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Abstract

Stroke is the leading cause of long-term disability with no current treatment addressing post-stroke 

disability. The complex pathophysiology of stroke and the brain’s limited potential for 

regeneration prevents sufficient endogenous repair for complete recovery. While engineered 

materials provide an exciting opportunity to augment endogenous repair in conjunction with other 

therapies that address post-stroke disability, much of the preclinical work in this arena is still in its 

infancy. Biomaterials can be used to enhance drug- or stem cell-sustained and targeted delivery. 

Moreover, materials can act as extracellular matrix-mimics and augment a pro-repair environment 

by addressing astrogliosis, inflammation, neurogenesis, axonal sprouting, and angiogenesis. 

Lastly, there is a growing need to elucidate stroke repair mechanisms to identify novel targets to 

inform material design for brain repair after stroke.

Ischemic stroke

Stroke is the second leading cause of morbidity in the world and remains the leading cause 

of severe long-term disability[1]. Stroke affects approximately 795,000 people in the US 

alone at a rate of one every 40 seconds[1]. The total annual cost of stroke is over $34 billion 

and is projected to grow to over $184 billion by 2030[1,2]. This significant economic burden 

can be primarily attributed to direct medical costs related to stroke, while the remaining 30% 

of the cost is attributed to the indirect costs, such as diminishing productivity as a result of 

stroke-related disability[1]. Stroke is the result of sudden interrupted or reduced blood flow 

to the brain, depriving brain tissue of oxygen and nutrients. Ischemic stroke accounts for 

87% of all strokes[1] and occurs when blood vessels occlusion leads to local oxygen 

deprivation, formation of an infarct that is associated with physical and cognitive 

disabilities[3–5]. The remaining 13% of stroke cases are hemorrhagic[1].

Stroke is characterized by complex pathophysiology, which begins with a sudden energy 

deficit and hypoxic conditions results in necrosis of neurons and glia that forms the stroke 

infarct[4]. Moreover, dying neurons uncontrollably release glutamate that causes further cell 

death by cellular excitoxicity. The blood-brain barrier (BBB) breaks down and triggers 
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immune cell infiltration, release of free radicals and proteases. Substantial cell death and 

BBB compromise activates microglia, the local inflammatory cells, to express extracellular 

matrix (ECM)-degrading enzymes (i.e. matrix metalloproteases (MMP), hyaluronidase) that 

further degrades the brain tissue ECM and compromises its mechanical and biochemical 

integrity. The rapid cell death and ECM degradation leads to the formation of a stroke cavity. 

In order to limit growing stroke infarct and matrix degradation, astrocytes undergo 

astrogliosis where they form a glial scar that compartmentalizes the lesion (Figure 1a). 

While this prevents the stroke infarct from growing, it may limit regeneration as glial scar 

thickness positively correlates with stroke severity[6].

There are currently two FDA-approved ischemic stroke interventions that are used within the 

acute time window, tissue plasminogen activator (tPA) [7] and endovascular 

thrombectomy[8]. Both interventions focus on restoring blood flow by removing blood clot 

within the first few hours of stroke onset to prevent further infarct damage. Intravenously 

administered tPA enzymatically degrades the thrombus while endovascular thrombectomy is 

a surgical procedure to mechanically remove the thrombus in large vessels. Although the 

availability of these treatments has been effective for reperfusion, both these interventions 

have a very limited time window and they do not address the long-term neurological deficit 

resulting from stroke[7,8]. After the acute phase, the only available therapy to minimize 

stroke-related disability is rehabilitation Low-intensity training can begin as early as 72 

hours after poststroke, followed by additional rehabilitation programs up to 2 months after 

stroke[9]. Unfortunately, the extent of recovery from rehabilitation is challenging to predict 

and may not result in sufficient functional recovery that warrants an independent standard of 

living[10,11]. Stroke’s encouraging decreasing mortality leads to more survivor living with 

stroke-related disabilities[1,2,12] and therefore, new treatments that address poststroke 

disability are critically needed to improve patient quality of life.

