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Abstract

Human interleukin-12 (hIL-12) is a cytokine with anticancer activity, but its systemic application 

is limited by toxic inflammatory responses. We assessed the safety and biological effects of an 

hIL-12 gene, transcriptionally regulated by an oral activator. A multicenter phase 1 dose-escalation 

trial (NCT02026271) treated 31 patients undergoing resection of recurrent high-grade glioma. 

Resection cavity walls were injected (day 0) with a fixed dose of the hIL-12 vector (Ad–RTS–

hIL–12). The oral activator for hIL-12, veledimex (VDX), was administered preoperatively 

(assaying blood-brain barrier penetration) and postoperatively (measuring hIL-12 transcriptional 

regulation). Cohorts received 10 to 40 mg of VDX before and after Ad–RTS–hIL-12. Dose-related 

increases in VDX, IL-12, and interferon-γ (IFN-γ) were observed in peripheral blood, with about 

40% VDX tumor penetration. Frequency and severity of adverse events, including cytokine release 

syndrome, correlated with VDX dose, reversing promptly upon discontinuation. VDX (20 mg) had 

superior drug compliance and 12.7 months median overall survival (mOS) at mean follow-up of 

13.1 months. Concurrent corticosteroids negatively affected survival: In patients cumulatively 

receiving >20 mg versus ≤20 mg of dexamethasone (days 0 to 14), mOS was 6.4 and 16.7 months, 

respectively, in all patients and 6.4 and 17.8 months, respectively, in the 20-mg VDX cohort. Re-

resection in five of five patients with suspected recurrence after Ad–RTS–hIL-12 revealed mostly 

pseudoprogression with increased tumor-infiltrating lymphocytes producing IFN-γ and 

programmed cell death protein 1 (PD-1). These inflammatory infiltrates support an immunological 

antitumor effect of hIL-12. This phase 1 trial showed acceptable tolerability of regulated hIL-12 

with encouraging preliminary results.

INTRODUCTION

Recurrent high-grade glioma (rHGG), also known as grade III or IV astrocytoma or 

glioblastoma (GBM), is an aggressive brain tumor with poor prognosis, with a median 

overall survival (mOS) of 6 to 9 months (1, 2). Treatment of rHGG has been limited partly 

because of incomplete understanding of the tumor microenvironment and immune evasion 

(3-6). rHGGs are spatially and temporally heterogenous, with diverse cell lineages bearing 

different mutational profiles that become expanded by chemotherapy and radiation (7-12). 

The tumor mass includes abnormal vasculature, an acellular structural framework, and an 

immunosuppressive tumor microenvironment consisting of cells found during predominant 

T helper cell 0 (TH0) polarization, such as myeloid-derived and T suppressor cells, with a 

paucity of natural killer (NK) and cytotoxic T cells that are impaired by checkpoint 

signaling (13-16). Immune checkpoint inhibitors (iCPIs) may have a therapeutic role in the 

treatment of rHGG as early-stage clinical trials have recently reported (5, 15, 17, 18). 
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However, the timing of drug dosing and the ability of iCPIs to sustain antitumor effects as 

monotherapy for most patients with recurrent GBM remain to be elucidated. Several 

products (bevacizumab, carmustine wafer, NovoTTF-100A, and lomustine), approved by the 

Food and Drug Administration, are not curative. Additional therapeutic options include 

nitrosoureas, temozolomide rechallenge, bevacizumab, administration of targeted biologics, 

and gross total resection (GTR) of contrast-enhancing area: These provide patients with 

rHGG with therapeutic options, but more effective therapies for rHGG are still needed (3, 

19, 20).

Interleukin-12 (IL-12), a heterodimeric cytokine, enhances natural and adaptive immunity, 

potently stimulates production of interferon-γ (IFN-γ), and changes the tumor 

microenvironment from one that contains less differentiated TH0 cells to one that has more 

inflammatory TH1 cells (21-25). IL-12 has been shown to increase CD8+ T cell counts, 

improving survival in the GL-261 mouse glioma model (26, 27). There was interest in the 

use of recombinant IL-12 in humans with cancer, and clinical trials of systemic IL-12 were 

undertaken but had to be stopped because the cytokine, administered as a recombinant 

soluble protein, was poorly tolerated (28-32). With the objective of minimizing systemic 

toxicity, a ligand-inducible expression switch [RheoSwitch Therapeutic System (RTS)] was 

developed to locally control production of IL-12 in the tumor microenvironment. In this 

system, transcription of the IL-12 transgene occurs only in the presence of the activator 

ligand, veledimex (VDX) (26, 33). In mice, VDX regulates the RTS gene switch in an 

engineered replication-incompetent adenoviral Ad-RTS-mIL-12 gene therapy vector, 

resulting in VDX dose–dependent production of mouse IL-12 (mIL-12) in a model of GBM 

(26, 33). VDX crossed the blood-brain barrier (BBB) in the GL-261 orthotopic model of 

mouse glioma, with about 50% of the VDX plasma concentration present in the tumor.

