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Abstract

Immunotherapy has been a promising candidate for cancer treatment. The combination of 

photothermal therapy (PTT) and immunotherapy have shown to cause tumor ablation and induce 

host immune response. However, this strategy is often hampered by a limited immune response 

and undesirable immunosuppression. In this work, we developed an immunologically modified 

nanoplatform, using ovalbumin (OVA)-coated PEGylated MnFe2O4 nanoparticles (NPs) loaded 

with R837 immunoadjuvant (R837-OVA-PEG-MnFe2O4 NPs) to synergize PTT and 

immunotherapy for the treatment of breast cancer. The designed R837-OVA-PEG-MnFe2O4 NPs 

are able to elicit significant immune responses in vitro and in vivo. MnFe2O4 NPs also allowed for 

a reduction of systemic immunosuppression through downregulation of M2-associated cytokines. 

More importantly, the R837-OVA-PEG-MnFe2O4 NPs under laser irradiation effectively inhibited 

tumor growth and prevented lung metastases, leading to a prolonged survival time and improved 

survival rate. In addition, the designed multitasking MnFe2O4 NPs showed as a good contrast 

agent for magnetic resonance (MR) imaging to detect orthotopic breast tumor in vivo. Our work 

provides a novel strategy for combined PTT and improved immunotherapy in the treatment of 

breast and other metastatic cancers.
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1. Introduction

Cancer immunotherapy has revolutionized the therapeutic landscape for patients with 

advanced cancers in recent years. It is worth noting that the 2018 Noble prize in physiology 

or medicine was awarded to James P. Allison and Tasuku Honjo for their discovery of cancer 

immunotherapy by inhibition of negative immune regulators [1–3]. To date, cancer 

immunotherapeutic strategies have included checkpoint blockade therapy (e.g., anti-

programmed death-1/programmed death ligand (anti-PD-1/PD-L1) [4–7] and anti-cytotoxic 

T-lymphocyte-associated protein 4 (anti-CTLA-4) [8, 9]), adoptive T-cell transfer therapy 

[10, 11], as well as vaccine therapy [12–15], which have shown exciting clinical results. 

Nonetheless, the use of these immunotherapies alone are still demonstrated low efficacy in 

treating advanced cancers. A good cancer therapeutic strategy may include ablation of local 

tumors and induction of host immune response to kill the remaining tumor cells and prevent 

tumor recurrence [16]. Therefore, combining immunotherapy with other therapies, such as 

photodynamic therapy, chemotherapy, radiotherapy, and photothermal therapy (PTT), should 

significantly improve the clinical outcomes of cancer treatment [17–23].

With the rapid development of nanotechnology, various nanoparticles (NPs) have emerged 

as a powerful tool to combine cancer immunotherapy with other therapies [24–29]. For 

example, core-shell nanoscale coordination polymer NPs loaded with oxaliplatin and 

photosensitizer pyrolipid for chemotherapy/photodynamic therapy in combination with anti-

PD-L1 checkpoint blockade could effectively inhibit primary tumors and contralaterally 

distant tumors [30]. Nanoscale metal-organic framework-based X-ray radiotherapy/

radiodynamic therapy and immunotherapy has shown to significantly destroy local and 

distant tumors [31]. Near-infrared (NIR) light-induced PTT and immunotherapy via an 

antigen-capturing upconversion NPs (UCNPs) were designed for treatment of metastatic 

breast cancer [32]. The antigen-capturing UCNP-based combined PTT and immunotherapy 
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strategy could effectively destroy primary tumors in response to NIR laser irradiation and 

elicit significant antimetastatic effects by stimulating systemic antitumor immunity. 

Synergistic combination of local PTT and immunotherapy using glycated chitosan, a novel 

immunostimulant, was able to effectively treat advanced pancreatic cancer [33]. However, 

these strategies are often faced with low level of immune response rates or limited by 

immunosuppression.

Studies have proved that ovalbumin (OVA) is a strong immunogenic antigen and has been 

used as a proof of principle for numerous vaccination strategies [34–37]. Manganese ferrite 

(MnFe2O4) NPs are made up of iron oxide and manganese oxide NPs, in which iron oxide at 

a certain concentration could downregulate M2-associated cytokines, e.g., interleukin 10 

(IL-10), induced immunosuppression in the body [38–40]. In addition, MnFe2O4 NPs 

display a favorable photothermal conversion property [41, 42], as well as magnetic 

resonance (MR) imaging property [43–45]. R837 immunoadjuvant as a Toll-like receptor-7 

agonist is able to significantly stimulate the maturation of DC cells. However, R837 also 

cause a certain host immunosuppression, simultaneously [17, 26, 46]. In this study, we 

hypothesize that combined OVA protein and R837 adjuvant could stimulate DC cells more 

efficiently than nanovaccine or adjuvant alone. We use OVA protein modified PEGylated 

MnFe2O4 NPs loaded with R837 immunoadjuvant (R837-OVA-PEG-MnFe2O4 NPs) to 

synergize PTT and improved immunotherapy for treatment of orthotopic breast cancer. We 

found that the designed R837-OVA-PEG-MnFe2O4 NPs showed desirable cytocompatibility 

and photothermal stability, which could directly destroy local tumors through NIR-based 

PTT. They also elicited strong immune responses and reduced immunosuppression in vitro 
and in vivo. Most importantly, administration of R837-OVA-PEG-MnFe2O4 NPs in 

combination with laser irradiation significantly inhibited tumor growth and lung metastases. 

