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Abstract

Urate is a cause of gout, kidney stones, and acute kidney injury from tumor lysis syndrome, but its 

relationship to kidney disease, cardiovascular disease, and diabetes remains controversial. A 

scientific workshop organized by the National Kidney Foundation was held in September 2016 to 

review current evidence. Cell culture studies and animal models suggest that elevated serum urate 

concentrations can contribute to kidney disease, hypertension, and metabolic syndrome. 

Epidemiologic evidence also supports elevated serum urate concentrations as a risk factor for the 

development of kidney disease, hypertension, and diabetes, but differences in methodologies and 

inpacts on serum urate concentrations by even subtle changes in kidney function render 

conclusions uncertain. Mendelian randomization studies generally do not support a causal role of 

serum urate in kidney disease, hypertension, or diabetes, although interpretation is complicated by 

nonhomogeneous populations, a failure to consider environmental interactions, and a lack of 

understanding of how the genetic polymorphisms affect biological mechanisms related to urate. 

Although several small clinical trials suggest benefits of urate-lowering therapies on kidney 

function, blood pressure, and insulin resistance, others have been negative, with many trials having 

design limitations and insufficient power. Thus, whether uric acid has a causal role in kidney and 

cardiovascular diseases requires further study.
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Introduction

The association of serum urate with kidney, cardiovascular (CVD), and metabolic disease 

has been described since the 19th century, but whether urate metabolism has a role in these 

diseases is controversial. Experimental and clinical evidence were presented at a Scientific 

Workshop held by the National Kidney Foundation in September 2016. We present a 

meeting summary and discuss current controversies.

Serum Urate Regulation

Urate is the end product of nucleic acid metabolism and is also generated during the 

breakdown of high-energy nucleotides (eg, adenosine triphosphate [ATP]). It is generated 

intracellularly by xanthine oxidoreductase (XOR) and transported into and exists in the 

circulation as plasma sodium urate. Intracellular urate concentration likely varies, but may 

be orders of magnitude lower than it is in serum.1

In most mammals, serum urate concentrations are low (1–3 mg/dL [60–180 μM]) due to the 

enzyme uricase, which degrades uric acid to 5-hydroxyisourate and allantoin. Humans and 

apes lack uricase due to inactivating mutations that occurred during hominoid evolution,2,3 

resulting in higher circulating urate concentrations. The lower range of urate concentrations, 

described in people consuming traditional non-Western diets, is 2 to 4 mg/dL (120–240 μM).
4 Serum urate concentrations are higher in industrialized populations (3–8 mg/dL [180–480 

μM]), reflecting diets richer in purines and fructose (both of which generate urate), greater 

alcohol intake, increased prevalence of factors that reduce kidney urate excretion (eg, insulin 

resistance, renal vasoconstriction associated with hypertension, and decreased kidney 

function),4 and interpopulation genetic differences.5

In humans, serum urate is excreted by the kidney (two-thirds) and gut (one-third). Some 

circulating urate is also removed by reaction with oxidants or nitric oxide. Urate production 

by XOR contributes to serum concentrations,6 but the molecular physiology of epithelial 

urate transport is most relevant to the genetics of hyper- and hypouricemia.7

Kidney Urate Excretion

Urate is freely filtered at the glomerulus, followed by reabsorption and secretion in the 

proximal tubule. However, reabsorption is dominant, resulting in fractional urate excretion ≤ 

10% (Fig 1).

Urate reabsorption in the proximal tubule occurs by urate/monocarboxylate exchange (Fig 

1A). Organic monocarboxylate reabsorption by the apical sodium/monocarboxylate 

cotransporters SMCT1 and SMCT28,9 results in higher intracellular concentrations of anions 

that exchange with luminal urate by means of urate-anion exchangers (Fig 1A). Higher 

concentrations of SMCT substrates (including nicotinate, pyrazinoate, lactate, and ketones) 

in the circulation can lead to hyperuricemia10–13 arising from elevated apical uptake of these 

filtered anions, greater intracellular concentrations in proximal tubular cells, and increased 

apical urate/anion exchange.14 In humans, URAT1 is the main apical urate/anion exchanger.
15 The “orphan” organic anion transporter known variously as ORCTL3 or OAT10 also 
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mediates urate/nicotinate and urate/pyrazinoate exchange.16 Human OAT4 reportedly 

functions as an apical urate/anion exchanger17; however, unlike OAT10 and URAT1, OAT4 

exchanges urate with divalent organic anions. At the basolateral membrane, GLUT9 

(glucose transporter 9) is the sole pathway for urate exit during urate reabsorption. Initially 

identified as a fructose transporter,18 GLUT9 functions instead as a urate uniporter.19

A separate set of transporters function in urate secretion (Fig 1B). At the basolateral 

membrane, OAT1 and OAT3 transport urate into proximal tubular cells.20 This basolateral 

uptake is driven by intracellular concentration of divalent anions that exchange with urate by 

means of OAT1 and OAT3. Uptake of these anions is mediated by the sodium-dependent 

dicarboxylate transporter NaDC3 (Fig 1B). Efflux at the apical membrane is mediated by the 

ATP-driven pumps MRP4 (multidrug resistance protein 4)21 and ABCG2.22,23 There are 

also electrogenic apical urate transporters (NPT124,25 and NPT426) that function in 

secretion.