Clinical studies for stroke that focus on neuroprotection and not reperfusion has been 

conducted since the 1990s. Clinical studies can be grouped into interventions addressing 

neuroprotection, neurogenesis, inflammation, excitoxicity and oxidative stress[13–15]. 

Unfortunately, nearly all fail to demonstrate clinical efficacy with a third of these studies 

indicated false positives while the majority reported neutral results. This underscores the 

need for better preclinical experimental design and more consistent endpoints between 

animal studies and human clinical trials[16]. The goal of ongoing research on brain repair 

after stroke is to enhance recovery of functional brain tissue and ultimately reduce loss of 

function. Strategies of promoting repair poststroke has focused on the delivery of drugs in 

the form of small molecules, antibodies, and proteins to limit further brain damage and 

regenerate brain tissue. Additionally, preclinical stem cells therapies have also shown 

promise as they promoted recovery. For instance, the use of mesenchymal stem cells to 

promote recovery after stroke[17]. Unfortunately, systemic drug therapies face the challenge 

of spatial and temporal control of delivery. With stroke, the BBB serves as an additional 

drug localization challenge to systemic delivery before renal clearance. On the other hand, 

poor survival of cell transplants has limited its potential to enhance brain repair after stroke.

To combat challenges with systemic intravenous delivery, current approaches on drug 

delivery to central nervous system (CNS) across BBB show two main strategies: improving 
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systemic delivery or developing local delivery. Improving systemic delivery ranges from 

modifying chemical properties for improved solubility and membrane penetration, 

exploiting cellular processes such as transcytosis, to engineered viral and non-viral 

nanoparticles[18,19]. For example, intravenous nanoparticle delivery of brain-derived 

neurotrophic factors (BDNF) has shown to increase its influx into the brain vs native 

BDNF[20]. However, it’s still challenging to sustain drug concentration in the brain for 

efficacy while minimizing systemic exposure. In contrast, there are other administration 

techniques that are more invasive but directly targets regions of interest within the CNS, 

such as intracerebral, intraventricular or intrathecal. With the additional risk of a more 

invasive delivery, local delivery methods avoid the BBB and results in high drug 

concentration in CNS while minimizing systemic exposure. However, drug clearance is still 

a problem that demands multiple invasive bolus injections to sustain drug concentration [18]. 

Local delivery of stem cells has seen success in animal models and several clinical trials are 

now underway to assess safety and efficacy towards reduced stroke disability [21,22], 

however, cell death is still a major concern.

Biomaterials offer a promising treatment option together with local delivery to prevent 

systemic exposure and sustain drug release in the brain (Figure 1b). For instance, a 

hyaluronan-methylcellulose composite hydrogel implanted epi-cortically has showed 

sustained delivery of peptide and protein therapies in stroked rats [23,24] (Figure 2c). Other 

studies have shown that hydrogels can provide a platform for local drug delivery with 

enhanced spatial and temporal control, working in conjunction with small molecule, peptide, 

protein and stem cell therapies [25,26]. In the following sections, we present an alternative 

approach to promote recovery after stroke: the use of materials locally to support the 

repairing peri-infarct and the necrotic infarct tissue.

Biomaterials for brain repair

It is important to note that like other tissues, the brain attempts to repair itself after an 

ischemic event as evident by increase in endogenous neuroplasticity [27]. However, this 

enhanced plasticity is transient and does not always result in sufficient recovery after stroke. 

In addition, neurons have limited self-repair capability[28]. Nevertheless, the fact that pro-

repair pathways are activated after stroke offer an opportunity to augment their outcomes. 

We propose that hydrogel materials, when placed in the affected area, can offer a platform to 

augment these endogenous repair pathways through retention of expressed proteins or 

delivery of complementary activators/inhibitors. So far biomaterials have been designed to 

address the key aspects of stoke pathophysiology that are believed to prevent a pro-repair 

environment or that need to promote further repair, inflammation, astrogliosis, angiogenesis, 

neurogenesis and axonal sprouting.