Besides, the multitasking MnFe2O4 NPs were as a desirable contrast agent for MR imaging 

to allow for precise detection of tumor.

2. Materials and methods

2.1. Materials

Manganese (II) acetylacetonate (Mn(acac)2), iron (III) acetylacetonate (Fe(acac)3), 1-

octadecene (ODE, 90%), oleic acid (OA, 90%), oleylamine (OLA, 70%), benzyl ether, 1-

octadecanol (99%), ovalbumin (OVA), and imiquimod (R837) were purchased from Sigma-

Aldrich (St. Louis, MO). 1,2-hexadecanediol (98%) was obtained from TCI (Tokyo, Japan). 

1,2-distearoyl-sn-glycero-3-phosphoethanolamine (DSPE) conjugated polyethylene glycol 

(DSPE-PEG, MW = 2000) was purchased from Ponsure Biotechnology (Shanghai, China). 

Dulbecco’s Modified Eagle Medium (DMEM), RPMI-1640 medium, fetal bovine serum 

(FBS), 0.25% Trypsin-EDTA, penicillin, and streptomycin were purchased from Gibco 

(Grand Island, NY). Cell Counting Kit-8 (CCK-8) and double stain apoptosis detection kit 

(PI/calcein-AM) were purchased from Beyotime Biotechnology (Haimen, China). The 

Alexa Fluor 647-phalloidin was acquired from Cell Signaling Technology (Danvers, MA).
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2.2. Synthesis of MnFe2O4 NPs

MnFe2O4 NPs were synthesized using a seed-mediated growth method [41, 47], In brief, 

Mn(acac)2 (101.3 mg, 0.4 mmol), 1,2-hexadecanediol (1033.8 mg, 4 mmol), OA (2 mL), 

and OLA (2 mL) were mixed together using benzyl ether (24 mL) in a three-neck flask with 

mechanical stirring at 25 °C for 30 min in a vacuum. The mixture was then heated to 140 

°C, and Fe(acac)3 (282.5 mg, 0.8 mmol, 8 mL of benzyl ether) was added dropwise. Next, 

the mixture was heated to 260 °C for 30 min and cooled naturally to room temperature to 

produce MnFe2O4 seeds. Finally, the seeds would grow to MnFe2O4 NPs in a solution of 

Fe(acac)3 and Mn(acac)2 precursors. Briefly, MnFe2O4 seeds (0.2 mmol in 5 mL hexane) 

was mixed with Mn(acac)2 (126.6 mg, 0.5 mmol), Fe(acac)3 (353.1 mg, 1 mmol), 1-

octadecanol (1352.5 mg, 5 mmol), OA (5 mL), OLA (5 mL), and benzyl ether (16 mL). The 

mixture was slowly heated up to 260 °C at an argon atmosphere for 30 min. The mixture 

was then cooled to room temperature to form MnFe2O4 NPs.

2.3. Synthesis of R837-OVA-PEG-MnFe2O4 NPs

The prepared MnFe2O4 NPs hexane solution (60 mg/mL, 1 mL) was added to 2 mL alcohol. 

The mixture was then centrifuged (12000 rpm, 15 min) to pellet MnFe2O4 NPs. The 

MnFe2O4 NPs pellet was dissolved in 5 mL CH2Cl2 and mixed with DSPE-PEG (20 

mg/mL, 6 mL CH2Cl2) using ultrasonication for 20 min. The PEGylated MnFe2O4 NPs 

(PEG-MnFe2O4 NPs) were acquired via evaporation and washed with deionized water. The 

above PEG-MnFe2O4 NPs solution was then mixed with OVA (10 mg/mL, 6 mL water), and 

stirred for 12 h to form OVA-PEG-MnFe2O4 NPs. Lastly, R837 (0.4 mg/mL, 3 mL 

methanol) was added to OVA-PEG-MnFe2O4 NPs water solution (15 mL) under open 

stirring overnight to produce the final product of R837-OVA-PEG-MnFe2O4 NPs.

2.4. In vitro stimulation of DC cells

DC2.4 cells (5 × 105 per well) were seeded into a 12-well plate with 1 mL complete DMEM 

medium. After overnight incubation, these cells were treated with fresh DMEM medium (no 

FBS) containing PBS, PEG-MnFe2O4 NPs ([MnFe2O4] = 110 μg/mL), OVA-PEG-MnFe2O4 

NPs ([MnFe2O4] = 110 μg/mL), R837-OVA-PEG-MnFe2O4 NPs ([MnFe2O4] = 110 μg/mL, 

[R837] = 2 μg/mL), or free R837 ([R837] = 2 μg/mL) for 24 h. The cell supernatants were 

then centrifuged (3000 rmp, 5 min), and DC activated cytokines in the supernatants 

including TNF-α, IL-6, and IL-10 were measured using quantikine enzyme-linked 

immunosorbent assay (ELISA) kits (Bio-Techne Ltd., R&D Systems, Minneapolis, MN) 

following the manufacturer’s instructions. In addition, bone-marrow-derived dendritic cells 