Gut Urate Excretion

Urate is also transported in the gut, where as much as one-third can be degraded by 

uricolytic bacteria. Mechanisms for urate transport in the gut are uncertain, but both GLUT9 

and ABCG2 transport urate into the gut, and knockout of intestinal GLUT9 can cause 

hyperuricemia.27 Knockout of ABCG2 results in hyperuricemia and “overload” uricosuria.28

Definition of Hyperuricemia

Hyperuricemia is defined as serum urate concentrations > 7 mg/dL (>420 μM) in men and 

>6 mg/dL (>360 μM) in women. For children and adolescents, a concentration ≥ 5.5 mg/dL 

(≥330 μM) is considered abnormal.29 Serum urate concentrations are lower in 

premenopausal women due to the uricosuric effects of estrogen, and following menopause, 

urate increases to concentrations similar to those observed in men. The concentration of 7 

mg/dL (420 μM) is viewed as abnormal because it nearly matches the solubility of urate in 

water; however, urate is more soluble in plasma and concentrations may be >10 mg/dL 

(>600 μM) without crystal deposition.

In gout, hyperuricemia results from both dietary purine excess30 and reduced urinary urate 

excretion. In the steady state, urinary excretion reflects the rate of production; notably, the 

fractional excretion of urate can increase rapidly in response to a purine load.30

Biological Actions of Urate

Antioxidant Effects

Urate can function as an antioxidant, especially in the extracellular environment.31 Urate 

reacts with superoxide to generate allantoin and with peroxynitrite to form triuret. These 

effects may be important in neurologic disease, in which acute administration of urate 

reduces neurologic injury in models of ischemic stroke32 or multiple sclerosis.33 In contrast, 

the reaction of urate with peroxynitrite generates aminocarbonyl and triuretcarbonyl 

radicals,34 and the reaction with myeloperoxidase generates the pro-oxidant urate 

hydroperoxide.35
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Immune Effects

Urate may aid the immune response by release from dying cells, facilitating recognition of 

apoptotic cells by dendritic cells and activation of CD8 cells.36,37

Proinflammatory Effects

Although urate is an extracellular antioxidant, intracellular urate functions as a pro-oxidant, 

stimulating reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase.38–41 

The effects of exogenous urate on cells can be prevented if cellular uptake of urate is 

prevented by probenecid (an organic anion transport inhibitor). Likewise, biological effects 

of endogenously produced urate can be prevented by blocking its synthesis with XOR 

inhibitors (XORIs).39,42

Urate exerts autocrine, paracrine, and endocrine effects. High intracellular urate 

concentrations stimulate mitogen activated protein kinases, proinflammatory transcription 

factors (nuclear factor κB [NF-κB]), growth factors, vasoconstrictive substances 

(angiotensin II, thromboxane, and endothelin), chemokines, and mitochondrial dysfunction.
39,43–45 Urate also reduces endothelial nitric oxide bioavailability by a variety of 

mechanisms and inhibits endothelial cell proliferation and migration.44,46–48 High urate 

concentrations induce proximal tubular dysfunction with release of inflammatory 

chemokines, vascular cell muscle proliferation, fat synthesis in hepatocytes, oxidative stress 

in islet cells, and decreased adiponectin synthesis in adipocytes.39,49–53

Models of Hypertension and Kidney Injury

The classic model of hyperuricemia in the rat involves administering a uricase inhibitor 

(oxonic acid) to double or triple serum urate concentration. Hyperuricemic rats develop 

modest hypertension mediated by activation of renal and systemic renin-angiotensin-

aldosterone systems (RAAS), oxidative stress, and loss of endothelial nitric oxide.54–57 Over 

time, microvascular and inflammatory changes in the kidney drive hypertension independent 

of serum urate concentrations.58 Afferent arteriolar disease also results in impaired renal 

autoregulation with glomerular hypertension while simultaneously reducing renal blood 

flow.59 These effects can both cause chronic kidney disease (CKD)60 and accelerate existing 

CKD43 with histologic and renal hemodynamic features similar to those observed in persons 

with longstanding gout and/or hypertension.61 Experimental studies also confirmed a role of 

urate in animal models of diabetic kidney disease, calcineurin inhibitor nephrotoxicity, and 

acute kidney injury (AKI) (Table 1).43,54,55,59,62–64,66–76

Although many effects of urate appear to be mediated by its intracellular action, kidney 

injury in humans can occur with hyperuricosuria, especially in the setting of urate 

crystalluria and acidic urinary pH. Soluble urate and urate crystals activate inflammasomes, 

causing local inflammation and tubular injury.77,78 Hyperuricosuria and/or hyperuricemia 

may also play a role in AKI (eg, rhabdomyolysis and radiocontrast administration).74,79,80 

Figure 2 summarizes mechanisms by which urate induces kidney damage through crystal-

independent and crystal-dependent mechanisms. Figure 3 shows a possible mechanism for 

urate-induced hypertension.
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Fructose and Metabolic Syndrome

