogenetic Analysis

The separated sequences were aligned globally using two different tools: MAFFT [19] and CLC
Genomic workbench 8.5.1 (CLC Bio-Qiagen, Aaarhus, Denmark). The sequences which hold a lot of
discrepancies in the alignment were removed manually (83 out of 405). To improve the phylogenetic
inferences, the poorly aligned regions were tuned using trimAL [20].

A phylogenetic tree was constructed for each order separately for analysis and for all the best
available 322 GST sequences. The tree was constructed using MEGA 5 [21]. Phylogenetic reconstruction
was performed using the maximum likelihood statistical method with 500 replicates bootstrap.
The substitution model used was Jones–Taylor–Thornton method using the rates and pattern as
Gamma Distributed (G). The constructed trees were visualized and analysed using FigTree v1.3.1 [22].
As GSTs belong to multigeneic families, out-group identification is unsystematic hence phylogenetically
related outgroups for each family were not described. Hence, no out-group was included in the present
analysis. Evolutionary relationships among the cyanobacteria orders were inferred from the amino
acid based Neighbor-Joining phylogeny that was constructed by Jones– Taylor–Thornton method
using the rates and pattern as Gamma Distributed (G) using MEGA 5.0.

2.3. Identification of Conserved Features

“Serine” of SNAIL/TRAIL motif at the N-terminal end, reported to provide a polar functional
group for GSH binding, is highly conserved in all GST sequences, which also serves as a signature for
marking the sequence as GST [23]. Hence, by using SNAIL/TRAIL as reference motif, the hunt for
similar architecture in 322 retrieved cyanobacterial GST was carried out manually within the aligned
sequences. Sequence alignment was carried out as mentioned in Section 2.2. A common unique GST
motif architecture that comprises 12 motifs was identified, and those sequences were subjected to
further analysis. The presence of reference motif in the sequence was marked as GST and the sequences
lacking the reference motif were removed manually. GST sequences belonging to each motif were
retrieved manually and assembled for each class which were further cross verified with phylogenetic
clade analysis. Further, the presence of sequence-specific signature or conserved residues namely
cysteine, serine, and tyrosine were evaluated for their presence. This analysis was carried out by
grouping the sequence into Y, S, and C type GSTs. Founded on this analysis and extensive visual
inspection, all alignments were analysed for group-specific signature sequences.

2.4. Construction of Network

A sequence similarity network for the GST sequences was performed using the Enzymes Function
Initiative-Enzyme Similarity Tool (EFI-EST) [24] and the resulting network was visualized using
Cystoscope 3.4.0 using the organic layout [25]. The 322 cyanobacterial GST sequences were those
clustered within a sequence similarity network at a BLAST E-Value of 1 × 10−11. The thresholds used
in the static network in this study were chosen to illustrate best the major subgroups and classes from
each other.

2.5. GST Structure Prediction and Molecular Docking

cyGSTX1, cyGSTX6, and cyGSTX7 belonging to Y (tyrosine), S (serine), and C (cysteine) types were
chosen as representatives for comparative modeling analysis. Models were built with MODELLER
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9.10 (http://salilab.org/modeller/) and the best models were selected based on the DOPE scores.
The model structure thus obtained was subjected to refinement via energy minimization using
VMD1.9.2. CHARMM27 force field and Nanoscale Molecular Dynamics (NAMD) was used and
minimization was performed with 100000 steps steepest decent with scaling 0.6 and cut off 8.0. The best
frame thus obtained was refined by NAMD minimization for 5000 iterations. After minimization,
the root mean square deviation (RMSD) of the backbone atoms was calculated with reference to
the starting structure. The lowest energy structure was taken and this structure was subjected to
interaction studies.

Macromolecular docking between GST and GSH was performed through Autodock4.2 [26]. Initially
the grid box was set in accordance with the corresponding residues and saved as a grid parameter file (gpf).
The docking simulation was performed using Lamarckian genetic algorithm (LGA) with a population
size of 150, energy evaluation of 2,500,000, and search runs of 50 [27]. The structure with the lowest free
energy of binding in a highly populated cluster was chosen as the optimal docking and subjected to
interaction studies. The docking poses were visualized and analysed using the MOLEGRO Molecular
Viewer (https://molegro-molecular-viewer.software.informer.com/2.5/) and the graphical representation
was done with Chimera 1.6.2 (https://www.cgl.ucsf.edu/chimera/olddownload.html).