(BMDCs) were treated with PBS, PEG-MnFe2O4 NPs ([MnFe2O4] = 55 μg/mL), OVA-

PEG-MnFe2O4 NPs ([MnFe2O4] = 55 μg/mL), or R837-OVA-PEG-MnFe2O4 NPs 

([MnFe2O4] = 55 μg/mL, [R837] = 1 μg/mL) for 24 h. These treated BMDCs were then 

stained with anti-mouse CD86-Brilliant Violet 605 (Biolegend, San Diego, CA), anti-mouse 

CD40-PE-Cy7 (Biolegend, San Diego, CA), and anti-mouse MHC-II-Alexa Fluor 700 

(major histocompatibility complex class II, Thermo Fisher, Waltham, MA) antibodies before 

measurement by flow cytometry (Becton Dickinson FACSCalibur; New York, NY).
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2.5. In vivo immune response

All animal procedures were performed in accordance with the Guidelines for Care and Use 

of Laboratory Animals published by the US National Institutes of Health (NIH) and 

approved by the University of Oklahoma Health Sciences Center (OUHSC) and Oklahoma 

Medical Research Foundation (OMRF) Institutional Animal Care and Use Committees 

(IACUC). BALB/C female mice (6–8 weeks) were purchased from Charles River 

(Wilmington, MA). 4T1 cells (5 × 104 per mouse) were subcutaneously injected into the 

right flank. Once tumor size reached about 100 mm3, PEG-MnFe2O4 NPs, OVA-PEG-

MnFe2O4 NPs, or R837-OVA-PEG-MnFe2O4 NPs PBS solution were injected into tumors at 

a MnFe2O4 dose of 1.0 mg per mouse, PBS (100 μL) as a control. These mice were then 

irradiated by an 805 nm laser for 10 min (1.2 W/cm2) after 1 h intratumoral injection. 

Lymph nodes and blood were harvested on day 3 after these treatments. Tumors were also 

harvested on days 1 and 7 after these treatments. The spleens were harvested on day 7 after 

these treatments. Tumors were fixed, embedded in paraffin, sectioned, and immunostained 

with anti-mouse CD11c-Alexa Fluor 647 antibody on day 1 after treatment, or anti-mouse 

CD8-Alexa Fluor 647 antibody (Biolegend, San Diego, CA) on day 7 after treatment. 

Lymphocytes were treated and stained with anti-mouse CD11c-Alexa Fluor 647 and anti-

mouse CD86-PE antibodies before flow cytometry analysis of DC maturation according to 

the manufacturer’s instructions [26]. Splenocytes were treated and stained with anti-mouse 

CD3-APC/Cy7, anti-mouse CD4-PE, anti-mouse CD8-Alexa Flour 647, and anti-mouse 

IFN-γ-Alexa Flour 488 antibodies (Biolegend, San Diego, CA) before using flow cytometry 

analysis according to the manufacturer’s instructions [48]. In addition, the number of 4T1 

lung metastases was further investigated. In brief, the mice 15 days after treatment were 

injected with India ink through the trachea to obtain their lungs. Tumor metastasis areas 

appeared at white nodules on the surface of black lungs and were carefully counted.

2.6. In vivo antitumor efficacy

In vivo tumor therapy was evaluated by monitoring tumor volumes and survival rates. To 

establish orthotopic 4T1 breast tumors, 4T1 cells (5 × 104 per mouse) suspended in 100 μL 

RPMI-1640 medium were inoculated into the left breast fat pad. When tumor volumes were 

about 60 mm3, these mice were randomly divided into 5 groups (n = 6 for each group) and 

treated with PBS plus laser irradiation (100 μL), PEG-MnFe2O4 NPs plus laser irradiation 

([MnFe2O4] = 10 mg/mL, 100 μL), OVA-PEG-MnFe2O4 NPs plus laser irradiation 

([MnFe2O4] = 10 mg/mL, 100 μL), R837-OVA-PEG-MnFe2O4 NPs plus laser irradiation 

([MnFe2O4] = 10 mg/mL, 100 μL), or R837-OVA-PEG-MnFe2O4 NPs (no laser, [MnFe2O4] 

= 10 mg/mL, 100 μL). The power density and irradiation time were 1.2 W/cm2 and 10 min, 

respectively. The tumor volumes were recorded until mice in the PBS plus laser irradiation 

group were moribund, or the tumor length was up to 20 mm. The survival rate was carefully 

monitored for 100 days post tumor inoculation.

2.7. Tumor MR imaging and in vivo biodistribution

Mice bearing orthotopic 4T1 breast tumors were first anesthetized using 1.5% isoflurane at 

0.7 L/min oxygen and placed in a MR probe in a supine position before imaging using a 

Bruker Biospec 7 T horizontal-bore imaging spectrometer (Bruker BioSpin MRI GmbH, 
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Ettlingen, Germany). T2 weighted MR images were generated by a Bruker S116 gradient 

coil (2.0 mT/m/A), a 72 mm quadrature multirung radiofrequency coil for radiofrequency 

transmission and signal reception. For orthotopic 4T1 breast tumor imaging, multiple MR 

imaging slices were put in the transverse plane through a spin-echo multislice (repetition 

time, 0.8 s; echo time (TE), 63 ms; 256 ×256 pixels matrix; 4 steps per acquisition; FOV, 3.5 

× 3.5 cm2; and slice thickness, 1mm) [49–51].

