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Abstract

Estimating a patient’s mortality risk is important in making treatment decisions. Survival trees are 

a useful tool and employ recursive partitioning to separate patients into different risk groups. 

Existing “loss based” recursive partitioning procedures that would be used in the absence of 

censoring have previously been extended to the setting of right censored outcomes using inverse 

probability censoring weighted estimators of loss functions. In this paper, we propose new “doubly 

robust” extensions of these loss estimators motivated by semiparametric efficiency theory for 

missing data that better utilize available data. Simulations and a data analysis demonstrate strong 

performance of the doubly robust survival trees compared to previously used methods.
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1. Introduction

When contemplating the treatment of a given patient, a clinician will often factor in 

information related to a patient’s prognosis; such information may include, for example, the 

patient’s age, gender, various kinds of clinical and laboratory information, and increasingly 

biological variables like gene or protein expression. Risk indices can be used to predict a 

patient’s prognosis from such information; these are typically estimated from data 

previously collected on an independent cohort of patients with known covariates and 

outcomes. There are many statistical learning methods that might be used in building 

predictors of risk for a given outcome using covariate information. Recursive partitioning 
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methods are an especially clinician-friendly tool for this purpose; [1] provides a 

comprehensive treatment and review.

Frequently, the outcome of interest represents the time to occurrence of a specified event; 

common examples in cancer studies, for example, include death and recurrence or 

progression of disease. Studies of this kind often result in outcomes that are right-censored 

on several subjects. Several learning methods for separating patients into prognostic risk 

groups in the presence of right-censored outcome data have been proposed; most represent 

variations on the original classification and regression trees (CART) algorithm of [2]. In the 

case of regression trees, the original CART algorithm uses recursive partitioning to construct 

a hierarchically-structured, covariate-dependent prediction rule. This prediction rule divides 

the covariate space into disjoint rectangles, typically through consideration of a splitting 

criterion derived from a loss function that compares observed responses to predicted values 

obtained under the indicated rule. For continuous response variables, it is common to use 

squared error loss for this purpose; associated decisions based on reductions in loss then 

correspond to maximizing within-node homogeneity. However, the squared error loss 

criterion cannot be directly used in the presence of right censoring, and this problem may be 

considered as one of the principal catalysts for methodological developments in the literature 

on survival regression trees with right-censored data. For example, in [3], trees are built by 

minimizing the distance between the within-node Kaplan-Meier estimator to a Kaplan-Meier 

estimator computed as if all failure times in the node occurred at the same time; in [4], a loss 

function based on the negative log-likelihood of an exponential model is used. Leblanc and 

Crowley [5] used a splitting statistic based on a one-step estimator of the full likelihood 

estimator for the proportional hazard model with the same within-node baseline hazard. 

These methods also focus on maximizing within-node homogeneity; alternatives focused on 

maximizing between-node heterogeneity include [6], who based the splitting rule on 

maximizing the two sample log-rank statistic, and [7], who proposed a pruning algorithm for 

trees built using the log-rank statistic. With some exceptions, developments in this area after 

[7] moved away from the basic process of building hierarchically constructed trees towards 

more complex modeling situations (e.g., clustering, discrete survival times, ensembles, 

alternative partitioning methods, etcetera); see [8] for a recent review.

The above-cited methods for survival regression trees all use decision rules that are 

specifically designed to deal with the presence of right-censored outcomes; none bear a 

strong resemblance to what would ordinarily be done if censoring were absent. This gap 

between tree-based regression methods used for censored and uncensored data was closed 

by [9], who used inverse probability censoring weighted (IPCW) theory (e.g., [10]) to 

replace a given “full data” loss function that would be used in the absence of right-censoring 

by an IPCW-weighted loss that (i) reduces to the full data when there is no censoring; and, 

(ii) is an unbiased estimator of the desired risk in the presence of censoring. However, such 

methods are essentially weighted complete case methods and thus ignore the partial 

information available on censored observations. In particular, splitting decisions and 

predictions do not make full use of the available information and it is reasonable to expect 

that methods that suitably incorporate more of the available information may have better 

performance.
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Robins and Rotnitzky [11, Sec. 4] devised a semiparametric efficiency theory for missing 

data problems as a way to highlight the inefficiency of IPW estimators that fail to fully 

utilize information on observations with missing data. In particular, these authors show that 

the influence function for the most efficient estimator can be represented as a simple inverse 

probability weighted (IPW) estimator plus a certain correction term that depends on the 

observed data, providing important insight not only into how full efficiency can be recovered 

but also into how the efficiency of IPW estimators might be improved. The concept of 

augmented inverse probability weighted estimators was introduced in [12] (see also [13]), 

the focus being on improving efficiency in comparison to IPW estimators. Augmented IPW 

estimators require a model for both the missingness mechanism and the distribution of the 

“full” data, while the IPW estimators only require the missingness mechanism to be 

modeled. In order to be consistent the IPW estimators require the missingness mechanism to 

be consistently estimated, while [14] showed that the augmented inverse probability 

weighted estimators are consistent if either model is correct but not necessarily both, 

referred to as the “doubly robust” property. See [10] and [15] for further information on 

augmented IPW and IPCW estimators, where the problem of right censored outcomes is 

treated in detail.