3. Results and Discussion

Many prokaryotic and eukaryotic GST proteins are classified into a collection of family-like
classes mainly based on the sequence, structural similarities, and differences in the organization
and composition of their active sites [28]. However, their distribution in each organism remains
controversial. Cyanobacteria, a group of primordial prokaryotes have vast diversity in genome
organization that serves as a major reason for the divergence of GST protein among the orders and
make them promising targets for evolutionary analyses. GST sequences that possess less than 25%
sequence similarity are classified as a different type and GSTs that share more than 40% sequence
similarity are considered as the same class [4,29]. Considering the present scenario, we analysed the
global distribution and phylogenetic relationship of GSTs among the cyanobacterial orders. Primary
grouping of GSTs was performed based on the protein sequences and their degree of identity. The major
criteria that support the classification and discrimination of GSTs among the cyanobacterial orders are
as follows:

I. Presence of catalytically essential residues such as serine, tyrosine, and cysteine at the N-
terminus [28]. The three catalytic residues present in the N-terminus of GST are broadly found
in all types along with the GST specific motifs that contribute a polar functional group to the
glutathione (G) binding site [30]. Changes in these signature residues result in functional variation,
such as differences in catalytic properties, selective dimer formation, and substrate bindings.

II. Presence of the hydrophobic “lock and key” motif, the SNAIL/TRAIL motifs at the N-terminal
end and presence of catalytic signature residue in C-terminal domain [23].

III. Difference in the organization and composition of the active site [31].

3.1. Cyanobacteria Contain Many Diverse Members of GSTs

Phylogenetic analysis of 322 GST sequences retrieved from 126 cyanobacteria [17] showed a
total of 10 GST clades (one clade with ‘chi’ GST class and the remaining nine clades with 11 new
GST classes) The most primordial unicellular form of cyanobacterial order Pleurocapsales was found
in four GST clades, lower unicellular order Chroococcales presence was broadly observed in eight
distinctly separated clades, middle filamentous order Oscillatoriales was found in seven conserved
clades. Interestingly, higher heterocyst containing orders Nostocales and Stigonematales were found
respectively in nine and five different clades (Figure 1). The distribution of common and order specific
GST show the hierarchy of GST evolution among the cyanobacterial orders.

http://salilab.org/modeller/
https://molegro-molecular-viewer.software.informer.com/2.5/
https://www.cgl.ucsf.edu/chimera/olddownload.html
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Figure 1. Phylogenetic tree of cyanobacterial glutathione S-transferase (GST) sequences belonging
to the five orders. Cyanobacterial GSTs were clustered in 10 clades consisting of 12 GST classes.
Mega5 software were used to construct the tree using maximum likelihood statistical method with
500 replicates bootstrap. The substitution model used was Jones–Taylor–Thornton method using the
rates and pattern as Gamma Distributed (G). The constructed trees were visualized and analysed using
FigTree v1.3. Each clade was analysed manually, named and colour codes were given to separate
each clade which represents a type of GST. Chi, cyGSTChi; X1, cyGSTX1; X2, cyGSTX2; X3, cyGSTX3;
X4, cyGSTX4; X5, cyGSTX5; X6, cyGSTX6; X7, cyGSTX7; X8, cyGSTX8; X9, cyGSTX9; X10, cyGSTX10;
and X11, cyGSTX11.