Unlike previous examples where materials were strictly utilized as drug delivery vehicles, 

material scaffolds can additionally serve as ECM placeholders when delivered locally to the 

stroke infarct (Figure 1c). Materials acting as matrix-analog can promote recovery after 

stroke by providing temporary ECM within the compromised stroke infarct ECM. Around 

the stroke infarct, astrocytes have been shown to both promote and obstruct stroke recovery. 

Astrogliosis, or formation of an astrocytic scar surrounding the stroke cavity, is a reactive 
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neurotoxic astrocyte phenotype that severely limits stroke recovery and loses its ability to 

promote neuronal survival, axonal sprouting and synaptogenesis[29]. However, the scar or 

peri-infarct region is also where pro-repair pathways are activated. Thus, placing a hydrogel 

ECM material in the infarct core, also places it next to the region where pro-repair pathways 

are activated, and endogenous repair is occurring.

Inflammation

Normally, the CNS is an immune-privileged site that is separated from peripheral immune 

system by the BBB. However, ischemic injury activates microglia, the resident immune cells 

of the CNS and they start exhibiting differential activated phenotypes that are analogous to 

the simplified M1 pro-inflammatory and M2 pro-healing phenotypes of macrophages [4]. 

Classically activated (M1) microglia release proinflammatory cytokines, ROS, and nitrous 

oxide that induces reactive astrocytes, BBB breakdown and extravasation of peripheral 

immune cells [29]. However, selective ablation of microglia is also detrimental as 

alternatively activated (M2) microglia are anti-inflammatory and promote brain repair by 

increased production of anti-inflammatory cytokines and neurotrophic factors [30]. Multiple 

studies have shown that the degree of microglia activation, timing and degree of cytokine or 

factor expression can result in ether positive or negative outcome after stroke [4,31,32]. 

Therefore, immunomodulation seeking to enhance brain repair after stroke requires powerful 

spatiotemporal control. Injection of materials into the stroke cavity has demonstrated that 

relatively simple materials can have a dramatic effect on the number of macrophage/

microglia both in the stroke and peri-infarct areas. Injection of in-situ gelling hyaluronic acid 

(HA) hydrogels [33], assembling ECM derived materials [34,35] and peptide-based gels [36] 

into the stroke core, lower the number of microglia and in some cases switch the phenotype 

of macrophages from M1 to M2 even without the explicit delivery of anti-inflammatory 

agents. In the case of hyaluronic acid hydrogels, mechanical properties are important as 

materials that are >1000Pa were found to be pro-inflammatory [37]. For natural ECM 

derived materials like urinary bladder matrix, lower concentration or a less stiff scaffold is 

important to modulate macrophage and microglia number as well as M1 to M2 

transition[34,35]. Further, simple changes to the hydrogel microstructure have also shown 

reduction of macrophage number in the infarct and peri-infarct tissue. While a nanoporous 

hyaluronic acid gel reduces the number of microphage/microglia in the peri-infarct area, 

hyaluronic acid microporous annealed particles (MAP) reduces this number in both the 

infarct and peri-infarct tissue and does so to a greater extent [33]. Further, porous hyaluronic 

acid MAP hydrogels with average pore diameter of 15–20 μm have been shown to reduce 

the number of macrophage/microglia early by decreasing the number of new macrophage/

microglia infiltration after hydrogel injection and maintaining the lower level over time [38]. 

Lastly, the same porous MAP hydrogels are able to switch the phenotype of macrophage/

microglia that are located within the hydrogel towards Arginase 1 (Arg1)-expressing [38] 

(Figure 2f). These results agree with other reports that porosity and spatial confinement can 

modulate the phenotype of macrophages [39,40]. Thus, biocompatible injectable hydrogels, 

in the context of stroke, can act as anti-inflammatory agents themselves even without the 

delivery of additional factors.
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In addition to regulating macrophage/microglia, modulation of the astrocytic scar and 

astrocyte phenotype can be achieved by injectable hydrogel injections into the stroke cavity. 