Fructose is distinct from most energy sources in its ability to induce features of metabolic 

syndrome.81 Experimental studies suggest that this occurs secondary to a decrease in ATP 

concentrations during fructose metabolism that leads to intracellular urate generation, 

mitochondrial oxidative stress, and inhibition of adenosine monophosphate (AMP)-activated 

protein kinase.39,52,82,83 Urate also stimulates aldose reductase (which can lead to more 

fructose generation) and fructokinase (which amplifies the pathway).53,84 Reducing serum 

and intracellular urate concentrations has been found to block features of metabolic 

syndrome in fructose-dependent and -independent models.85,86 The side effects of thiazides 

to induce features of metabolic syndrome could also be prevented by lowering serum urate 

concentrations with allopurinol.87

The observation that knocking down the urate transporter GLUT9 in the intestine causes 

hyperuricemia and metabolic syndrome that can be ameliorated by XORIs further supports a 

role for uric acid in the causality of metabolic syndrome.27 In contrast, with hepatic 

knockout of GLUT9, hyperuricemia develops without hypertension or metabolic syndrome.
88

An Evolutionary Perspective

The observation that parallel inactivating mutations occurred in uricase during the Oligocene 

and Miocene epochs in the ancestors of humans and great apes and also in lesser apes 

suggests a survival advantage to higher serum urate concentrations.2,3 Various hypotheses 

have been proposed, including the possibility that urate may have carried a survival 

advantage as an antioxidant31 or as a means to help increase blood pressure (BP) during a 

period when salt intake was low58 or to help store fat during a time of global cooling when 

fruit was less available.89 Viewed in this context, the uricase mutation may have functioned 

as a “thrifty gene,” being protective during periods of starvation in the past, but harmful with 

ample access to food.

Epidemiology

Epidemiologic Studies

Many studies have evaluated whether serum urate is independently associated with CKD, 

hypertension, and metabolic syndrome/type 2 diabetes.90,91 Many studies are limited by 

disparate covariate adjustment strategies and exposure and outcome definitions, which 

introduce uncertainty when attempting to integrate evidence. Nevertheless, longitudinal 

studies have shown that elevated serum urate concentration is independently associated with 

hypertension in 22 of 23 published studies, including 2 meta-analyses.92–94 The relation of 

serum urate with the development of hypertension meets Bradford Hill criteria for a likely 

causal relation (Box 1).29,54,62,95–97

In 23 of 24 published studies, including meta-analyses,98–100 higher serum urate 

concentrations are independently associated with metabolic syndrome and type 2 diabetes in 

men, women, or both and may also be independently associated with obesity.101 Serum urate 

concentration was reported to independently predict incident CKD in 17 of 18 published 
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studies and in meta-analyses in people with and without diabetes.102–107 However, serum 

urate is not consistently associated with progression of CKD in patients with pre-existing 

CKD (reviewed in108). Hyperuricemia also predicts AKI following surgery or radiocontrast 

exposure.79,109

In contrast, serum urate concentration is not consistently associated with CVD,110–112 likely 

reflecting complex causal linkages among potential risk factors used in multivariable 

analysis.113 Nevertheless, one study found hyperuricemia to be associated with 

hypertension, obesity, and CKD in Japanese adults who at baseline did not have elevated 

Quételet (body mass) index, had normal BP, and had normal glucose tolerance.114

A major problem with these epidemiologic studies is that serum urate concentrations are 

affected by kidney function, and the relationship may be subject to confounding by other 

factors.113,115,116 A confounder is associated with both the exposure and the outcome, but 

does not constitute the causal pathway between exposure and outcome. Epidemiologic 

studies attempt to account for confounding through multivariable adjustment and other 

strategies; however, if there is residual confounding, the association between serum urate 

and CKD may be significant even in the absence of causality.113 For example, if the true risk 

factor for CKD were oxidative stress (which is not directly measured) rather than 

hyperuricemia, the presence of hyperuricemia as a proxy for oxidative stress could lead to 

the incorrect conclusion that hyperuricemia causes CKD. Box 2 summarizes factors 

affecting the association of urate with outcomes in observational studies and clinical trials.

Mendelian Randomization Studies

Genome-wide association studies (GWAS) have identified approximately 30 loci controlling 

serum urate.117,118 The loci with the strongest effects encode uric acid transporters (eg, 

GLUT9, ABCG2, and URAT1)117,118 or regulatory transporter-associated proteins (eg, 

PDZK1).117,119 In general, loss-of-function mutations in reabsorptive urate transporters 

cause hypouricemia,15,117,120–123 whereas loss-of-function mutations in secretory 

transporters result in hyperuricemia.23,26,28 Other loci with weaker effects encode genes 

involved in glycolysis, consistent with a role for hepatic metabolism in urate homeostasis. 

However, for most loci, causal genes and causal variants have not been identified. 

Predictably, many of the urate-controlling loci are associated with gout.117,124,125

The identification of genetic polymorphisms that influence serum urate concentrations has 

allowed investigation of whether these polymorphisms also increase the risk for 

hypertension or kidney disease. Specifically, large populations in which GWAS have been 

performed can be used to develop a “genetic score” to identify individuals with genetic 

predisposition to hyperuricemia and gout (as evidence for validation), CKD, hypertension, 

and type 2 diabetes. Because persons with urate-raising and urate-lowering genetic variants 

have been exposed to these variants since conception and provided that genetic variants are 

not themselves associated with confounders or do not exhibit pleiotropic effects, these 

Mendelian randomization studies can mitigate confounding.126

Using this approach, many adequately powered studies have been unable to find associations 

between a genetic urate score with hypertension,117,127 type 2 diabetes,127–129 or the 
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development of CKD,127,130,131 arguing against a causal role of urate in these disease states. 