Here, we report the results of an open-label, phase 1 dose-escalation study to determine 

safety and tolerability of variable VDX doses with a fixed intratumoral Ad–RTS–hIL-12 

dose in patients undergoing rHGG resection. We show that VDX regulates production of 

IL-12 gene therapy in rHGG, converting an immunologically “cold” tumor 

microenvironment to inflamed “hot” due to increased influx of IFN-γ-producing T cells. We 

present preliminary evidence of encouraging mOS compared to historical controls, which is 

further improved when use of corticosteroids is minimized.

RESULTS

Accrued patients’ characteristics represent a heavily pretreated population

Demographics—Thirty-one patients (mean, 49 years; range, 26 to 74 years) were treated 

with Ad–RTS–hIL-12 + VDX (Table 1), including 20 (64.5%) with isocitrate dehydrogenase 

(IDH)–wild type GBM, 5 (16.1%) with IDH-mutant GBM, 3 (9.7%) with GBM not 

otherwise specified, 2 (6.5%) with IDH-mutant astrocytoma, and 1 (3.2%) with IDH–wild 

type astrocytoma. Twelve (38.7%) had O6-methylguanine-DNA methyltransferase (MGMT) 

promoter methylation, which, in tumor cells, correlates with improved survival outcome in 

newly diagnosed GBM and improved response to temozolomide chemotherapy (34, 35). 

Eight (25.8%) were unmethylated, and 11 (35.5%) had unknown methylation statuses 

(statuses are unavailable from historical pathology reports).
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Prior therapies—Patients were previously treated with a mean of 2.3 (range, 1 to 5) lines 

of therapy. Ten (32%) patients had failed to respond to bevacizumab. Eighteen patients 

(58%) received corticosteroids within 4 weeks of Ad–RTS–hIL-12 + VDX.

Treatment—Eleven patients (35%) underwent GTR based on the first postoperative scan 

(baseline). VDX (once per day) was started on postoperative day 1 for 14 days. The patient 

flow (CONSORT) diagram is shown in Fig. 1, with patient accrual at three institutions 

shown as the number of patients by VDX dosing level. Although no assessment of vector 

particles in tumor could be performed, the assays of human IL-12 (hIL-12) production 

shown in Fig. 2 provide evidence that enough vector particles transduced cells in the cavity 

to express the transgene.

Safety—The primary analysis was to determine the tolerability of escalating VDX doses 

with administration of a single fixed dose of 2 × 1011 vector particles (vp) of replication-

incompetent Ad–RTS–hIL-12 (Fig. 1). To determine a maximum tolerated VDX dose, a 

starting dose of 20 mg was administered to the first cohort. VDX was next escalated to 40 

mg and then deescalated to 30 mg. These two doses were relatively poorly tolerated because 

of adverse events (AEs), resulting in dose holds and the inability to complete VDX dosing. 

On the basis of this result, although the protocol-defined maximum tolerated dose (MTD) 

was not reached because dosing in the 30-mg cohort was held before the development of 

dose-limiting toxicities (DLTs), 20 mg of VDX was declared the optimal dose for further 

development in an expansion cohort of eight additional patients. In addition, a cohort using 

10 mg of VDX was assessed to determine a minimally effective dose.

Dose-dependent VDX peak-plasma concentrations correlated significantly (P < 0.05) with 

the dose, with significant differences between 10 and 30 mg of VDX (P < 0.02), 10 and 40 

mg of VDX (P < 0.03), and 20 and 40 mg of VDX (P < 0.04) (Fig. 2A). AEs were reported 

at all VDX dose levels, with higher incidence of drug discontinuation at the higher doses 

(Table 2). All AEs were reversible after VDX interruption. Central nervous system (CNS) 

AEs were generally ≤grade 2 and confounded by underlying disease and surgery. Related 

≥grade 3 CNS AEs reported included three events of headache and single events of brain 

edema, confusional state, and aseptic meningitis. The most common related ≥grade 3 AEs 

were lymphopenia/leukopenia, elevated alanine aminotransferase (ALT)/aspartate 

aminotransferase (AST), neutropenia, thrombocytopenia, and hyponatremia. Among the 

most common AEs, including individual AE components of cytokine release syndrome 

(CRS), the mean time to reversal (return to baseline or grade 1) upon VDX discontinuation 

was 4.5, 6.8, 8.8, and 9.1 days for lymphopenia, thrombocytopenia, neutropenia, and 

elevated ALT/AST, respectively. Although normalization of elevated body temperature was 

the first clinical sign of recovery, timing was confounded by concurrent use of antipyretics 

(including acetaminophen) and/or corticosteroids and the frequency of temperature 

recording. Transient flu-like symptoms and signs consistent with CRS occurred with varying 

severity but without observed grade ≥ 4 CRS. Frequency of grade 3 CRS was 0, 12.5, 25, 

and 50% in the 10-, 20-, 30-, and 40-mg dose groups, respectively, and was reversed upon 

holding or terminating VDX. In patients with grade 3 CRS, significant increases in serum 

IFN-γ over baseline (9 ± 6 pg/ml versus 239 ± 62 pg/ml, P < 0.01) and IL-12 (0.6 ± 0.2 
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pg/ml versus 105 ± 33 pg/ml, P < 0.02) were observed. In patients with milder or no CRS, 

significant increases in serum IFN-γ over baseline (0 ± 0 pg/ml versus 13 ± 6 pg/ml, P < 