As mentioned, reactive astrocytes fail to contribute to repair processes such as to promote 

neuronal survival, axonal sprouting and synaptogenesis[29]. The same materials that reduce 

macrophage/microglia also reduce the thickness of the astrocytic scar [33,38,41] and in 

some cases have been shown to modulate astrocyte phenotype [38]. Although explicit 

modulation of the astrocyte phenotype has not been reported for all studies injecting 

hydrogel materials, the fact that a porous hyaluronic acid hydrogel has demonstrated that 

astrocytes in the infarct and peri-infarct areas switch their phenotype to a less reactive state 

(lower pERK, s100-beta, and C3 expression) [38] suggests that this is an outcome that can 

be engineered into a biomaterial.

Although the material itself can act as an anti-inflammatory agent, further 

immunomodulation can be achieved with the incorporation of anti-inflammatory agents. For 

example, the introduction of heparin, a known anti-inflammatory agent [42,43], further 

reduces the number of macrophage/microglia and the thickness of the astrocytic scar [41]. A 

self-assembled peptide (SAP) RADA16 (RADARADARADARADA) nanofiber scaffold 

was shown to reduce astrogliosis and macrophage/microglia numbers in a traumatic brain 

injury (TBI) model [44] (Figure 2a). RADA16 SAP scaffold was then used to transplant 

activated astrocytes and human umbilical cord mesenchymal stem cells (hUC-MSC) along 

with BDNF peptide as their previous in vitro studied improved neuronal differentiation of 

hUC-MSC [45].

There are other pro-repair approaches to modulate inflammation. Angiogenic agents such as 

vascular endothelial growth factor (VEGF) and angiopoietin 1 (Ang1) delivered in HA-

PLGA scaffolds decreased astrocyte and microglia [46]. Epi-cortical delivery of hyaluronan 

methylcellulose hydrogel and poly(lactic-co-glycolic acid) (PLGA) microparticles loaded 

with cyclosporin A, an FDA-approved immunosuppressant, has been shown to sustain 

cyclosporin A release in the brain while also increasing the numbers of proliferating cells 

[24]. It would be interesting to also look at the treatment’s effects on astrogliosis and 

inflammation since cyclosporin A is a known immunosuppressant. There are also small 

molecules being studied for modulating inflammation in acute stroke. The antibiotic 

minocycline was delivered systematically in acute stroke and decreased astrogliosis and 

reactive microglia [47]. Melanin has been shown to have potential as a radical scavenger and 

delivered in a polyethylene glycol (PEG) nanoparticle; its systematic delivery reduces 

astrogliosis and activated macrophages[48]. In addition to delivery of small molecules, 

peptides and proteins in the context of materials, stem cell with material delivery approaches 

have been shown to reduce astrogliosis and immunoreactive microglia and macrophages; for 

example, epidural delivery of neural progenitor cell (NPC) loaded in commercial fibrin glue 

(Beriplast) [49].

Neurogenesis/axonal sprouting

Stroke results in necrosis and apoptosis of neurons within the infarct that leads to 

neurological deficit[4]. Damaged neuronal circuitry requires enhanced neuroplasticity so 

new or existing neurons can form new connections. Similar to inflammation and 
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angiogenesis (below) hydrogel biomaterials can promote axonal sprouting in the peri-infarct 

region even when not loaded with neurogenic or angiogenic factors. Thus, hydrogel 

materials can modulate the post-stroke environment in favor of repair processes that extend 

beyond inflammation. In the case of axonal sprouting, microstructure plays a critical role. 

Hyaluronic acid MAP gels improved axonal sprouting in both infarct and peri-infarct region 

compared to the same non-porous hydrogel or sham wounds [38]. Biodegradation of urinary 

bladder matrix-derived ECM hydrogels also led to higher neurogenesis in ECM hydrogel 

[35].