However, the absence of associations in these studies does not conclusively dismiss 

causality. First, intracellular urate drives its metabolic and vascular effects (rather than 

extracellular concentrations or crystal deposition), and polymorphisms that affect serum 

urate may not have the same effect on intracellular and hepatic urate.27,88,132 Second, 

environment and/or diet can influence the effects that genetic polymorphisms exert on urate 

disposition.133,134 Third, most published studies focus on polymorphisms involved in renal 

urate handling without considering alternative pathways. For example, genetic 

polymorphisms of XOR have been linked with CVD.135,136 Finally, the inability to show an 

association does not mean that lowering serum urate concentrations may not have beneficial 

effects on hypertension or CKD; inhibitors of the renin-angiotensin system (RAAS), for 

example, are beneficial in the management of hypertension and CKD despite GWAS failing 

to identify genetic polymorphisms of the RAAS associated with hypertension and CKD.

Other Mendelian randomization studies have identified associations of genetic 

polymorphisms that influence serum urate concentrations with hypertension, obesity, 

metabolic syndrome, CVD, or CKD.137–143 These studies differ from others because they 

either focus on more homogeneous populations, such as Italian144,145 or Native American 

populations,139,146 or assess interactions of the genetic score with potential confounders, 

such as body mass index147 or asymmetric dimethylarginine concentrations.138

GWAS Loci Predicting Both CKD and Serum Urate Concentration

A GWAS has identified approximately 50 loci associated with estimated glomerular 

filtration rate (eGFR) and CKD.148 Of these, 9 are also associated with serum urate 

concentrations (Table 2), none of which encode urate transporters. Interestingly, patterns are 

the same for most shared loci, suggesting that (as yet unidentified) genetic variants 

associated with serum urate and kidney function are likely to be the same. However, there is 

inconsistency in the direction of effect, with the serum urate–increasing allele associated 

with better kidney function in some cases and worse kidney function in others. These data 

suggest that shared pathologic mechanism(s) between effectors of kidney function and 

determination of hyperuricemia further complicating interpretation.

Clinical Trials

Hypertension

Studies of the role of urate in hypertension have largely focused on children and adolescents, 

reflecting experimental studies showing that hyperuricemia has its greatest effect on BP 

early in life, before kidney microvascular and inflammatory changes occur.55,58 Adolescents 

with primary hypertension have elevated serum urate concentrations (>5.5 mg/dL) in nearly 

90% of cases, correlating directly with systolic BP (SBP).29 A small pilot study reported that 

lowering serum urate concentration to <5.0 mg/dL (<300 μM) normalized BP in 86% of 

patients compared to 3% during the placebo phase.96 A double-blind randomized study in 

which obese prehypertensive adolescents were given placebo, probenecid (a uricosuric), or 

allopurinol (an XORI) showed a significant decrease in BP in both the probenecid -and 

allopurinol-treated groups, and lowering serum urate concentration was associated with less 

Johnson et al. Page 7

Am J Kidney Dis. Author manuscript; available in PMC 2020 June 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



weight gain.149 The therapeutic equivalence of probenecid and allopurinol suggests that 

urate-lowering mediated the effect. A third double-blind placebo-controlled study in older 

(>65 years) patients after ischemic stroke who had prehypertension found that treatment 

with allopurinol in patients with normal serum urate concentrations resulted in a decrease in 

clinically assessed SBP and central SBP and a reduction in carotid intimal thickness 

compared to placebo.150 Allopurinol lowered SBP and diastolic BP in obese middle-aged 

adults with prehypertension and modestly elevated serum urate concentrations (6.0–6.2 

mg/dL [360–372 μM]).151 One study of asymptomatic hyperuricemia (serum urate ≥ 8 

mg/dL [≥480 μM]) found a decrease in SBP with improvement in eGFR following 

allopurinol treatment compared to placebo.152 In contrast, 2 double-blind placebo-controlled 

trials found that lowering serum urate concentrations in patients with modestly elevated 

serum urate concentrations (6–7 mg/dL [360–480 μM] range) did not lower BP, although 

interpretation is limited by the fact that the mean blood pressure of participants was in the 

normotensive range prior to starting therapy.153–155

Chronic Kidney Disease

Small studies have reported that treatment with XORIs can slow CKD progression.156–161 A 

double-blind placebo-controlled trial randomly assigned 93 hyperuricemic patients with 

CKD stage 3 or higher to febuxostat (or placebo) for 6 months.158 Febuxostat attenuated the 

decline in kidney function, with 38% showing a >10% decline in eGFR versus 54% in the 

placebo group (P = 0.004). Febuxostat also lowered SBP (−13 vs −4 mm Hg).158

Two randomized trials reported that lowering serum urate concentrations with allopurinol 

could slow CKD progression in patients with CKD stage 3,156,157 with one trial showing a 

reduction in cardiovascular events.157,162 In another trial, 109 hyperuricemic patients with 

CKD stage 3 or higher and who had previously undergone cardiac surgery were randomly 

assigned to allopurinol or febuxostat for 6 months. Febuxostat reduced serum urate 

concentrations and led to favorable effects on SBP, eGFR, and albuminuria.163 Post hoc 

analyses of other studies also suggest beneficial effects of lowering serum urate 

concentrations with febuxostat and/or allopurinol on kidney function in patients with gout 

and CKD stage 2.159,160 In contrast, 3 studies (in patients with diabetic nephropathy,164 

immunoglobulin A nephropathy,165 and stage 3 CKD166) reported no change in eGFR with 

allopurinol/febuxostat. Of note, these studies were either limited in duration (12 

weeks)164,166 or enrolled patients with stable CKD.165 Interestingly, beneficial effects on 

BP165,166 and albuminuria164,166 were still observed.