BALB/C female mice (6–8 weeks) were injected intravenously with PEGylated MnFe2O4 

NPs ([MnFe2O4] = 10 mg/mL, [Fe] = 4.315 mg/mL, 100 μL in PBS for each mouse). Then 

these mice were sacrificed at different time points postinjection, and their major organs 

including tumor were harvested and weighed. Digestion of these organs by aqua regia for 

more than 12 h before using NexIon 300X inductively coupled plasma-mass spectrometry 

(ICP-MS, PerkinElmer, Waltham, MA) analysis of the Fe uptake in different organs.

3. Results and discussion

3.1. Formulation and characterization of R837-OVA-PEG-MnFe2O4 NPs

To synthesize R837-OVA-PEG-MnFe2O4 NPs, we first synthesized MnFe2O4 core particles, 

followed by coating with OVA protein and loading with R837 immunoadjuvant (Scheme 1).

Various techniques were used to characterize the particles. The monodispersed MnFe2O4 

NPs with a diameter of 9.3 ± 1.1 nm were clearly observed (Fig. 1a). To determine the 

composition of the samples, elemental mapping analysis was performed. The particles were 

mainly comprised of Mn and Fe elements (Fig. S1). The UV-Vis spectrum of OVA-PEG-

MnFe2O4 NPs and R837-OVA-PEG-MnFe2O4 NPs showed that MnFe2O4 NPs displayed a 

full-spectrum absorption from 200 to 900 nm (Fig. 1b), demonstrating that MnFe2O4 NPs 

could be used as a photothermal agent in a given NIR region. After loading with R837, new 

characteristic peaks of R837 at 310–330 nm appeared, indicating the successful loading of 

R837 (Fig. 1b). As shown in Fig. S2, the absorption values at 805 nm are positively 

correlated with their concentration, and R2 is up to 0.9982. For example, when the 

concentration of MnFe2O4 NPs is 0.5 mg/mL, the absorptance at 805 nm reached 1.01 (Fig. 

S2). In addition, the loading efficiency of R837 (initially added R837/loaded R837) was 

76.3% in accordance with the standard calibration curve of R837 (Fig. S3). The modification 

of DSPE-PEG and OVA protein was further confirmed by fourier-transform infrared 

spectroscopy (FTIR) spectra and thermogravimetric analysis (TGA). For OA-capped 

MnFe2O4 NPs, the C-H stretching vibration are located at 2920 and 2851 cm−1, and the 

strong peaks at 1550 and 1427 cm−1 were related to the asymmetric and symmetric COO- 

stretching vibration of OA molecules (Fig. 1c). After the ligand exchange procedure, in the 

FTIR spectra of PEG-MnFe2O4 NPs, two new bands at 1732 and 1107 cm−1 appeared, 

corresponding to the stretching vibration of C=O and C-O of the PEG chains, respectively 

(Fig. 1c). In addition, the content of OVA (weight ratio of OVA/OVA-PEG-MnFe2O4 NPs) 

on the surface of NPs measured by TGA was 8.4% (Fig. 1d). As shown in Fig. 1e, after 

negative OVA protein coating, the zeta potential of PEG-MnFe2O4 NPs (−3.99 ± 1.52 mV) 

decreased to −15.37 ± 0.33 mV, indicating that OVA could further coat on the surface of the 

particles. After loading positively charged R837, the zeta potential of OVA-PEG-MnFe2O4 

NPs increased to −12.60 ± 0.95 mV (Fig. 1e). This result further confirmed R837 was 
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successfully loaded on the particle surface through electrostatic adsorption. We then 

evaluated the photothermal effect of the R837-OVA-PEG-MnFe2O4 NPs. The formed R837-

OVA-PEG-MnFe2O4 NPs at different concentrations under laser irradiation for 10 min could 

rapidly transform NIR light into thermal energy (Fig. 1f). For example, the temperature of 

the particles at the concentration of 2 mg/mL came up to 69 °C after laser irradiation for 10 

min, whereas the temperature of water only reached 29 °C under the same conditions (Fig. 

1f). Furthermore, the formed particles showed an excellent photothermal stability after five 

laser on/off cycles (Fig. S4). Therefore, these desirable photothermal properties served as 

quality control metrics to ensure PTT in vitro and in vivo.

3.2. Cytotoxicity assay

We used CCK-8 assay and morphological observation to evaluate the cytotoxicity of OVA-

PEG-MnFe2O4 NPs. It was clear that the viability of 4T1 cells treated with OVA-PEG-

MnFe2O4 at different concentrations ([MnFe2O4] = 0–400 μg/mL) was at least 90%, 

suggesting that the particles were noncytotoxic at the given concentration range (Fig. 2a). 