Since this was the first comprehensive data on cyanobacterial GST, for a clear understanding a
naming convention was given to cyanobacterial GST for each class with reference to the previous
names of prevailing GST. The nomenclature of cyanobacterial GST was framed using the lower case
“cy” for cyanobacteria preceding the GST followed by the upper case denoting as “X”, then Arabic
numeral denoting sub-types (1, 2, 3...) (cyGSTX1-cyGSTX11) (Table 1). The identified types which
shared close similarities with already existing groups, were identified as “Chi” class (colour code-red).
GSTs which possess partial similarity with other prokaryotic GSTs and specific forms standing as
independent lineages were denoted as (cyGSTX1-cyGSTX11) (different colour code given to each type)
(Table 1). Overall, the order Nostocales was the largest with nine different GST classes, followed by
orders Chroococcales, Oscillatoriales, Stigonematales, and Pleurocapsales respectively with 8, 7, 5, and 4
classes (Table 1). This phylogenetic analysis of cyanobacterial GSTs suggests a gene duplication event,
which led to the independent evolution of different GSTs type among the cyanobacterial orders.
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Table 1. Diversity and the distribution of glutathione S-transferases (GST) types in five orders
of cyanobacteria.

Orders Chi cyGS
TX1

cyGS
TX2

cyGS
TX3

cyGS
TX4

cyGS
TX5

cyGS
TX6

cyGS
TX7

cyGS
TX8

cyGS
TX9

cyGS
TX10

cyGS
TX11

Pleurocapsales 5 5 5 5 3 3 3 5 5 3 5 5

Chroococcales 3 3 3 3 3 3 3 3 5 5 5 5

Oscillatoriales 3 3 3 3 3 5 3 3 5 5 5 5

Nostocales 3 3 3 3 3 3 5 5 3 5 3 3

Stigonematales 3 3 3 3 3 5 5 5 5 5 5 5

3.2. Cyanobacteria Type Discrimination Based on Conserved Features

Putative 322 GST sequences retrieved from 126 cyanobacteria were subjected to alignment which
showed the conservation of 12 motifs (M) namely M1-SGAIL, M2-SGAIL (2), M3-SLAIL, M4-SNAIL,
M5-STEIA, M6-SDDII, M7-SAEII, M8-SSAIA, M9-SAIIN, M10-SLEII, M11-SAVIN, M12-SKDIL with
the architecture of “ES [GLNTARS][ADE]I[LAI]” (Table 2) (Supplementary Figures S1,S2). The serine
present in the identified motifs was found to be conserved in all identified GSTs. However, other
amino acids in the motif, not directly involved in GSH binding, were highly diverse within the order
(Table 2). This architecture was equivalent to SNAIL/TRAIL motif that is present in most GST classes
that contribute polar functional groups to the GSH binding site [28].

Similarly, a putative SNAIL/TRAIL-like motif (SGAIV) at amino acid positions 86–90 was reported
in the sequence of AtuGSTH1-1. The hydroxyl group of serine in motif SGAIV at position 86 forms a
hydrogen bond with the γ-Glu portion of GSH, whereas the other residues of the motif are not directly
involved in GSH binding [23]. Likewise, in cyanobacterial GSTs, serine in the motif architecture was
found to be highly conserved in all the GST classes, but an amino acid change was observed within
the motifs which is shown in Table 2. The N-terminal motif is an excellent target for discriminating
the GST groups, because it is better conserved than others which possess the important part of the
active site. However, it can further be powered by combining the presence of specific conserved motifs
at the C-terminal end. The signature motif, found at the C-terminal end used for discriminating the
cyanobacteria GST, is more degenerative.

Chi class reported as cyanobacteria specific is found in all orders possessing a unique motif
SGAIL. Both Chi and cyGSTX1 GST groups share the same motif SGAIL (Table 2) and hence, the
differentiation between Chi and cyGSTX1 is further refined by the presence of specific signature
sequences at the N- and C-terminal ends. The two signature motifs in Chi group are GG[PA][KR]SRAS
and NPFGK[VL]P[VA]L that are replaced by ISPN[SGN]RIP and BADIA[TC]YP in cyGSTX1. These
motifs serve as an important feature for the discrimination of cyanobacterial GSTs of Chi from cyGSTX1
type. S(FL)AI(LM) and SNA(IVM)(LM) motifs are found in cyGSTX2 and cyGSTX3 groups, where
the signature residue L is replaced by N in the cyGSTX3 motif. However, cyGSTX4 has the entirely
unique motif ST(EDA)IA (Table 2). Likewise, cyGSTX5 possess the SD(DRV)I(IL) motif and cyGSTX6,
cyGSTX7, and cyGSTX9 found in Chroococcales, Oscillatoriales, and Pleurocapsales possess SA(DE)II,
S(ST)AI(AC), and SL(ED)I(IM) motifs respectively (Table 2). The similarities in the motifs indicate
the close functional relatedness and the ladder of the GST evolution among the cyanobacterial orders.
Nostocales, one of the evolved forms of cyanobacteria has been proved to have greater evolutionary
divergence [32]. Three order specific cyGSTX8, cyGSTX10, and cyGSTX11 found in the higher order
Nostocales have SAI(IV)N, SA(IV)IN, and SKDIL motifs which remain entirely specific from the other
GST group’s motif. The vast change in the motifs indicates the functional divergence of the GST with
relevance to the variable substrates. Further, this identified motif and signature are group specific,
which can be used as a query on the BLAST server for the identification of specific cyanobacterial GST
groups (Supplementary Figure S2).
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Table 2. Type specific conserved motifs unique to specific types of the cyanobacterial GSTs.