To more robustly enhance neuroplasticity post stroke, introduction of bioactive factors that 

can modulate neuroplasticity processes into hydrogel biomaterials is an obvious choice. 

There have been a number of efforts to deliver BDNF after stroke. BDNF has been linked to 

neuroprotection, synaptic plasticity, neurogenesis and axonal sprouting as well as functional 

recovery poststroke in patients and serum levels of BDNF have been proposed as a 

biomarker for rehabilitation [50]. BDNF delivery via PEG crosslinked hyaluronic acid 

hydrogel into the stroke core promotes axonal sprouting, neurogenesis and motor recovery 

after stroke in young mice [51]. In contrast, in aged mice hydrogel mediated delivery of 

BDNF resulted in a modest motor recovery; however, the co-delivery BDNF and ampakine, 

an attenuator of AMPA receptor currents, showed significant motor improvement[52]. 

Further, BDNF was linked to the critical window for recovery poststroke in aged mice [53]. 

Similar to BNDF, other bioactive factors (proteins and small molecules) have been delivered 

to attempt to tip the balance towards neuroplasticity and repair. For example, delivery of 

anti-NogoA antibody neutralizes neurite outgrowth inhibitor (Nogo-A) and promotes axonal 

sprouting, angiogenesis and behavioral recovery after stroke without affecting inflammation 

or astrogliosis [54,55]. Administration of FDA-approved HIV antiviral drug Maraviroc 

antagonizes C-C chemokine receptor type 5 (CCR5) and improves axonal sprouting and 

neuroplasticity after stroke [56].

Given that multiple factors are likely required to promote sufficient neuroplasticity and the 

formation of functional circuits and that the source of new neurons (neural progenitors) is 

likely limited in the adult brain, stem cell delivery has been extensively studied to promote 

recovery after stroke. Stem cells can be the source of the complex milieu of signals needed 

for repair, the source of new neurons or support cells, or both. Though not in clinical trials 

yet, delivery of stem cells within hydrogel biomaterials has shown promise in pre-clinical 

models. Local delivery of stem cells in a material scaffold has been reported to retain cells 

within the stroke cavity and maintain their survival to a greater extent compared to cell 

delivery alone [49,57,58]. Hydrogels can be engineered to optimize stem cell survival and 

differentiation after delivery in the stroke core. For example, the composition of hyaluronic 

acid hydrogels containing bone morphogenic protein 4 (BMP-4), BDNF, and peptides was 

optimized to promote induced pluripotent stem cell-NPC survival and differentiation 

towards neurons or astrocytes depending on composition [59]. Further, a self-assembled 

peptide hydrogel was shown to promote NPC survival, neuronal differentiation, decrease 

atrophy and promote motor function [36] (Figure 2b). Though the concept of stem cell 

delivery from hydrogel scaffolds for stroke treatment has begun to be studied, much work 

remains to define what key features of materials lead to survival, differentiation and host 

engraftment.
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Angiogenesis

Experimental and clinical studies have shown that stroke-induced enhanced angiogenesis 

correlates to improved survival and behavioral recovery [60]. Thus, efforts to increase 

angiogenesis in the infarct and peri-infarct regions has been explored in the context of 

materials and stroke. Similar to inflammation and axonal sprouting materials can, even in the 

absence of angiogenic factors, act to promote angiogenesis. In general, materials that 

substantially decrease inflammation and scar thickness, lead to improved angiogenesis in the 

peri-infarct space but not the infarct area. As with neuroplasticity, delivery of angiogenic 

factors have been investigated to further promote vessel formation. In this context, VEGF 

has been extensively studied in the context of stroke recovery reaching clinical studies. 