This result was further verified by morphology changes of the cells treated with the NPs. We 

found that the morphology of the cells treated by the NPs was well maintained and similar to 

PBS treated cells (Fig. S5). The cytoskeleton and the nucleus of the cells were also studied 

after being treated with OVA-PEG-MnFe2O4 NPs at the MnFe2O4 concentration of 200 

μg/mL (Fig. S6). The cytoskeleton and nucleus of the cells treated with particles maintained 

well, similar to PBS control. Taken together, we can conclude that OVA-PEG-MnFe2O4 NPs 

show a favorable cytocompatibility in the given concentration range. It should be noted that 

R837 as a drug at a high concentration displays a certain cytotoxicity. However, in this work, 

R837 was loaded onto the surface of the particles with a very low concentration. Therefore, 

we used OVA-PEG-MnFe2O4 NPs instead of R837-OVA-PEG-MnFe2O4 NPs to evaluate 

their cytotoxicity. In addition, we also evaluated the cytotoxicity of R837-OVA-PEG-

MnFe2O4 NPs. As shown in Fig. S7, we found that R837-OVA-PEG-MnFe2O4 NPs 

displayed no significant cytotoxicity. At the concentration of MnFe2O4 NPs below 200 

μg/mL, the cell viability was more than 90%. Although at the concentration of 400 μg/mL, 

the cell viability was still up to 78.2%. The cytoskeleton staining further confirmed that the 

designed R837-OVA-PEG-MnFe2O4 NPs displayed no significant cytotoxicity at the 

MnFe2O4 NPs concentration of 200 μg/mL (Fig. S6).

In vitro PTT of OVA-PEG-MnFe2O4 NPs was further evaluated. As shown in Fig. 2b, under 

laser irradiation, the absolute cell viability decreased with increasing concentrations of the 

particles. For example, the viability of the cells treated with OVA-PEG-MnFe2O4 NPs 

([MnFe2O4] = 400 μg/mL) plus laser irradiation decreased to 18.0 ± 4.2%, whereas the 

viability of the cells treated with PBS plus laser irradiation was 79.0 ± 1.4%. These results 

were further confirmed by live/dead dual-staining of the treated cells (Fig. 2c). We found 

that most of the cells were dead, indicated by red fluorescence, after being treated with 

OVA-PEG-MnFe2O4 NPs ([MnFe2O4] = 400 μg/mL) plus laser irradiation. Whereas, the 

cells treated with PBS or PBS plus laser irradiation were still viable, indicated by green 

fluorescence.
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3.3. In vitro immune response

Dendritic cells (DCs) are as a kind of antigen-presenting cells (APCs) of the mammalian 

immune system. We used ELISA to assess the expression of cytokines secreted by DCs, 

including tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and IL-10. As shown in 

Fig. 3a, the secretion levels of TNF-α from DCs after treatment with OVA-PEG-MnFe2O4 

NPs, R837-OVA-PEG-MnFe2O4 NPs, or free R837 were all significantly increased, 

particularly for R837-OVA-PEG-MnFe2O4 NPs (652.0 ± 48.0 pg/mL) and free R837 (644.3 

± 52.0 pg/mL). In contrast, no obvious enhancement in TNF-α levels was observed after 

DCs were treated with PBS (60.8 ± 5.8 pg/mL) or PEG-MnFe2O4 NPs (83.0 ± 12.5 pg/mL). 

Similarly, the levels of IL-6 in Fig. 3b were significantly enhanced by R837-OVA-PEG-

MnFe2O4 NPs (717.8 ± 21.6 pg/mL) and free R837 (434.7 ± 18.8 pg/mL). To assess the role 

of OVA protein in the nanoplatform, we used OVA protein alone to coculture with BMDCs. 

As shown in Fig. S8, S9, OVA protein alone also was able to effectively increase TNF-α and 

IL-6 cytokine secretion (Fig. S8) and maturate DC cells (Fig. S9). These results indicated 

that OVA protein and R837 immunoadjuvant both significantly increased the expression of 

M1-associated cytokines (e.g., TNF-α and IL-6). Meanwhile, R837 increased IL-10 

expression, but, to a certain extent, MnFe2O4 moderately reduced IL-10 expression (Fig. 3c). 

Therefore, MnFe2O4 could downregulate the expression of M2-associated cytokines (e.g., 

IL-10), which decreases R837-induced immunosuppression. The reason may be that 

MnFe2O4 NPs are made up of iron oxide and manganese oxide NPs, in which iron oxide 

NPs could downregulate M2-associated cytokines (e.g., IL-10) induced immunosuppression 

in the body [38–40].

We then used flow cytometry to evaluate the percentages of mature DCs (e.g., CD11c
+CD40+ and CD11c+CD86+) after cultivation with PBS, PEG-MnFe2O4 NPs, OVA-PEG-

MnFe2O4 NPs, or R837-OVA-PEG-MnFe2O4 NPs (Fig. 4). The percentages of CD11c
+CD40+ and CD11c+CD86+ cells in BMDCs after treatment with R837-OVA-PEG-

MnFe2O4 NPs (70.8 ± 0.2% of CD11c+CD40+, and 43.2 ± 1.8% of CD11c+CD86+) was 

higher than that with OVA-PEG-MnFe2O4 NPs (49.7 ± 6.2% of CD11c+CD40+, and 30.4 ± 