Acute Kidney Injury

Several studies have investigated whether lowering serum urate concentrations may prevent 

AKI. One clinical trial of hyperuricemic patients undergoing cardiac surgery reported that 

urate lowering with rasburicase resulted in lower concentrations of the kidney tubular injury 

marker urine neutrophil-associated lipocalin but no difference in postoperative serum 

creatinine concentrations.167 In 2 trials comparing hydration to hydration plus allopurinol in 

the prevention of radiocontrast nephropathy, none of the 169 participants receiving 

allopurinol with hydration developed AKI (defined as worsening of serum creatinine by 

>25%) compared to 35 of the 170 (20%) participants receiving saline solution alone.168,169
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Insulin Resistance and Metabolic Syndrome

Urate-lowering therapy in hyperuricemic patients has been reported to improve insulin 

resistance or fasting glucose concentrations.170–172 A double-blind crossover trial that 

randomly assigned patients to benzbromarone or placebo found that patients with heart 

failure and hyperuricemia showed an improvement in insulin resistance (as assessed by 

Homeostatic Model Assessment of Insulin Resistance [HOMA-IR]) after 8 weeks.170 In 

contrast, another study found that allopurinol attenuated the increase in BP resulting from a 

high-fructose diet, but did not improve insulin resistance.173

Finally, one study randomly assigned patients with type 2 diabetes and asymptomatic 

hyperuricemia (n = 176) to allopurinol or placebo for 3 years. The allopurinol-treated group 

had lower SBP and diastolic BP, less worsening of HOMA-IR and serum triglyceride 

concentration, lower albuminuria, higher eGFR, and fewer cases of new-onset diabetic 

nephropathy (defined as urine albumin excretion > 200 μg/min[ 4.9% vs 10%).161

Additional Issues With Use of XORIs

XORIs are ideal urate-lowering agents because they block production and will reduce both 

intra- and extracellular urate. In contrast, uricosuric agents may block urate uptake into cells,
38,44 but will not block intracellular urate production, such as occurs during fructose 

metabolism. Because most of the cardiovascular and kidney effects of urate are thought to be 

mediated by intracellular urate, XORIs are thought to be superior to uricosurics in blocking 

urate’s biological effects. Nevertheless, interpretation of studies using XORIs are 

confounded because the conversion of hypoxanthine and xanthine to urate by XOR results in 

the production of oxidants. Thus, blocking XOR also reduces oxidative stress that may be 

independent of urate. One study reported that XORIs could improve endothelial dysfunction, 

whereas probenecid could not,174 and other studies also suggest that XOR may also be 

induced by oxidants generated from other sources (such as from mitochondria or NADPH 

oxidase) to amplify local oxidative stress.175 Nevertheless, the benefit of XOR inhibition on 

fat accumulation in cultured hepatocytes can be blocked by adding urate back to the 

incubation mixture.39 Uricosuric agents have also been reported to improve BP and insulin 

resistance in 2 studies.149,170

Summary

When considering clinical trials of urate-lowering therapy in hypertension, it appears that 

the effects of urate-lowering therapy on BP are most likely to be observed among patients 

with hyperuricemia (especially if serum urate is >8 mg/dL [>476 μM]) when baseline SBP is 

>130 mm Hg and GFR is normal. Likewise, when considering trials of urate-lowering 

therapy and effects on CKD progression, it appears there may be benefits in patients with 

hyperuricemia and in longer duration trials sufficient to see non–hemodynamically-mediated 

changes in eGFR.

Angiotensin-converting enzyme (ACE) inhibitors and other blockers of the RAAS may 

impact the association between urate and kidney outcomes, with experimental studies and 

clinical studies of humans suggesting that hyperuricemia affects both blood pressure and 

kidney function in part by activation of the RAAS.41,55,96 In this regard, withdrawal of 
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allopurinol in one study of patients with CKD resulted in worsening of BP and more rapid 

CKD progression only in patients who were not concurrently treated with ACE inhibitors.176 

In addition to the possibility that lowering urate concentrations might down-regulate the 

RAAS, the angiotensin receptor blocker losartan can also lower serum urate concentration 

by increasing urine urate excretion. Hence, studies in which agents that block the RAAS are 

used may obscure effects of urate-lowering therapy and vice versa. Because RAAS blockade 

is commonly used in CKD, a trial of urate-lowering therapy may be primarily addressing 

whether decreasing serum urate concentrations provides benefit above and beyond that 

provided by RAAS inhibitors.