0.05) and IL-12 (0.6 ± 0.2 pg/ml versus 17 ± 5 pg/ml, p < 0.02) were also observed but to a 

lesser extent. A comparison of the peak cytokine concentrations in no or milder CRS versus 

grade 3 CRS showed significant increases in both serum IFN-γ (13 ± 6 pg/ml versus 239 ± 

62 pg/ml, P < 0.02) and IL-12 (17 ± 5 pg/ml versus 105 ± 33 pg/ml, P < 0.04) in patients 

with CRS. In one patient with a grade 3 CRS, cerebrospinal fluid (CSF) sampling revealed 

high concentrations of IL-12 and IFN-γ by enzyme-linked immunosorbent assay (ELISA) 

and pleocytosis with elevated NK cell (75% of CSF lymphocytes) and CD3+ T cell counts 

(20%) detected by flow cytometry.

VDX crosses the BBB and regulates transcription of recombinant IL-12, eliciting and 
sustaining an intratumoral immune response

Dose-dependent increases in plasma and tumor VDX concentrations were observed, with 

about 40% of VDX plasma concentrations detected in resected rHGG tissue after a single 

VDX dose (Fig. 2B), consistent with BBB penetration. Sampling before (“off,” baseline 

value before VDX dosing), during (“on,” peak value for each patient during the 14 days of 

VDX administration with samples collected on days 1, 3, 7, and 14), and after VDX (“off,” 

2 weeks after cessation of VDX administration) revealed an increase in IL-12 and IFN-γ 
serum concentrations proportional to VDX dose (Fig. 2, C and D), indicating that VDX 

stimulated IL-12 transcription and subsequent generation of its downstream effector, IFN-γ. 

IL-12 and IFN-γ serum concentrations returned to baseline after VDX discontinuation, 

consistent with transient regulation of hIL-12 transcription. Three (±2) hours after VDX 

administration, the peak IL-12 serum concentration across the four cohorts was 25 to 109 

pg/ml, and the peak IFN-γ serum concentration was 15 to 168 pg/ml. Magnetic resonance 

imaging (MRI) is routinely used to monitor the progression of HGG. In addition, the 

contrast imaging agent, gadolinium (Gd), is administered intravenously to patients. The 

agent remains intravascular in the brain because it does not cross the BBB. However, if the 

BBB is disrupted by tumor, inflammation, or necrosis, then Gd leaks out (36). This uptake of 

contrast in brain tissue is the accepted surrogate to measure HGG/rHGG and its response to 

therapy. Because this uptake of Gd can also occur during inflammation or necrosis from 

previous treatments (such as radiation), this measurement by Gd uptake may also be 

unrelated to tumor growth. This has been called pseudoprogression to distinguish it from 

true tumor progression (37-41). Five patients with progressive MRI enhancement underwent 

another resection 1, 1.5, 4.3, 5.3, and 5.8 months after Ad–RTS–hIL-12 injection. In all five 

patients, there was evidence of increased inflammatory infiltrates, and 

immunohistochemistry revealed visible increases in CD8+ T cell infiltrates in the tumors 

(fig. S1). The patient (PT10) who recurred at 1 month could tolerate only six doses of VDX 

(40 mg), and post-injection tissue showed mostly recurrent tumor, but the other four 

patients’ post-injection excised tissues were more consistent with pseudoprogression. 

Neuropathologic analysis showed a decrease in vascular proliferation in the patient (PT17) 

with suspected recurrence at 1.5 months (table S1).

A representative patient (PT37) MRI series is shown in Fig. 3A, including areas with 

gradual increases in enhancement in both the occipital and parietal needle tracks. The size of 
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the parietal lesion appeared to increase and then subsequently decrease, consistent with 

pseudoprogression (Fig. 3A). Re-resected tissue revealed new mixtures of immune cells, 

interspersed with varying amounts of tumor cells, and reactive changes. Sufficient tissue for 

multiplexed immunofluorescence of GBMs before and after gene therapy was available for 

three of five patients (PT37, PT38, and PT39; Fig. 3B). This showed a 17-fold increase in 

the mean number of CD3+ T cells [tumor-infiltrating lymphocytes (TILs)] after treatment, as 

well as increases in CD3+CD8+ T cells, PD-1+ immune cells, and PD-L1–expressing cells 

(Fig. 3C). In contrast, there was no difference in CD3+CD4+FoxP3+ T regulatory cells or 

CD56+ NK cells by immunohistochemistry before and after IL-12 therapy (Fig. 3C). 

Intratumoral (localized) IFN-γ was measured with means ± SEM of 4 ± 3 pg/g and 226 ± 

138 pg/g before and after gene therapy, respectively (Fig. 3D). Concurrent serum IFN-γ was 

below the limit of quantification in these three patients whose tumors were re-resected and 

analyzed after gene therapy. These results suggested that IL-12 gene therapy elicited 

sustained tumor infiltration of T cells producing IFN-γ, thereby promoting a 

proinflammatory tumor environment.