5.7% of CD11c+CD86+), PEG-MnFe2O4 NPs (38.9 ± 3.7% of CD11c+CD40+, and 23.9 ± 

3.4% of CD11c+CD86+), and PBS (27.9 ± 2.5% of CD11c+CD40+, and 11.9 ± 0.9% of 

CD11c+CD86+). It is clear that OVA coating and R837 loading could significantly increase 

the maturation of DCs. MHC-II, a key component of antigen presentation to CD4 T cells, 

was also evaluated in BMDCs by flow cytometry. As shown in Fig. 4c, 4f, the expression 

level of MHC-II in BMDCs treated with R837-OVA-PEG-MnFe2O4 NPs (44.8 ± 1.2%) was 

higher than that of BMDCs treated with OVA-PEG-MnFe2O4 NPs (41.8 ± 4.5%), PEG-

MnFe2O4 NPs (38.6 ± 3.5%), and PBS (20.1 ± 1.3%). Therefore, the designed R837-OVA-

PEG-MnFe2O4 NPs induced a strong immune response in vitro.

To demonstrate the design of PTT induced immune response in vitro, we used a transwell 

system, where the 4T1 cells with different treatments and BMDCs were cultured in the 

upper and lower chamber separately, and the results are given in Fig. S10. As shown in Fig. 

S10, 4T1 cells treated with PTT could maturate and activate DC cells with the percentages 

of CD11c+CD80+ and CD11c+CD86+ mature DC cells up to 33.6 ± 0.2%, 32.6 ± 1.3%, 

respectively, whereas the 4T1 cells treated with BMDCs is only 6.5 ± 0.6% of CD11c
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+CD80+ and 6.6 ± 0.2% of CD11c+CD86+. This may be due to PTT induced tumor specific 

antigen from 4T1 cells. It should be noted that digested cells using trypsin may also produce 

fragments from 4T1 tumor cells, which could also maturate DC cells. However, 4T1 cells 

treated with PTT were more efficient in activating DC cells than 4T1 tumor cells without 

PTT (*, p = 0.01087 of CD11c+CD80+; **, p = 0.00576 of CD11c+CD86+).

3.4. In vivo immune response

To research in vivo immune response induced by R837-OVA-PEG-MnFe2O4 NPs under 

laser irradiation, we first harvested blood from 4T1 tumor-bearing mice on day 3 after 

different treatments. Cytokines including TNF-α, IL-6, and IL-10 in serum were analyzed 

by ELISA. As shown in Fig. 5a, 5b, the levels of TNF-α and IL-6 on day 3 after treatment 

with R837-OVA-PEG-MnFe2O4 NPs plus laser irradiation were higher than those of other 

treatments. However, the levels of IL-10 in serum from mice treated with PEG-MnFe2O4 

NPs plus laser irradiation or OVA-PEG-MnFe2O4 NPs plus laser irradiation were lower than 

those in mice treated with PBS plus laser irradiation or R837-OVA-PEG-MnFe2O4 plus laser 

irradiation (Fig. 5c). This result indicated that MnFe2O4 NPs were able to downregulate the 

expression of IL-10 in vivo, which was consistent with in vitro immune response data (Fig. 

3c). Therefore, the designed MnFe2O4-based NPs have the potential to reduce R837-induced 

immunosuppression in vitro and in vivo.

Lymphocytes were isolated from the lymph nodes of mice on day 3 after PTT treatments, 

followed by flow cytometry analysis (Fig. 1). We observed that R837-OVA-PEG-MnFe2O4 

NPs under irradiation with an 805 nm laser could produce a higher level of DC maturation 

(CD11c+CD86+) than other treatments. As shown in Fig. 1a, 1d, the percentage of mature 

DCs was highest in mice treated with R837-OVA-PEG-MnFe2O4 NPs plus laser irradiation 

(21.3 ± 0.1%). Decreasing amounts of mature DCs were detected in mice treated with OVA-

PEG-MnFe2O4 NPs plus laser irradiation (19.3 ± 0.9%), PEG-MnFe2O4 NPs plus laser 

irradiation (18.4 ± 0.6%), and PBS plus laser irradiation (13.6 ± 0.3%).

Next, to address whether R837-OVA-PEG-MnFe2O4 NPs under laser irradiation could 

induce systemic T-cell activation, we evaluated the production of antitumor TNF-γ-secreting 

CD3+CD4+ and CD3+CD8+ T cells by splenocytes from mice on day 7 after different 

treatments. The gating strategies were analysed in Fig. S11. It was found that splenocytes 

from mice treated with R837-OVA-PEG-MnFe2O4 NPs plus laser irradiation showed a much 

higher percentage of TNF-γ-secreting CD3+CD4+ up to 1.16 ± 0.07% (Fig. 1b, 1e) and 

CD3+CD8+ T cells up to 1.13 ± 0.17% (Fig. 1c, 1f). These results demonstrated that R837-

OVA-PEG-MnFe2O4 NPs based PTT, compared with OVA-PEG-MnFe2O4 NPs or PEG-

MnFe2O4 NPs based PTT, were more effective in inducing immune response in vivo.