The safety of urate-lowering therapies must be considered. In rare cases, allopurinol can 

cause a hyper-sensitivity syndrome that resembles Stevens-Johnson syndrome, especially in 

persons with the HLA-B*58 serotype.177 There has also been some concern that use of 

febuxostat may be associated with increased cardiovascular risk compared to allopurinol, 

resulting in a recent US Food and Drug Administration alert.178,179 Uricosuric agents may 

increase the risk for kidney stones; in phase 3 trials, lesinurad caused transient increases in 

serum creatinine concentrations when used at high doses, and without concomitant XORIs.
180

In summary, although pilot clinical trials of urate-lowering therapy suggest potential benefits 

in the treatment of hypertension and prevention of kidney disease and CVD, they have been 

limited in size and power and have generally used intermediate or surrogate end points. 

Comparisons of urate-lowering therapy and placebo on top of standard therapies (including 

RAAS inhibitors) are underway (Table 3) or planned (Box 3) in several adequately powered 

trials with hard cardiovascular and/or kidney end points. In particular, the Preventing Early 

Renal Function Loss (PERL) Consortium is randomly assigning 400 adults with type 1 

diabetes, mild to moderate CKD with albuminuria, and serum urate concentrations ≥ 4.5 

mg/dL to allopurinol or placebo, with allopurinol titrated to reduce serum urate 

concentrations to <4.5 mg/dL. The primary outcome of this 3-year intervention trial is GFR 

measured using iohexol, assessed 2 months after intervention washout to diminish the 

influence of possible hemodynamic effects.181

Conclusions

Though hyperuricemia was considered a potential cause of hypertension by Mahomed in the 

1870s, after 140 years, the potential causal role of urate in kidney disease and hypertension 

is still hotly debated. Hyperuricemia is a biomarker for kidney and cardiovascular risk, but 

serum urate concentration also increases as GFR decreases. Although serum urate 

concentration is a strong independent risk marker for incident CKD and hypertension, 

Mendelian randomization studies do not support urate as a causal factor in these conditions. 

At this time, in concordance with a recent Cochrane review,182 and given potential toxicities 

of current treatments, we cannot recommend routine treatment of hyperuricemia in persons 

with hypertension, kidney disease, or metabolic syndrome/type 2 diabetes. Rather, we must 

await the results of well-designed and adequately powered clinical trials.
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Box 1.

Bradford Hill Criteria for Causality: Urate and Hypertension

1. Strength (effect size): An elevated serum uric acid consistently predicts a 1.5- 

to 2-fold increased risk for hypertension within 5–10 y.92

2. Consistency (reproducibility): An elevated serum uric acid independently 

predicts the development of hypertension in 22 of 23 studies.92

3. Specificity: The risk for developing hypertension in those with elevated 

serum urate level persists after controlling for other cardiovascular risk 

factors. In adolescents, new-onset essential hypertension is associated with an 

elevated serum urate (≥5.5 mg/dL) in 90% of cases; by contrast, 

hyperuricemia occurs in just 30% of those with secondary hypertension and is 

rare in normotensive and white-coat hypertensive adolescent patients.29

4. Temporality: Although not all individuals with hypertension have 

hyperuricemia, an elevated serum urate frequently precedes the development 

of hypertension, and in adolescents, 90% with primary hypertension have 

been reported to have hyperuricemia.92 These data are most consistent with 

hyperuricemia being a major cause of hypertension in adolescents.

5. Biological gradient: A linear relationship is observed between serum uric 

acid and level of blood pressure in adolescents with primary hypertension 

(r=0.80).29

6. Plausibility: Experimental studies found that hyperuricemia in rats results in 

hypertension that is mediated by activation of the renin-angiotensin system, 

induction of oxidative stress, and inhibition of endothelial function.54–57

7. Coherence: Lowering serum urate in hyperuricemic hypertensive adolescents 

was observed to correct blood pressure in 86% of cases whose serum urate 

was lowered to <5 mg/dL.96 This was also found to be associated with a 

reduction in plasma renin activity consistent with experimental studies that 

the hypertension is dependent on the renin-angiotensin system.54,55

8. Experiment: Rats with experimental hyperuricemia develop hypertension 

that can be corrected by either a xanthine oxidase inhibitor or an uricosuric 

agent.54,62

9. Analogy: Experimentally one can also induce hypertension by stimulation of 

the renin-angiotensin system, blocking endothelial nitric oxide synthase, or 

inducing oxidative stress, all mechanisms mediated by uric acid.97
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Box 2.

Factors Affecting the Association of Serum Urate With Kidney and 
Cardiovascular Outcomes in Epidemiologic Studies

• Heterogeneity of patients

• Heterogeneity of baseline GFR

• Heterogeneity of risk factors

• Limitations with GFR prediction

• Competing risks (multiple hits) and competing outcomes

• Varying outcome definitions and lack of a core outcomes set

• Varying exposure definitions

• Varying follow-up time

• Adjusting for factors in the causal pathway

• Unmeasured and unadjusted confounding

Abbreviation: GFR, glomerular filtration rate.
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Box 3.