Orders Chi cyGSTX1 cyGSTX2 cyGSTX3 cyGSTX4 cyGSTX5 cyGSTX6 cyGSTX7 cyGSTX8 cyGSTX9 cyGS
TX10

cyGS
TX11

Pleurocapsales 5 5 5 5 STEIA SDDI(IL) SAEII 5 5 SL(ED)I(IM) 5 5

Chroococcales SGAIL SGAIL SLAIL SNA(IV)L ST(EDA)IA SD(DRV)II SAEII S(ST)AI(AC) 5 5 5 5

Oscillatoriales SGAIL SGAIL S(FL)AIL SNA(IM)(LM) ST(AE)IA 5 SA(DE)II SSAIA 5 5 5 5

Nostocales SGAIL SGAIL SLAI(LM) SNAIL ST(EA)IA SDDII 5 5 SAI(IV)N 5 SA(IV)IN SKDIL

Stigonematales SGAIL SGAIL SLAIL SNAIL STEIA 5 5 5 5 5 5 5

Motif architecture for
each GST class SGAIL SGAIL S(FL)AI(LM) SNA(IVM)(LM) ST(EDA)IA SD(DRV)I(IL) SA(DE)II S(ST)AI(AC) SAI(IV)N SL(ED)I(IM) SA(IV)IN SKDIL
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3.3. Evolutionary Divergence of Cyanobacterial GST

Phylogenetic analysis of 322 cyanobacterial GST for 126 cyanobacteria revealed five major clades
and four minor clades (Figure 1). GST type Chi, cyGSTX1, cyGSTX2, and cyGSTX3, form separate
major clades 1,2, 3, and 4 containing genus of the five orders except Pleurocapsales, indicating the
absence of evolved forms of GSTs in primordial forms of cyanobacteria. cyGSTX4 in clade 10 is
the only form of GST which is found in five orders of cyanobacteria. The hierarchal evolution of
GST among cyanobacterial orders was evidenced by clade 8 (cyGSTX9) containing only the genus
of primordial Pleurocapsales representing as an ancestor of all GSTs followed by clade 9 (cyGSTX6)
which possesses the genus of primordial Pleurocapsales, lower order Chroococcales, and middle order
Oscillatoriales. Clade 7 (cyGSTX7) contains only the genus of lower order Chroococcales and middle
order Oscillatoriales, indicating this group has lost in primordial order Pleurocapsales. Clade 6 contains a
cyGSTX5 representing the genus of Pleurocapsales, Chroococcales and Nostocales which suggests that
this type might be lost in middle order Oscillatoriales. Clade 5 which is diverged into three minor
clades cyGSTX8, cyGSTX10, and cyGSTX11 representing only the genus of Nostocales, diverged only
in higher orders, which is lost in the lower, middle, and primordial orders. This proves that the GST
evolved hierarchy from primordial Pleurocapsales to higher Nostocales substantiated the functional
diversification of GSTs among the cyanobacteria forms.