Preliminary efficacy analyses suggest encouraging OS

The 20-mg VDX cohort exhibited a mOS of 12.7 months with 13.1 months of mean follow-

up (Fig. 4A). Survival in the 20-mg cohort at 12, 18, and 24 months was 60, 26.7, and 

13.3%, respectively. Survival at 12 months in the 10-, 20-, 30-, and 40-mg cohorts was 0, 60, 

0, and 30%, respectively. One patient receiving the 40-mg VDX dose was alive at the time of 

data cutoff (~30 months) (Fig. 4B). Twenty-one patients elected to pursue additional 

therapies with a median start time of 2.6 months (minimum, 1 month; maximum, 7.4 

months).

Potential prognostic variables for overall survival (OS) were examined using Cox regression 

(Fig. 5). P values and 95% confidence intervals (CIs) for the estimate of the hazard ratio 

identified that cumulative dexamethasone exposure to less versus more than 20 mg (P = 

0.0321) and male gender (P = 0.0085) had a significant, positive association with OS. IDH 

(mutated) status at initial diagnosis (P = 0.0607) and prior dexamethasone use (P = 0.0719) 

had no significant association with OS. Age, functional status, MGMT methylation at initial 

diagnosis, and extent of tumor resection failed to correlate with OS. Analysis using a 

multivariate Cox regression model demonstrated that VDX dose (20 mg versus 30 mg, P = 

0.0004) and gender (P = 0.0456) remained statistically significant for a positive association 

with OS, whereas dexamethasone did not show a significant correlation with OS (P = 0.08).

In the overall patient population, concurrent corticosteroids negatively affected survival: In 

patients cumulatively receiving >20 mg versus ≤20 mg of dexamethasone (days 0 to 14), 

mOS was 6.4 months (mean follow-up, 8.0 months) versus 16.7 months (mean follow-up, 

16.0 months), respectively (Fig. 6A). In the 20-mg cohort, in patients cumulatively receiving 

>20 mg versus ≤20 mg of dexamethasone (days 0 to 14), mOS was 6.4 months (mean 

follow-up, 9.6 months) versus 17.8 months (mean follow-up, 18.4 months), respectively 

(Fig. 6B). To examine whether survival could be predicted on the basis of the impact of 

IL-12 on the immune system, we analyzed the changes in CD8+ (cytotoxic) and FoxP3+ 

(regulatory) T cell counts in the peripheral blood of patients on days 14 to 28 after treatment. 
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When compared to baseline counts, a positive correlation (R = 0.6, P = 0.0071) between 

patient OS and percentage of change in the CD8+/FoxP3+ ratio was observed (Fig. 6C), 

suggesting that a systemic measurement of immune activation may correlate with 

therapeutic success of local administration of IL-12.

DISCUSSION

Finding effective immunotherapy approaches against rHGG remains challenging because of 

the highly immunosuppressive nature of the tumor microenvironment (42). IL-12 potently 

activates several immune effector functions against cancer cells (32). However, trials with 

recombinant systemic IL-12 administration failed because of intolerable toxicity in humans, 

mainly because of uncontrolled CRS (29). We hypothesized that a drug-inducible gene 

therapy approach would minimize toxicity and would be tolerated in humans while 

preserving the antitumor effects of hIL-12. Here, we have shown in humans that VDX-

inducible gene therapy allows for regulatable expression of hIL-12 in rHGG, resulting in 

IFN-γ generation and increased TILs with tolerable and reversible side effects.

This gene therapy approach could be applied in a variety of cancers to regulate local 

production of proteins that show low tolerability when delivered systemically. Previously, a 

dose of 2 × 1011 vp of an adenoviral vector constitutively delivering IFN-β was shown to 

cause intolerable neurotoxicity (43). In contrast, the main advantage of our study relies on 

the ability to control and, as necessary, halt cytokine expression using the ligand-inducible 

gene switch. There have been other gene therapy trials that have used adenoviral vectors to 

deliver IL-12 for oncologic disease (44-46). These trials did not use ligand-activated 

transcriptional regulation and were not performed in GBM, where toxicity from 

continuously uncontrolled production of IL-12 could be more deleterious. The use of a gene 

therapy vector to deliver IL-12 uses a different mechanism of tumor killing from the ones 

described in recent clinical trials with oncolytic viruses that have direct cytolytic effects 

from active viral replication or other gene delivery approaches, such as adenoviral vectors 

expressing herpes simplex thymidine kinase conferring cytotoxicity to valacyclovir (47-51).

These phase 1 data established that VDX crosses the BBB. We found a positive correlation 

between VDX dose and serum IL-12, as well as IFN-γ concentrations. VDX modulated the 

timing, duration, and magnitude of IL-12 gene expression. Serum IL-12 and IFN-γ reflect 

local (intratumoral) cytokine production and seepage of IL-12 through the vasculature. 

Transcriptional control of hIL-12 was tightly regulated by RTS as evidenced by the 

negligible detection of this cytokine in the blood upon discontinuation of VDX, which is 

consistent with absence of clinically relevant leakage. The 10-mg VDX cohort showed a 

slightly higher serum IL-12 concentration than anticipated, but this finding may be explained 

by the small size of this cohort, which included one patient taking multiple CYP 3A4–

interacting medications that likely resulted in increased VDX concentrations that led to 

IL-12 concentrations higher than 200 pg/ml (33).