Potential RCTs Assessing Urate-Lowering for Kidney Disease and 
Cardiovascular Disease Benefits

RCT #1: General Population

Population: Patients with asymptomatic hyperuricemia (≥6 mg/dL), HTN, and additional 

CV or CKD risk

Intervention: XOI fixed or titrated dose, probenecid or lesinurad fixed or titrated dose, 

placebo

Outcomes: GFR slope, BP change (no. of medications), 30% decline in eGFR; CV 

outcomes; AEs; urine ACR

Duration: 5 y with a priori–defined longer term posttreatment follow-up

RCT #2: CKD Population

Population: Asymptomatic hyperuricemia (≥6 mg/dL), HTN, and eGFR < 60 mL/min/

1.73 m2 with albuminuria or eGFR < 45 mL/min/1.73 m2 regardless of albuminuria 

Intervention: Allopurinol/febuxostat fixed or titrated dose, placebo

Outcomes: 30% decline in eGFR; composite of ESRD, kidney failure death, or 50% 

decline in eGFR; CV outcomes; AEs; urine ACR

Duration: 4 y with a priori–defined longer term posttreatment follow-up

RCT #3: AKI Risk Population

Population: Patients at risk for AKI (planned major CV surgery)

Intervention: Allopurinol/febuxostat fixed dose preprocedure for several weeks

Outcomes: AKIN stage 3, AKIN stage 1

Abbreviations: ACR, albumin-creatinine ratio; AE, adverse event; AKI, acute kidney 

injury; AKIN, Acute Kidney Injury Network; BP, blood pressure; CKD, chronic kidney 

disease; CV, cardiovascular; CVD, cardiovascular disease; (e) GFR, (estimated) 

glomerular filtration rate; ESRD, end-stage renal disease; HTN, hypertension; RCT, 

randomized clinical trial; XOI, xanthine oxidase inhibitor.
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Figure 1. 
Transport pathways for urate in proximal tubule cells. (A) Urate reabsorption. Sodium-

dependent anion transport by SMCT1 and SMCT2 increases intracellular concentrations of 

monovalent anions that exchange with luminal urate (URAT1/OAT10). OAT4 appears to 

exchange urate with divalent anions. GLUT9 is the exit pathway for urate at the basolateral 

membrane. (A) Urate secretion. Urate enters the cell at the basolateral membrane by 

exchange with α-ketoglutarate, mediated by OAT1 and OAT3. At the apical membrane, 

urate is secreted by MRP4, ABCG2, NPT1, and/or NPT4. Figure is copyright Annual 

Reviews and is reproduced from Mandal and Mount.7
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Figure 2. 
Potential mechanisms by which urate may cause kidney disease. Urate may induce renal 

damage in its soluble (crystal-independent) or crystal form. After entering renal cells, 

soluble uric acid can activate various cascades and responses that lead to damaging 

inflammatory, proliferative, and maladaptive changes in glomeruli and the tubulointerstitium 

(TI). Crystalline uric acid seems to be confined to the TI, where it may elicit similar 

changes. Abbreviation: VSM, vascular smooth muscle.
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Figure 3. 
Mechanism of hyperuricemia-induced hypertension. Hyperuricemia-induced hypertension 

has been proposed to be a consequence of the effect of serum and/or intracellular urate to 

stimulate the renin-angiotensin-aldosterone system, lower endothelial nitric oxide, induce 

oxidative stress, and stimulate vascular smooth muscle cell proliferation, resulting in 

systemic and renal vasoconstriction and arteriolosclerosis leading to hypertension.
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Table 2.

Shared Loci for eGFR and Serum Urate Control

Locus (function) SNP Association Urate eGFR

A1CF (regulation of lipoprotein synthesis) Same ↑ ↑

BCAS3 Same, additional signal in eGFR ↑ ↑

GCKR (glycolysis) Same ↑ ↑

INHBC Same ↑ ↓

LRP2 Different — —

PRKAG2 (energy) Same ↑ ↓

STC1 Same ↑ ↓

UBE2Q2 Same ↑ ↓

VEGFA Same ↑ ↓

Note: Arrows indicate whether the effect allele of the most associated SNP at each locus increases or decreases urate concentrations or eGFR.

Abbreviations: A1CF, apolipoprotein B messenger RNA editing enzyme, catalytic polypeptide 1 complementation factor; BCAS3, breast 
carcinoma amplified sequence 3; eGFR, estimated glomerular filtration rate; GCKR, glucokinase regulatory protein; INHBC, inhibin beta C chain; 
LRP2, lipoprotein-related protein 2; PRKAG2, protein kinase adenosine-monophosphate-activated non-catalytic sub-unit gamma 2; SNP, single-
nucleotide polymorphism; STC1, stanniocalcin 1; UBE2Q2, ubiquitin-conjugating enzyme E2 Q2; VEGFA, vascular endothelial growth factor A.

Am J Kidney Dis. Author manuscript; available in PMC 2020 June 10.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Johnson et al. Page 29

Ta
b

le
 3

.

Su
m

m
ar

y 
of

 R
an

do
m

iz
ed

 C
lin

ic
al

 T
ri

al
s 

in
 th

e 
Fi

el
d 

of
 S

er
um

 U
ra

te
 a

nd
 C

ar
di

ov
as

cu
la

r 
D

is
ea

se
s

C
V

 fi
el

d
In

te
rv

en
ti

on
P

ri
m

ar
y 

O
ut

co
m

es
ID

 N
o.

 a
nd

 S
ta

tu
s

B
P 

co
nt

ro
l

Fe
bu

xo
st

at
 v

s 
al

lo
pu

ri
no

l
C

lin
ic

 B
P 

an
d 

A
B

PM
N

C
T

01
70

16
22

a ; t
er

m
in

at
ed

 (
un

ab
le

 to
 e

nr
ol

l p
ar

tic
ip

an
ts

)