GST families have diverse substrate specificity, which was acquired by the selection pressure
during the course of evolution. Phylogenetic analysis revealed varying clustering of GST among
the cyanobacterial orders (Figure 1). The distribution of GST among the cyanobacteria increases
gradually from primordial Pleurocapsales to evolved Nostocales which clearly hints that the GSTs
have undergone a series of selection pressure to craft a functionally divergent enzyme with high
adaptability and significance. The average evolutionary distance among the five orders decreases
from the lower unicellular forms to higher heterocystous forms which are 1.49 and 1.19 respectively
(Table 3) suggesting that the primordial Pleurocapsales experienced a differential selection pressure
which shaped the evolution of highly effective GSTs in higher order Nostocales. The low percentage
of evolutionary divergence reducing from primordial order Pleurocapsales to higher order Nostocales
clearly evidenced the conserved nature of active residues.

Table 3. Shows the evolutionary divergence in percent over amino acid sequences between each order.

Chroococcales Pleurocapsales Oscillatoriales Nostocales Stigonematales

Chroococcales 0.0619 0.0655 0.0577 0.0609

Pleurocapsales 1.4035 0.0681 0.0598 0.0637

Oscillatoriales 1.3594 1.4166 0.0634 0.0664

Nostocales 1.3054 1.3361 1.3376 0.0582

Stigonematales 1.2731 1.3103 1.2907 1.1904

3.4. Classification of GST Based on N-Terminal End, the G-Site

As the cyanobacterial GST sequences possess high sequence divergence, the identified 12 different
GST classes were further analysed by the second level of grouping based on the distribution of the
conserved signature residues present in the N-terminal end. The N-terminal end otherwise named as
G-site adopts a thioredoxin like fold responsible for GSH substrate binding by providing a main chain
donor and acceptor for GSH [28].

The two catalytic centres in the GST, GSH substrate binding site (G-site) and the hydrophobic
substrate binding site (H-site) contribute a major role in assorting the classes. The G-site responsible for
primary function is conserved among all classes. The H-site responsible for scavenging the variety of
xenobiotic substrate facilitates functional diversification, hence it is less conserved. Catalytic residues
at the G-site contribute major amino acids at active site, based on the amino acid participation in GSH
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binding, GST is sorted into two major classes, a Y-GST group which uses tyrosine and S/C-GST group
which uses serine/cysteine to activate the GST at the N-terminal end [31].

The structural backbone of Y-type and S/C type are found to be similar but the change in conserved
residue at specific position within the fold has an important implication in the catalytic mechanism.
The S/C type GST which uses its representative serine or cysteine residue is positioned at the amino
terminus of the helix 1 to activate the bound GSH and serves as key to catalysis in most studied
eukaryote and prokaryote enzymes [33]. Cyanobacterial GST X5, X6, X7, X9, and X11 have cysteine 26
or 74/serine 8 at the helix 1, but in some groups serine plays a critical function, despite the cysteine
which is not required for the catalysis. Both cysteine and serine form a disulphide bond with GSH
and transform the substrate. Some types have threonine in the position of S/C-GST and the threonine
hydroxyl group forms a hydrogen bond with the sulfhydryl group of GSH. Cyanobacterial GSTX5,
GSTX7, and GSTX11 have a reactive active residue serine which is replaced by cysteine in GSTX6 and
GSTX9. The Y-type GST has tyrosine positioned at place 5 or 7 in the beta strand 1, the hydroxyl group
in tyrosine serves as a hydrogen bond donor to the sulfur of GSH. The occurrence of active residue
tyrosine at the beta strand 1 in the GST Chi, X1, X2, X3, X4, X8, and X10 designates it as Y-type (Figure 2).
The most ancestral form of GST uses cysteine to activate the GSH, which change to serine in the
middle-evolved forms and successful changes to tyrosine for catalysis [28]. Mapping of cyanobacterial
GST onto the network leads to a new observation that has not been reported previously which also
corroborated well with the phylogenetic tree. Sequence similarity poses strong evidence on separation
of Y-type and S/C type of GSTs. The network fairly clusters all the GSTs in one, because it adopts
a thioredoxin fold as a common domain. Figure 3 emphasizes the network drawn at the threshold
e-value of 1 × 10−10, the network shows the multiple distribution of GSTs among the cyanobacteria.
The distribution of the protein confirmed that Y type GSTs namely Chi, X1, X2, X3, X8, and X10 have
grouped as a cluster, where C-type GSTs formed as a separate cluster. X9 and X6 are C-type GST that
stood as a separate cluster. Likewise, the clustering of X5 and X11 belonging to S-type GST indicates the
similarities, X4 is the only GST found in all orders clustered with X7 GST. These groupings represent
the broad range of structural and functional diversity among the cyanobacteria. S-type GST is found in
all orders of cyanobacteria, unlike C-type GST which was found in the lower and middle but absent in
higher orders. Whereas Y-type GST is predominantly found in higher order Nostocales, followed by
Stigonematales, Chroococcales, and Oscillatoriales suggesting the divergence of GST among the orders.