Neurologic AEs were generally mild to moderate (grade ≤ 2) and potentially confounded by 

underlying disease and surgery. The frequency and severity of all AEs correlated with VDX 

dose and reversed promptly upon holding or discontinuing VDX. Compared to the higher 
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VDX dose cohorts (30 and 40 mg), the 10- and 20-mg cohorts presented less severe CRS 

and much better tolerability, resulting in higher compliance with treatment. When more 

severe CRS was observed, it correlated with increased serum IFN-γ concentrations and, to a 

lesser extent, with serum IL-12. Blood collection timing was possibly suboptimal to 

unequivocally document Cmax. These data highlight that production of hIL-12 within the 

CNS is well tolerated and that systemic side effects can be mitigated using a gene 

transcriptional “switch.”

GBM has been characterized as an immunological “desert” with scant TILs (3, 42). This 

likely limits the therapeutic potential of iCPIs. When present, resident T cells are profiled as 

exhausted, highlighting the immunosuppression of HGG (4, 52). These data contrast with 

our finding of persistent infiltration of T cells in five of five patients, weeks to months after 

completion of VDX. This interpretation is also supported by the observation that increased 

numbers of CD3+ and CD8+ lymphocytes infiltrating the tumor microenvironment may be 

associated with better clinical outcome in GBM (53, 54). The observation of sustained and 

markedly increased IFN-γ concentrations in the tumor microenvironment after the 

peritumoral administration of Ad–RTS–hIL-12 and activation of IL-12 gene expression by 

VDX is aligned with cytotoxic effector T cell function rather than with T cell anergy or 

exhaustion. Furthermore, local IFN-γ (presumably generated by activated TILs) in the 

absence of detectable IFN-γ in peripheral blood is consistent with the absence of AEs after 

completion of VDX. As a result, intratumoral localization of hIL-12 may allow for a more 

durable antitumor effect without the substantial systemic toxicity that was historically 

associated with systemic administration of IL-12. These data contribute to our understanding 

of IL-12 as a “master regulator” of the immune system and highlight that even the transient 

production of this cytokine may function as a match to turn tumors from cold to hot. IL-12 

has also been reported to have anti-angiogenic effects (55). In one patient (PT17) with 

suspected recurrence 1.5 months after injection, re-resected tumor showed visual evidence of 

reduced vascular proliferation when compared to pre-injection tissue. However, this was not 

evident in the other four patients. PT10, who underwent repeat craniotomy 31 days after 

injection, could only tolerate six doses of VDX and thus may not have had sufficient IL-12 

for angiogenesis. The other three patients were re-resected several months after injection and 

already had a low number of blood vessels in tumors at baseline. Therefore, IL-12 anti-

angiogenic effects may not have been easy to detect in these samples.

Of all doses tested, not only did 20 mg have a better safety profile, but also it improved 

survival, possibly because of superior treatment compliance with VDX. However, there was 

a higher proportion of IDH-mutant and IDH-unknown tumors in the 20-mg cohort in 

comparison to other cohorts. We attempted to compare the mOS of this subgroup to 

historical controls, but there are limitations to this type of analysis. The mOS of 12.7 months 

with a mean follow-up of 13.1 months appears better than the weighted median from 

historical controls (8.14 months) (19, 56-67). The survival rates at 6, 9, and 12 months 

compared favorably to previously reported results (19, 56-67). In contrast, cohorts of 30 and 

40 mg revealed shorter mOS, presumably because these patients did not tolerate the VDX 

treatment. In addition, in the 30-mg cohort, the patients were slightly older (60 versus 46 

years), had previously undergone more failed lines of therapy (3.0 versus 2.2), had a higher 

rate of previous bevacizumab exposure (4 of 4 versus 4 of 15), and received a higher 
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cumulative dose of steroids during active VDX dosing (106 mg versus 48 mg). Patients who 

received a cumulative dose of ≤20 mg of dexamethasone during active VDX dosing had the 

longest survival (16.7-month mOS in all patients treated, improving to 17.8-month mOS in 

the 20-mg VDX cohort), possibly because they were less likely to experience steroid 

immunosuppression and impairment of immune activation. Alternatively, dexamethasone-

based induction of CYP 3A4 could have increased the elimination of VDX, thus inhibiting 

transcriptional activation of IL-12. The apparent deleterious impact of dexamethasone when 

dosed with VDX highlights that patients with rHGG may benefit from limiting systemic 

exposure of corticosteroids to maximize the benefit of immunotherapy such as hIL-12.

MRI interpretation is particularly challenging in the rHGG population. Numerous studies 

have shown that the correlation between increased Gd enhancement and survival is at best 

limited (68, 69). The reliability of MRI in assessing tumor progression is particularly 

difficult in patients who have had previous surgery. Varying degrees of tumor reduction have 

been seen, as well as new and fluctuating lesions, consistent with previously reported 

imaging with viral vector–based immunotherapy (47, 50). Inflammatory and potentially 

delayed responses to immunotherapy further compound interpretation of response by MRI 

even with recent guidelines (68). Our findings with three patients who underwent 

posttreatment biopsy when suspected of clinical progression revealed a marked immune cell 

infiltrate and low tumor cell content, consistent with pseudoprogression rather than tumor 

progression. This highlights the difficulty and lack of predictability of MRI for true 

progressive disease during immunotherapy. With these cautionary statements in mind, 

measured progression-free survival per immunotherapy Response Assessment in Neuro-

Oncology (iRANO) criterion was 0.9 months (95% CI, 0.4 to 2.0 m).