C
or

on
ar

y 
en

do
th

el
ia

l d
ys

fu
nc

tio
n

Fe
bu

xo
st

at
 v

s 
pl

ac
eb

o
C

or
on

ar
y 

fl
ow

N
C

T
01

76
39

96
a ; c

om
pl

et
ed

B
P 

co
nt

ro
l

Fe
bu

xo
st

at
 v

s 
pl

ac
eb

o
A

B
PM

N
C

T
01

49
64

69
a ; c

om
pl

et
ed

E
xe

rc
is

e 
to

le
ra

nc
e 

in
 c

hr
on

ic
 a

ng
in

a
Fe

bu
xo

st
at

 v
s 

pl
ac

eb
o

E
T

T
N

C
T

01
54

99
77

a ; t
er

m
in

at
ed

V
as

cu
la

r 
st

ru
ct

ur
e 

an
d 

fu
nc

tio
n 

(F
O

R
W

A
R

D
)

Fe
bu

xo
st

at
 v

s 
al

lo
pu

ri
no

l
C

ar
ot

id
-f

em
or

al
 P

W
V

E
ud

ra
C

T
 2

01
4–

55
67

-3
3;

 e
nr

ol
lm

en
t c

lo
se

d

N
ew

-o
ns

et
 m

et
ab

ol
ic

 s
yn

dr
om

e 
(F

A
ST

)
Fe

bu
xo

st
at

 v
s 

pl
ac

eb
o

In
su

lin
 r

es
is

ta
nc

e 
an

d 
fe

at
ur

es
 o

f 
m

et
ab

ol
ic

 s
yn

dr
om

e
N

C
T

01
65

42
76

a ; o
ng

oi
ng

B
P 

an
d 

C
V

 c
om

pl
ic

at
io

ns
 (

C
A

R
E

S)
Fe

bu
xo

st
at

 v
s 

al
lo

pu
ri

no
l

M
A

C
E

N
C

T
01

10
10

35
a ; o

ng
oi

ng

T
re

at
m

en
t o

f 
C

H
D

 (
A

L
L

-H
E

A
R

T
Y

)
A

llo
pu

ri
on

l v
s 

pl
ac

eb
o

M
A

C
E

E
ud

ra
C

T
 2

01
3–

00
35

59
-3

9;
 O

ng
oi

ng

C
er

eb
ro

va
sc

ul
ar

 p
ro

te
ct

io
n 

(X
IL

O
-F

IS
T

)
A

llo
pu

ri
no

l v
s 

pl
ac

eb
o

W
hi

te
 m

at
te

r 
pr

ot
ec

tio
n

N
C

T
02

12
27

18
a ; s

ta
rt

in
g 

R
ec

ru
itm

en
t

M
aj

or
 C

V
 d

is
ea

se
s 

(F
R

E
E

D
)

Fe
bu

xo
st

at
 v

s 
pl

ac
eb

o
M

A
C

E
N

C
T

01
98

47
49

a ; o
ng

oi
ng

A
bb

re
vi

at
io

ns
: A

B
PM

, a
m

bu
la

to
ry

 b
lo

od
 p

re
ss

ur
e 

m
on

ito
ri

ng
; B

P,
 b

lo
od

 p
re

ss
ur

e;
 C

H
D

, c
or

on
ar

y 
he

ar
t d

is
ea

se
; C

V
, c

ar
di

ov
as

cu
la

r;
 E

T
T,

 e
xe

rc
is

e 
to

le
ra

nc
e 

te
st

in
g;

 M
A

C
E

, m
aj

or
 a

dv
er

se
 c

ar
di

ov
as

cu
la

r 
ev

en
ts

; P
W

V
, p

ul
se

 w
av

e 
ve

lo
ci

ty
.

a C
lin

ic
al

T
ri

al
s.

go
v.

Am J Kidney Dis. Author manuscript; available in PMC 2020 June 10.

https://clinicaltrials.gov/ct2/show/NCT01701622
https://clinicaltrials.gov/ct2/show/NCT01763996
https://clinicaltrials.gov/ct2/show/NCT01496469
https://clinicaltrials.gov/ct2/show/NCT01549977
https://clinicaltrials.gov/ct2/show/NCT01654276
https://clinicaltrials.gov/ct2/show/NCT01101035
https://clinicaltrials.gov/ct2/show/NCT02122718
https://clinicaltrials.gov/ct2/show/NCT01984749
http://ClinicalTrials.gov

	Abstract
	Introduction
	Serum Urate Regulation
	Kidney Urate Excretion
	Gut Urate Excretion

	Definition of Hyperuricemia
	Biological Actions of Urate
	Antioxidant Effects
	Immune Effects
	Proinflammatory Effects
	Models of Hypertension and Kidney Injury
	Fructose and Metabolic Syndrome
	An Evolutionary Perspective

	Epidemiology
	Epidemiologic Studies
	Mendelian Randomization Studies
	GWAS Loci Predicting Both CKD and Serum Urate Concentration

	Clinical Trials
	Hypertension
	Chronic Kidney Disease
	Acute Kidney Injury
	Insulin Resistance and Metabolic Syndrome
	Additional Issues With Use of XORIs
	Summary

	Conclusions
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Table 1.
	Table 2.
	Table 3.