However, VEGF is yet to be an FDA-approved therapy. We believe that the lack of success 

with VEGF and other pro-angiogenic therapies is the way in which these therapies are 

delivered, as soluble factors or overexpressed proteins. In this context, VEGF delivery can 

further cause brain damage by increasing BBB breakdown, promoting edema and inducing 

disorganized and immature vessel formation[61]. Hydrogel materials can be used to 

modulate delivery of angiogenic factors at more appropriate doses and in the right context 

(to mediate co-signaling events). For example, immobilizing VEGF onto nanoparticles to 

display VEGF in clusters and delivering these from a material that also lowered 

inflammation and decreased the glial scar showed functional improvement after stroke [41] 

(Figure 2e). This material was able to generate a coordinated pro-repair environment that led 

to vascularization and axonal sprouting of the stroke core. Other examples, of VEGF 

delivery from materials show that sustained delivery of VEGF from nanoparticles, while 

promoting beta-1 integrin binding lead to reduced leaky vessels. These studies demonstrated 

that proper delivery of VEGF in the right ECM context can lead to non-leaky vessel 

formation, which has been a hallmark of VEGF induced angiogenesis. A study comparing 

soluble VEGF with immobilized VEGF and found that immobilized VEGF on 

microparticles led to prolonged VEGFR-2 and protein kinase B (Akt) phosphorylation as 

well as higher outgrowth endothelial progenitor cell survival [62]. Also as mentioned above, 

VEGF and Ang1 was delivered via a hyaluronic acid-PLGA scaffold and showed improved 

angiogenesis[46]. There are likely other features of biomaterials that can be exploited to 

result in effective pro-angiogenic signaling that can lead to functional revascularization 

rather than vascular permeability.

Elucidating stroke repair mechanisms

Given the complexity of post stroke repair and the many different cell types that need to act 

in concert to lead to functional improvement, new therapeutic targets must be identified. 

Thus far, most biomaterial approaches have focused on old targets to reduce inflammation, 

promote angiogenesis and neurogenesis.

The Carmichael lab has focused on understanding the mechanisms of axonal sprouting 

poststroke [63–65]. Their research has led to a novel target that can be used when designing 

a material therapeutic for stroke. They’ve identified growth differentiation factor 10 

(GDF10) and found that it enhanced motor recovery when locally delivered in stroke cavity 

using a HA-heparin hydrogel[66]. In addition, they’ve also determined that CCR5 signaling 
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is uniquely expressed in cortical neurons poststroke and its knockdown enhanced motor 

recovery. It is also the first reported gene associated with enhanced recovery in humans as 

seen by subpopulations of stroke patients with naturally occurring loss-offunction mutation 

in CCR5 [67]. However, their studies solely focus on axon sprouting neurons after 

endogenous recovery poststroke. Next-generation transcriptomic and proteomic approaches 

need to be utilized to identify relevant cellular players, pathways and proteins for brain 

repair after stroke. This will generate novel targets that can be help inform our material 

design.

Conclusions

Stroke is a traumatic brain insult is the leading cause for long-term disability in adults due to 

the brain’s poor regenerative capacity. Current clinical treatments are reperfusion efforts that 

still leave patients with long-term neurological deficits. Over the years, preclinical research 

has identified therapeutic strategies to enhance endogenous brain repair after stroke. 

Unfortunately, clinical trial translational attempts have failed where systemically delivered 

therapeutic drugs are quickly cleared and transplanted stem cells have poor survival. More 

recent research in biomaterials for brain repair after stroke have showed that innovative 

biomaterial designs alone can reduce inflammation, glial scar formation and increase 

cellular infiltration to stroke infarct. With the addition of drugs and stem cells therapeutics, 

the combined therapeutic-loaded biomaterials strategy overcame challenges with systemic 

delivery and cell transplant survival, enhancing functional recovery as shown by a number of 

successfully examples in the field. Despite the encouraging results of biomaterial strategies 

in tackling brain repair after stroke, it is difficult to predict whether documented functional 

recovery found in rodent models can be translated in humans. This warrants a better 

understanding of the mechanisms of brain repair after stroke. By appreciating the mode of 

action of these biomaterial strategies, novel targets that can more holistically promote brain 

repair after stroke and result in complete functional recovery will be discovered.