The impact of tumor resection on postrecurrence survival is difficult to assess, but one 

prospective, randomized study showed a survival of 23.4 weeks (5.4 months) in patients 

with more than 75% resection at reoperation (59). A more recent nonrandomized report 

estimated ranges from 6.5 months for patients with incomplete tumor resection to 11.4 

months for patients with GTR and 9.8 months for patients who did not undergo surgery (70). 

An additional recent study revealed that resection of recurrent rGBM improved mOS from 

4.7 to 9.6 months (71).

The observed survival in the 20-mg cohort is encouraging given the number of previous 

recurrences (11 of 15 patients with two or more), previous bevacizumab failures (4 of 15), 

concomitant steroid use, lack of exclusion for bulky or multifocal tumors, and GTR in only 

35% of patients. The sustained production of IFN-γ, marked CD8+ T cell infiltration, and 

increased expression of programmed cell death protein 1 (PD-1) and programmed cell death 

ligand 1 (PD-L1) after treatment support an immune basis for the mechanism of action of 

IL-12 and warrant studies including combination with iCPIs, which are currently in progress 

(NCT03636477, clinicaltrials.gov). However, the observed survival benefit needs further 

confirmation given the small number of patients and the absence of a control arm. An 

alternative to the use of historical controls as a control arm would have been to use 

comparable cohorts of patients who were treated with standard of care at each participating 

institution. However, this analysis would also have been limited by the lack of agreement on 

what constitutes standard of care in the comparand rHGG patient population, by the number 
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of pretreatments this comparand cohort would have gone through, and by the type of 

concurrent treatments that this comparand cohort was subjected to. This type of analysis 

may be easier to do in the newly diagnosed HGG setting, as done in (51). In addition, 

treatment modalities in phase 1 studies such as this aim to establish safety and tolerability, 

but because the treatment is delivered during neurosurgical resection, evaluation of side 

effects is rendered difficult by side effects caused by the surgery itself.

In summary, this phase 1 trial reports the use of a transcriptional switch to safely control 

dosing of hIL-12, highlighting that this can be accomplished across the BBB to remodel the 

tumor microenvironment with an influx of activated immune cells. The trial showed 

encouraging mOS (12.7 months) in patients with rHGG compared to historical controls, 

which further improved to 17.8 months when dexamethasone use was limited during active 

dosing.

MATERIALS AND METHODS

Study design

ATI001-102 (NCT02026271, clinicaltrials.gov) used a standard phase 1 open-label, 

unblinded, 3 + 3 dose escalation design to evaluate the safety and tolerability of Ad–RTS–

hIL-12 (a single intratumoral injection, 2 × 1011 vector particles) with four oral VDX dose 

levels (10, 20, 30, and 40 mg) in patients with rHGG scheduled for tumor resection (either 

for a GTR, defined as greater than 90% removal of Gd-enhancing tumor by MRI within 48 

hours or subtotal) on day 0. The arm of the trial being presented in the current study required 

that patients could undergo a surgical resection of tumor, but we have also accrued patients 

to a second arm in the clinical trial to assess the safety of stereotactic Ad–RTS–hIL-12 

injection in tumors that could not be resected. The primary end point was assessment of 

safety of Ad–RTS–hIL-12 + VDX. Secondary end points included OS, VDX concentration, 

correlative measures of immune response, overall response rate, and progression-free 

survival. To obtain a preliminary assessment of efficacy, we used survival results from 

published literature (see below).

Patients

Institutional review boards approved the study, and informed consent was obtained from 

patients before enrollment. AEs were evaluated on the basis of National Cancer Institute’s 

Common Terminology Criteria for AEs, version 4.03. Patients were prospectively selected 

on the basis of age (18 to 75 years), diagnosis of supratentorial, histologically confirmed 

HGG (World Health Organization grade III or IV) and evidence of recurrence as determined 

by MRI according to the Response Assessment in Neuro-Oncology (RANO) criteria after 

receiving standard initial therapy (68, 69). Patients were required to have a Karnofsky 

performance status of ≥70, adequate bone marrow, liver, and kidney functions, and ability to 

undergo standard MRI with contrast. Patients and their tumors had to be deemed eligible for 

a craniotomy for tumor resection.

Patients were excluded if they had radiotherapy within 4 weeks, clinically significant 

concurrent medical conditions, or uncontrolled seizures. There were no limitations on the 
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number of previous therapies, previous recurrences, or previous bevacizumab or 

dexamethasone use. Use of cytochrome P450 system (CYP 3A4)–interacting medications 

(excluding dexamethasone) was prohibited because CYP 3A4 metabolizes VDX (26, 33).