Finally, we used immunofluorescence to further confirm whether R837-OVA-PEG-

MnFe2O4 NPs under laser irradiation could induce tumor infiltrating DC maturation and T 

cell activation. We found that DCs (red fluorescence) were obviously increased in tumor-

bearing mice on day 1 after treatment with R837-OVA-PEG-MnFe2O4 NPs plus laser 

irradiation, in comparison with the PBS plus laser irradiation control (Fig. S12). As shown 

in Fig. S13, R837-OVA-PEG-MnFe2O4 NPs plus laser irradiation also effectively enhanced 

CD8+ T-cell infiltration (green fluorescence). These results furthor demonstrated that R837-

Zhou et al. Page 9

Chem Eng J. Author manuscript; available in PMC 2021 September 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



OVA-PEG-MnFe2O4 NPs based PTT could induce strong in vivo response. In addition, 

Treg-Foxp3+ related red fluorescence was increased higher by R837 loaded particles (R837-

OVA-PEG-MnFe2O4 NPs) plus laser irradiation than OVA-PEG-MnFe2O4 NPs (without 

R837 loading) plus laser irradiation (Fig. S14). Therefore, to a certain extent, R837 adjuvant 

could cause immunosuppression in vivo. As mentioned above, R837 can function as both 

immune stimulator and immune suppressor. However, thanks to the positive effect of R837, 

in conjunction with OVA and laser irradiation, we utilized the immunostimulation effects of 

R837 to enhance the anti-tumor effect.

3.5. In vivo antitumor efficacy

We then assessed the antitumor efficacy of R837-OVA-PEG-MnFe2O4 NPs based PTT using 

an orthotopic 4T1 breast tumor model. As shown in Fig. 7a, under laser irradiation, these 

MnFe2O4-based NPs could significantly transfer NIR light into thermal energy in vivo. The 

temperatures of these MnFe2O4 NP-based PTT treated tumor regions were more than 50 °C 

after irradiation for 2 min, and kept around 55 °C during the laser treatment, whereas the 

temperature of the PBS plus laser irradiation was lower than 42 °C after irradiation for 10 

min. Under laser irradiation, these MnFe2O4 NP-based PTT treated groups experienced 

significant tumor inhibition, especially for OVA-PEG-MnFe2O4 NPs+L and R837-OVA-

PEG-MnFe2O4 NPs+L (complete tumor regression, Fig. 7b). Importantly, we found that the 

intratumoral injection of R837-OVA-PEG-MnFe2O4 NPs under laser irradiation could 

effectively increase the survival rates (Fig. 7c). Under the research time period (100 days), 

the mice treated with R837-OVA-PEG-MnFe2O4 NPs plus laser irradiation still had a 

survival rate of 33.3%, whereas, no mouse survived under other treatments (Fig. 7c). It 

should be noted that R837-OVA-PEG-MnFe2O4 NPs plus laser irradiation was more 

efficient in preventing lung metastases on day 15 after treatment (32.5 ± 8.5 of number of 

4T1 lung metastases) than other treatments (***p < 0.001 vs. PBS plus laser irradiation, Fig. 

7d). Therefore, under laser irradiation, R837-OVA-PEG-MnFe2O4 NPs have a great 

antitumor efficacy in vivo and inhibit metastatic tumor cells, largely due to following 

factors: (1) Tumor spectific antigens were produced by R837-OVA-PEG-MnFe2O4 NPs 

based PTT; (2) the antigens then processed and presented by APCs to elicit the proliferation 

of tumor-specific effector T cells in lymph nodes with the help of R837 adjuvant and OVA 

protein; (3) MnFe2O4 NPs downregulated R837-induced immunosuppression. These 

processes are vividly depicted in Scheme 1. While the detailed mechanism is still under 

investigation, we hypothesize the synergistic effect as follows. OVA protein stimulates a 

general host immune response and R837 stimulates a specific immune response when 

combined with released tumor antigens induced by PTT.

3.6. Tumor MR imaging and in vivo biodistribution

The immunologically modified nanoplateform in the current study not only served as an 

efficient delivery vehicle for PTT and immunotherapy, but also served as an effective T2-

weighted MR imaging contrast agent for detection of orthotopic breast cancer. As shown in 

Fig. 8a, the tumor region became dark after injection of the multitasking MnFe2O4 NPs, 

suggesting that the particles could be effectively delivered into the tumor region for precise 

detection of tumors using MR imaging. Additionally, when we enlarge tumor sites before 

injection and 3 h postinjection, T2 MR signal reduce distinctly, especially at tumor edges 
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(Fig. 8b). Quantitative analysis of the MR signal/noise ratio (SNR) of tumor showed that the 

SNR of the tumor decreased from 2.1 (pre-injection) to 1.2 at 3 h postinjection, and then 

returned to 1.8 at 24 h postinjection (Fig. 8c), which was consistent with Fig. 8a.

In addition, we found that the particles were mainly taken up by the liver and spleen, and the 

particles could be metabolized stepwise 7 days postinjection, which was also verified by 

long-term histologic changes in the major organs (Fig. S15). We found that there is no 

histological change observed in the major organ slices one month after injection, compared 

with the PBS control (Fig. S16). These results indicated that the designed particles had a 

desirable biocompatibility in vivo.