Local delivery using materials should not be viewed as being at odds with systemic delivery. 

Materials-based local delivery can be used in conjugation with systemic delivery to utilize 

the advantages of both modes of delivery. For instance, systemic delivery of agents could be 

used to treat early stages (i.e. reperfusion and neuroprotection) and/or be used to “prime” the 

stroke environment for the ultimate delivery of a biomaterial to promote plasticity and 

recovery from stroke.

The application of biomaterial strategies for brain repair is in its nascent preclinical stages. 

However, the field of biomaterials to promote endogenous repair in other tissue systems 

such as bone and skin is substantially more developed and used clinically. Learning from 

these strategies and attracting a new generation of biomaterial scientist is necessary to bring 

the field closer to clinical translation.
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Figure 1. 
Overview of ischemic stroke and materials for brain repair after stroke. (a) showing 

ischemic stroke pathophysiology in the form of a coronal section anterior to the bregma, 

specifically highlighting astrogliosis and neuroinflammation as shown by astrocyte scarring 

and increase in microglia, respectively. (b) Materials can be used as a vehicle in conjunction 

with other therapeutics to sustain local delivery of drugs (i.e. small molecules and proteins) 

or support stem cell transplant survival. (c) In addition to employing materials as vehicles, 

materials can also present instructive cues as an extracellular matrix (ECM) analog. 

Materials can be engineered to be nonporous or porous to elicit desired cellular and tissue 

response.
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Figure 2. 
Material examples for brain repair after stroke. (a) RADA16 self-assembled peptide 

nanofiber scaffold (SAPNS): Nissl and DAPI stained images of saline-injected lesion and 

SAPNS-injected lesion as well as quantification of astrocytes (GFAP positive) and 

macrophages (ED1 positive) in the lesion boundary zone at 2 days, 2 weeks and 6 weeks 

after treatment. Source: Adapted from [44]. (b) IKVAV self-assembled peptide (SAP) and 

human cortical progenitor: NeuN stained images comparing GFP-labelled human cortical 

progenitors in stem cell delivery vs stem cell+SAP. Image shows increased proportion of 

NeuN-positive cells in SAP group. Source: Adapted from [36]. (c) BDNF-loaded 

hyaluronan-methylcellulose and PLGA nanoparticle scaffold composite: Behavioral studies 

after local BDNF delivery via material vehicle showed improvement in hindlimb recovery 

following stroke injury. Source: Adapted from [23]. (d) Urinary bladder matrix-ECM 

hydrogel: Immunostained images showing ECM hydrogel (Collagen I), cell nucleus (DAPI), 
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macrophage/microglia (Iba-1), M1-like phenotype (CD86) and M2-like phenotype (CD206). 

Quantification of results showed that ECM hydrogel modulated neuroinflammation. Source: 

Adapted from [35]. (e) Hyaluronic acid and clustered VEGF on heparin nanoparticle 

hydrogel: Immunostained images of neurons (NF200 positive) and vessels (Glut-1 positive) 

in stroke infarct showed gel + high cluster VEGF delivery resulted in enhanced 

angiogenesis, neurogenesis and axonal sprouting. Source: Adapted from [41]. (f) 
Microporous annealed particles (MAP) hydrogel: Immunostained images of sham and 

MAP-treated stroke lesions showing gel, cell nucleus (DAPI), macrophage/microglia 

(CD11b) and pro-repair phenotype (Arg1). Quantification showed material modulated 

neuroinflammation by increasing pro-repair macrophage/microglia in the stroke infarct. 

Source: Adapted from [38].

Erning and Segura Page 15

Curr Opin Biomed Eng. Author manuscript; available in PMC 2021 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Ischemic stroke
	Biomaterials for brain repair
	Inflammation
	Neurogenesis/axonal sprouting
	Angiogenesis

	Elucidating stroke repair mechanisms
	Conclusions
	References
	Figure 1.
	Figure 2.