Ad–RTS–hIL-12 and VDX

Ad–RTS–hIL-12 is a replication-incompetent adenoviral serotype 5 vector encoding the 

hIL-12 p70 transgene under the control of the RTS gene switch (26, 72). VDX is an orally 

active small-molecule activator ligand(R)-N′-(3,5-dimethylbenzoyl)-N′-(2,2-

dimethylhexan-3-yl)-2-ethyl-3-methoxybenzohydrazide. Data related to the 

pharmacokinetics of VDX in mice and monkeys have been published (26, 33).

Treatment

About 3 hours before resection, patients received one VDX dose. Peripheral blood was 

collected at the time of resection (on day 0). Immediately after resection, patients received 

intraoperative freehand injections of Ad–RTS–hIL-12 to two peritumoral sites for a total 

volume of 0.1 ml. Injection sites were selected by the neurosurgeon and had to be 

noncontiguous with the ventricle. The type and mode of injection have been described 

before (43, 49-51). Briefly, a 25-gauge needle attached to a tuberculin syringe was inserted 

into the white matter of the resected tumor cavity, and 50 μl was slowly injected over about 

30 to 60 s. The needle was slowly retracted. Routine neurosurgical hemostasis was carried 

out.

Imaging and tumor evaluation

After the resection, baseline MRI was performed within 72 hours after Ad–RTS–hIL-12 

administration. Imaging assessments were performed using the RANO/iRANO criteria (68, 

69). Tumor response was evaluated radiographically at study sites and through a central 

reading laboratory using serial MRI scans. Radiographic tumor size was assessed using 

perpendicular bidimensional measurements per RANO/iRANO criterion (68, 69). Tumor 

response was assessed at 2 weeks (day 14), 4 weeks (day 28 ± 7 days), 8 weeks (day 56 ± 7 

days), and every 8 weeks thereafter for all patients until the occurrence of confirmed tumor 

progression. There were no reports of ischemia or infarction at the sites of vector injection.

Measurement of VDX

Brain tumor and plasma samples were analyzed for VDX using a liquid chromatography–

mass spectrometry method (33).

Cytokine analyses

Serum hIL-12 and IFN-γ were measured by ELISA using kits from R&D Systems Inc. 

[catalog nos. D1200 (IL-12) and DIF50 (IFN-γ)]. IL-12 and IFN-γ in CSF (intraoperative 

sampling) were measured by electrochemiluminescence immunoassay using a human “V-

PLEX” custom kit obtained from Meso Scale Discovery (catalog no. K151A0H-01). All 

assays were run according to the manufacturers’ procedures. Samples were assayed in 

triplicate.
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Tumor immunoprofiling

Formalin-fixed, paraffin-embedded tumor samples were prepared from surgical resection 

before treatment and biopsies after treatment at the time of suspected progression. A 

conventional hematoxylin and eosin (H&E)–stained slide was reviewed (NeoGenomics Inc.) 

to confirm the presence of tumor and at least 500 cells before proceeding with 

immunofluorescence labeling. A virtual bright-field–type image of the tissue was created 

similar to a conventional histochemical H&E-stained tissue section, using fluorescence 

images (73). In this method, nuclear labeling from the 4′,6-diamidino-2-phenylindole 

(DAPI) channel was assigned a purple pseudocolor to simulate hematoxylin staining, and 

nonnuclear structural characteristics derived from tissue autofluorescence in the Cy2 

(fluorescein isothiocyanate) channel were assigned a pink pseudocolor to simulate eosin 

counterstaining. Fifteen to thirty regions of interest per slide were then manually selected for 

analysis by a trained pathologist from the actual serial section being multiplex 

immunolabeled using this “virtual” H&E stain. Multiplexed immunofluorescence was 

performed using MultiOmyx technology [MultiOmyx: Multi-Molecular Multiplexing 

Methodology, NeoGenomics Inc. (74)] to label up to 12 biomarkers on a single slide, 

including antibodies with specificities for CD3, CD4, CD8, CD20, CD56, CD68, CD45RO, 

PD-1, PD-L1, CTLA-4, FoxP3, and GFAP (glial fibrillary acidic protein). Each of the six 

cycles of labeling was performed using a pair of antibodies directly conjugated to either Cy3 

or Cy5, followed by imaging using an IN Cell Analyzer 2200 (GE Healthcare Life Sciences) 

and then dye inactivation (75, 76). Nucleated cells (25,000 to 80,000) per sample were 

analyzed with proprietary software (MultiOmyx: Multi-Molecular Multiplexing 

Methodology, NeoGenomics Inc.), using the DAPI channel to align markers. Exploratory 

image analysis was performed using proprietary algorithms (MultiOmyx: Multi-Molecular 

Multiplexing Methodology, NeoGenomics Inc.) to quantify expression of markers, detect 

and classify cells by immunophenotype, and determine the density of cells per unit area by 

immunophenotype.