4. Conclusions

We have developed photothermostable and biocompatible immunologically modified 

nanoplatform, R837-OVA-PEG-MnFe2O4, to combine PTT with immunotherapy for 

treatment of breast cancer. Owing to the synergy of R837 immunoadjuvant, OVA protein, 

and manganese iron oxide, the formed R837-OVA-PEG-MnFe2O4 NPs significantly induce 

DC maturation through enhanced M1-associated cytokine expression and reduced R837-

induced M2-associated cytokine expression. Importantly, R837-OVA-PEG-MnFe2O4 NPs 

based PTT not only effectively produced CD11c+CD86+ mature DC cells and IFN-γ+ T 

cells, but also reduced immunosuppression in vivo. In addition, this multitasking MnFe2O4 

NPs were shown as a desirable contrast agent for MR imaging to allow for the precise 

diagnosis of tumors. We believe that combination of PTT and improved immunotherapy for 

the treatment of breast cancer using immunologically modified MnFe2O4 NPs holds a 

tremendous promise in the treatment of advanced cancers.
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Highlights

• Immunologically modified MnFe2O4 NPs were constructed for combined 

PTT and immunotherapy.

• The MnFe2O4 NPs elicited strong immune responses in vitro and in vivo.

• The MnFe2O4 NPs based PTT effectively inhibited tumor growth and lung 

metastases.

• The feasible mechanism for combined PTT and immunotherapy was clearly 

described.

• The MnFe2O4 NPs showed as a desirable MR contrast agent for tumor 

imaging.
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Fig. 1. 
(a) Transmission electron microscopy (TEM) image of OA-capped MnFe2O4 NPs. (b) UV-

vis spectrum of OVA-PEG-MnFe2O4 NPs and R837-OVA-PEG-MnFe2O4 NPs (the circle 

refers to R837 characteristic peaks). (c) FTIR spectrum of OA-capped MnFe2O4 NPs, PEG-

MnFe2O4 NPs, and OVA-PEG-MnFe2O4 NPs, respectively. (d) TGA of PEG-MnFe2O4 NPs 

and OVA-PEG-MnFe2O4 NPs. (e) Zeta potential of PEG-MnFe2O4 NPs, OVA-PEG-

MnFe2O4 NPs, and R837-OVA-PEG-MnFe2O4 NPs, respectively. (f) Temperature of water 

and R837-OVA-PEG-MnFe2O4 NPs dispersed in water at different concentrations under 

irradiation with an 805 nm laser (1.2 W/cm2).
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Fig. 2. 
Cell viability of 4T1 cells treated by OVA-PEG-MnFe2O4NPs at different concentrations 

without (a) or with laser irradiation (b, ***p< 0.001, vs. PBS control). (c) Fluorescence 

images of cells treated with PBS, PBS plus laser irradiation, or OVA-PEG-MnFe2O4NPs 

([MnFe2O4] = 400 μg/mL) plus laser irradiation (green fluorescence related to live cells, and 

red fluorescence related to dead cells).
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Fig. 3. 
The cytokines including TNF-α (a), IL-6 (b), and IL-10 (c) of DC2.4 cells after different 

treatments for 24 h (n = 3, ***p < 0.001, vs. PBS control).
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Fig. 4. 
Quantification of CD40 (a, d), CD86 (b, e), and MHC-II (c, f) expression in BMDCs after 

different treatments for 24 h, followed by flow cytometry analysis (n = 3, **p < 0.01, ***p < 

0.001, vs. PBS control).
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Fig. 5. 
Cytokine levels of TNF-α (a), IL-6 (b), and IL-10 (c) in serum from mice isolated on day 3 

after different treatments (n = 3, *P < 0.05, **P < 0.01, ***P < 0.001, vs. PBS plus laser 

irradiation group).
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Fig.6. 
(a, d) Maturation of DCs in lymph nodes (%) on day 3 after different treatments. (b, e) 

Representative flow plots used to evaluate frequency of IFN-γ producing CD4 T cells taken 

from splenocytes of animals on day 7 after various treatments. (c, f) Representative flow 

plots used to evaluate frequency of IFN-γ producing CD8 T cells taken from splenocytes of 

animals on day 7 after various treatments (n = 3, *P < 0.05, **P < 0.01, vs. PBS plus laser 

irradiation group).
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Fig. 7. 
(a) Infrared thermal images of the orthotopic 4T1 breast tumor-bearing mice after different 

treatments through intratumoral injection. Tumor volumes (b) and survival rates (c) of 

orthotopic 4T1 breast tumor-bearing mice after various treatments. (d) Number of 4T1 lung 

metastases 15 days after various treatments (n = 3, *P < 0.05, **P < 0.01, ***P < 0.001, vs. 

PBS+L control).
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Fig. 8. 
T2-weighted MR images (a) and MR signal/noise ratio (c) of orthotopic 4T1 breast tumor 

after intravenous injection of PEGylated MnFe2O4 NPs (white arrows refer to tumor 

regions). (b) Tumor enlarged MR images at before injection and 3 h postinjection (boxes 

refer tumor edges).
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Scheme 1. 
Schematic illustration of the synthesis of R837-OVA-PEG-MnFe2O4 NPs and the 

mechanism of antitumor immune responses trigged by the nanoplatform under laser 

irradiation.
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