This grouping shares the perfect correspondence with the phylogeny. Among the cyanobacterial
orders, primordial Pleurocapsales is generally considered to be the most ancestral has three S/C-group
and one Y-group GSTs. Subsequently, three and two S/C-group GSTs were respectively found in middle
evolved forms Chroococcales and Oscillatoriales along with five Y-groups GSTs in common, and the later
evolved Nostocales having seven Y-groups and two S/C-groups GSTs. Similarly, Stigonematales possess
only five Y-group GSTs. The largest diversity was found in Nostocales, and some of the classes were
found to be lost in the other orders, because they became non-essential or evolution shaped them into
more specific groups.

3.5. Structural Comparison of Cyanobacterial GST G-Site

Representative GST structures cyGSTX1, cyGSTX6, and cyGSTX7 which belong to the Y-group
and S/C-group were analysed. Despite the high sequence differences, the backbone structure remains
the same with two distinct domains: G-site at the N-terminal end and H-site at the C-terminal
end. The N-terminal end adopts a topology similar to thioredoxin folds with βαβαββαx structural
arrangements and also has an alternative βαβα linked to the C-terminal end through the α-helices.
Atkinson and Babbitt [31] reported the importance of tyrosine in Y-type and serine/cysteine in S/C-
type and its location, implications for specificity differences between the classes of each subgroup.
The sequence and structural analysis of all cyanobacterial GST types show that residues are found in
two different locations. In Y-type, tyrosine is found in the β-strand 1, whereas in S/C- type the residue
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is found in the loop region before the α-helixes 1 at the N-terminal end. The degree of glutathione
binding among these groups varies significantly which regulates the binding of substrate.

cyGSTX1 which belongs to the Y-group has the active site positioned among the cleft of the β-
strands. GSH forms a non-covalent interaction with Tyr5, Ile29, Ile31, Gln40, Lys45, Il24, Phe56 which
are located in the β-strands. The Tyr5 in β1 binds with the SH group of GSH, whereas Ile29, Ile31
from β2 form a hydrogen bond with the amine group of glutamine. Phe56 from β3 positions the
GSH in the active site through Van der Waals interactions. Interaction of the OH group of Tyr5 not
only activates the GSH, it also contributes to the stabilization by its interaction with α3 (Figure 4).
The catalytic activity of active residue tyrosine investigated with site directed mutagenesis showed
severe impairment in glutathione binding when replaced with His, Val or Thr [34]. A change in the
topology of the active site will destabilize the interaction of GSH with GST resulting in different
catalytic properties and signifying the importance of tyrosine in the Y-type GSTs.

Figure 2. Showing the sequence similarity network of 322 cyanobacterial GST sequences. The network
was thresholded at the BLAST E-Value of 1 × 10−5. Tyrosine types of GST were grouped separately
from the diverse S/C type GSTs. For better understanding each node was coloured according to the
GST types.
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Figure 3. Sequence-based alignment of the representative cyanobacterial GST sequences showing the
distribution of conserved signature residues cysteine, serine, and tyrosine highlighted in red boxes
at the N-terminal end called the G-site. The alignment was prepared and displayed using the CLC
bio-genomic workbench.

Figure 4. This shows the glutathione binding site with cyGSTX1 which belongs to the Y group.
The active site for GSH binding involves beta strand 1, 2 and 3. Tyr 5 is found in the beta strand 1
and binds with the SH group of GSH. The active site was observed in the S and C type GST which is
mentioned in Figure 5.