Historical controls

An initial literature search of randomized phase 2, 2/3, or 3 studies for patients with rHGG 

receiving approved treatments of lomustine, carmustine wafer, bevacizumab, temozolomide, 

and NovoTTF-100A identified 13 studies with a total of 2339 patients. This dataset was 

further refined to only include studies using North American and/or European standard of 

care: bevacizumab or lomustine as monotherapy (9 studies; 10 arms; 698 patients) and was 

used as the basis for our historical controls (55-66). We calculated a weighted mOS using 

the following formula

Weighted mOS = 1

∑i = 1
k wi

mOSi

, wi = ni/ ∑
k = 1

k
ni

where W = weight and n = sample size.
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Statistical analysis

Safety of Ad–RTS–hIL-12 + VDX was determined by AE severity and frequency to decide 

on DLT and MTD. VDX concentration ratios between brain tumor and plasma and peak 

cytokine (IL-12 and IFN-γ) concentrations are expressed as means ± SEM. Statistical 

analysis for VDX and cytokine concentration consisted of a one-way analysis of variance 

(ANOVA), and when appropriate (when a comparison between specific treatment groups 

was needed), an unpaired t test was performed. Differences were considered significant at P 
< 0.05. Kaplan-Meier method was used to estimate mOS and 12-, 18-, and 24-month OS 

rates. Univariate and multivariate Cox regression analysis were used to determine the effect 

of selected variables on OS.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Study CONSORT diagram.
Patient accrual at four institutions shown as the number of patients treated at doses of 10, 20, 

30, and 40 mg of VDX. The percentage of compliance represents the number of days that 

the VDX was orally administered versus the total number of days that each patient was 

expected to take the drug over 14 days. SAE, serious adverse event; QD, once a day.
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Fig. 2. VDX, IL-12, and IFN-γ concentrations upon VDX treatment.
(A) Peak plasma concentrations of VDX at each drug dosage. Each symbol represents 

plasma from a single patient. (B) VDX in plasma and intratumorally at the time of surgical 

resection. VDX was administered to each patient about 3 hours before the start of the 

craniotomy. Serum and tumor obtained at the time of resection were assayed for VDX 

concentrations. (C) IL-12 in peripheral blood before, during, and after VDX dosing. (D) 

IFN-γ in peripheral blood before, during, and after VDX dosing. *P < 0.05.
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Fig. 3. Radiologic and immunologic analyses of tumors after treatment.
(A) Three patients with suspected progression after treatment underwent re-resection of 

contrast-enhancing suspected tumor. The MRI images shown are from one patient who had a 

right occipital recurrent GBM resected. The MRI scans from 1 day after surgery (baseline) 

and from weeks 4, 8, and 24 are shown. The injections were given in an area of the occipital 

lobe and one area more superior toward the parietal lobe. Red and yellow arrows show areas 

with changes in enhancement in the occipital and parietal needle tracks. (B) Left panels: 

GBM from the patient shown in (A) at the time of resection before injection of Ad–RTS–

hIL-12 [shown in the top panel at 20× magnification (scale bar, 100 μm) and in the bottom 

panel at 100× magnification (scale bar, 50 μm)]. Right panels: GBM from the same patient 

175 days after treatment (at the time of suspected pseudoprogression). Resected material 
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from the occipital lesion was analyzed by immunofluorescence histochemistry for 

expression of CD3+ (yellow), CD8+ (red), CD3+CD8+ (orange), PD-1+ (green), PD-L1+ 

(cyan), and GFAP (white) [shown in the top panel at 20× magnification (scale bar, 100 μm) 

and in the bottom panel at 100× magnification (scale bar, 50 μm)]. (C and D) Quantitative 

analyses of baseline and posttreatment expression of immunologic markers in tumors for the 

three patients undergoing re-resection after injection. (C) Counts of CD3+-, CD3+CD8+-, 

PD-1+-, CD3+CD4+FoxP3+-, CD56+-, and PD-L1+–expressing cells per square millimeter 

of tumor. (D) IFN-γ in the three GBMs before and after treatment.

Chiocca et al. Page 22

Sci Transl Med. Author manuscript; available in PMC 2020 August 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. Analyses of treatment efficacy.
(A) Kaplan-Meier analysis of overall survival (OS) for the 20-mg (blue line) versus 

combined 10-, 30-, and 40-mg cohorts (green line). The + censored label refers to the single 

patient alive at time of data cutoff. (B) Survival swimmer plot. The x axis lists survival time 

in months, with each patient number on the y axis. Blue and green colors represent patients 

who received 20 mg or less or more than 20 mg of cumulative dexamethasone, respectively, 

during days 0 to 14 of VDX treatment. The 10-, 20-, 30-, and 40-mg V designations at the 

end of each bar represent the dose of VDX that each patient received. Patients on steroids at 

entry, timing of progressive disease, and other therapy events are listed. The median OS was 

12.7 months.
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Fig. 5. Forest plots of prognostic factors of subgroups examined for OS.
HR, hazard ratio.
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Fig. 6. Additional efficacy analyses.
(A and B) Kaplan-Meier survival curves based on cumulative dexamethasone dosage (red 

line, ≤20 mg of dexamethasone; black line, >20 mg of dexamethasone) for patients treated 

with (A) 10, 20, 30, or 40 mg of VDX (days 0 to 14) or (B) 20 mg of VDX (days 0 to 14). 

(C) Correlation of survival with peripheral blood CD8+ (cytotoxic T cell)/FOXP3+ 

[regulatory T cell (Treg)] ratio at 14 to 28 days after viral injection. Triangles represent 

deceased patients, and square represents an alive patient (P = 0.0071, R = 0.6).
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