Differently, in the S/C type the active site is shifted in between the helix which is entirely different
from Y-type. cyGSTX7, belonging to S-type, positions the GSH between the α-helix 1, 4, and 8. Ser66
which is found in α-helix 1 interacts with the SH group of GSH, the interaction is further stabilized
by α-helix 4 and 8, which forms an N-terminal domains (Figure 5a). Caccuri et al. [35] reported in
Lucilia cuprina GST, the mutation of Ser to Ala has less than 0.5% of normal activity which shows weak
affinity towards glutathione. Similarly, in cyGSTX6 a C-type group, GSH is found in Trx domain,
Cys12 present in α-helix 1 interacts with the SH group of GSH. The interaction is stabilized by the
involvement of α-helix 6 and 7 (Figure 5b). In human GST P Cys14 is reported to participate in the
catalytic reaction of GST by stabilizing the conformation of the active-site loop, but not in the GSH,
binding directly [36]. Involvement of α-helix in GSH binding remains the same for both S and C type
GST groups, but the active site shift was observed in the Y-type group indicating the ubiquity and
diversity of GSTs among the cyanobacterial orders. The commonalities among the cyanobacterial GST



Microorganisms 2020, 8, 712 12 of 14

groups clearly indicate that GST has evolved by means of convergent evolution, the thioredoxin folds
provide the foundation for all forms of GSTs. The active site shift occurring in the recently evolved
Y-type might enhance the catalytic activities with significance for evolutionarily conserved Tyr7.

Figure 5. Major sub-groups of GST and its binding mode with substrate GSH are depicted in this
picture (a); (b) show the stereo-view of GSH binding with cyGST X6 and X7, a representative structure
for S and C GST. S type GST resides in GSH between helix 1,4, and 8 with the involvement of beta
strand 2. Similarly with C type GST, the GSH interaction was observed with helix 1, and 7 and beta
strand 1.

4. Conclusions

It was observed that cyanobacterial GST, an important class of detoxification enzyme, has evolved
in hierarchy and might possess a divergent functional role. This study highlights the distribution of
the 12 GST classes among the cyanobacteria such as primordial order Pleurocapsales with four GST
isoforms which serves as an ancestor, Chroococcales with eight classes in lower order, seven in middle
order Oscillatoriales, five in Stigonematales, and nine in higher order Nostocales. Despite its high diversity,
the evolutionary distance evidenced the retaining of the ancestral GSTs function in all cyanobacterial
orders. All cyanobacterial GSTs having the backbone of thioredoxin fold are categorized into two
groups namely Y-GST and S/C-GSTs. Pleurocapsales with a simple photosynthetic apparatus possess
only four GST classes which are one Y-type and three S/C-type GST. The well-organized Chroococcales
and filamentous forms Oscillatoriales have eight and seven classes of GST comprising five Y-type GST,
three S-type, and two C-type GST groups. While, the order Stigonematales has five GST classes all
comprising the Y-type GST group. On the other hand, heterocystous Nostocales possesses nine classes
grouped into seven Y-type and two S-type GST groups. The shifted active site of Y-GST away from
α1 might enhance the catalytic capabilities compared to S/C-GSTs. The distinctive characteristics
of analysed GSTs evidence that recently evolved order Nostocales with higher Y-GST classes might
possess more active GSTs which are more evolutionary divergent compared to the lower and middle
order cyanobacteria.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-2607/8/5/712/s1,
Figure S1: Multiple sequence alignment of 322 GST sequence found in 126 cyanobacterial sequences showing
the GST motif architecture of “ES [GLNTARS][ADE]I[LAI]”. The conserved domain is highlighted in the pink
box. Sequence alignment was performed as mentioned in Section 2.2., Figure S2: Highlight of the 12 different
GST motif structures identified in 322 retrieved GST sequences belonging to five cyanobacterial orders. Sequence
belonging to each clade was removed manually and sequence alignment performed as mentioned in Section 2.2.
The sequence logo was generated by subjecting the aligned file to Weblogo online server [13]. Table S1: Detailed
information of the cyanobacterial GST sequences used for the construction of phylogenetic tree.

http://www.mdpi.com/2076-2607/8/5/712/s1
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