Following these principles, and returning to the process of building survival trees, this paper 

proposes a new approach to building regression trees with right-censored outcomes. The 

method, doubly robust survival trees, generalizes the method developed in [9] by replacing 

the IPCW-weighted loss function with a doubly robust version of the loss function. We also 

introduce doubly robust cross-validation as a generalization of the IPCW cross-validation 

procedure in [9]; see also [16]. These novel substitutions improve the efficiency of the 

decision process that underpins the process of building and selecting a final tree. The 

performance of doubly robust survival trees, implemented via CART through a modification 

of the rpart package [17] in the R software [18], is evaluated in an extensive simulation 

study, where it is compared to the IPCW method in [9] and also that of Leblanc and Crowley 

[5]. The value of the methodology is also illustrated through analyzing data on death from 

myocardial infraction from the TRACE study [19].

2. Regression Trees, Loss Functions, and Censoring

2.1. Review of Regression Trees for Uncensored Outcomes

2.1.1. Basic procedure—Below, we briefly review how regression trees are calculated 

when there is no censoring; further details are available in [2]. In this section, it is assumed 

that we have n independent and identically distributed (i.i.d.) copies of (Z,W′)′, where 

Z ∈ ℝ is the response and W is a d–dimensional covariate vector. As enumerated in [9] the 

tree building process consists of three main steps: (i) Choosing a loss function; (ii) Creating 

a sequence of candidate trees; and, (iii) Selection of the “best” tree from this sequence. A 

loss function L(Z, β(W)) = distance(Z, β(W)) defines a nonnegative measure of the 

discrepancy between a prediction function β(W) and a response Z. A popular choice, 

particularly with regression trees for continuous responses, is the squared error, or L2, loss 

function L(Z, β(W)) = (Z – β(W))2; the absolute deviation, or L1, loss L(Z, β(W)) = |Z – 

β(W)| is another of many possible choices. A regression tree recursively partitions the 
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covariate space using binary splits, the decision to split on a given variable at a particular 

cutpoint being based on maximizing the reduction in the loss ∑i = 1
n L(Zi, β(W i)) (or, 

equivalently, average loss). At any given point in the splitting process, the data may be 

considered as being stratified into a set of nodes; splitting initially continues until some 

predetermined criterion is met (e.g., each node contains or exceeds a minimum number of 

observations), leading to a “maximal” tree, ψmax, that may have many (terminal) nodes.

The recursive node splitting process just described creates a large, hierarchically-structured 

tree, say ψmax. A method for pruning ψmax is needed in order to reduce its propensity to 

overfit the data. A subtree of ψmax is a tree ψ that can be obtained from ψmax by collapsing 

some non-terminal nodes. Let a subtree ψ be given and let β (ψ)(W i) be the prediction from 

ψ for a subject with covariate information Wi, that is, β (ψ)(W i) is the prediction from the 

terminal node that Wi falls into when run down the subtree ψ. Let L(Zi, β (ψ)(W i)) be the 

estimated error (i.e., loss) for subject i = 1, … , n and let |ψ| be the number of terminal nodes 

of the tree ψ. The cost complexity of the tree ψ is defined as

Kα(ψ) = ∑
i = 1

n
L(Zi, β (ψ)(W i)) + α|ψ|, (1)

where α is a tuning parameter called the complexity parameter that serves to penalize the 

estimated error by the size of the tree. For a given α, the subtree ψ that minimizes Kα(ψ) is 

said to be optimal; as α is varied, different subtrees of ψmax become optimal. Varying α thus 

creates a sequence of subtrees ψ1, … , ψl, each of which represents a candidate tree for the 

best (or final) tree. This process is called cost complexity pruning; see [2, Ch. 3.3].

The simplest way to select the best tree from the sequence of subtrees created by cost 

complexity pruning is to select the one with the smallest error (i.e., loss). In the absence of a 

completely independent test sample, cross-validation (e.g., [2], Ch. 8.5) is commonly used to 

estimate the error of each candidate tree. To be more specific, suppose cost complexity 

pruning generates the sequence of candidate trees ψ1, … , ψl. Assume that the dataset D is 

split into V mutually exclusive subsets D1, … , DV. For a given v ∈ {1, … , V} let Si,v be 

the indicator if observation i is in the subset Dv. For a given candidate tree ℓ ∈ {1, … , l} the 

tree ψℓtrv is fit using the complexity parameter associated with ψℓ using only the 

observations in the training set D \ Dv. Let β
(ψℓ, trv)

(W ) be the prediction from ψℓ,trv for a 

subject with covariate information W. Then, we can define the cross-validated risk (or error) 

estimate for any candidate tree ψℓ as

θ (ℓ) = 1
npV ∑

v = 1

V
∑
i = 1

n
I(Si, v = 1)L(Zi, β

(ψℓ, trv)
(W i)), (2)

where p is the proportion of the total sample D included in each validation subset D1, … , 

DV. The estimated loss in (2) is calculated for each subject assuming β
(ψℓ, trv)

(w) is a known 
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function of w. The final tree (i.e., best candidate tree) is now taken to be ψℓ, where ℓ is the 

value of k that minimizes θ (k), k ∈ {1, …, l}.

Let the predicted response obtained from the final tree be given by 

β (W ) = ∑k = 1
K βkI{W ∈ Nk}. It can be seen that this is a piecewise constant function of W; 

here, N1, …, NK represent the set of terminal nodes (i.e., the chosen partition of the 

covariate space) and βk is estimated using the data within each terminal node (e.g., the node-

specific sample mean, in the case of L2 loss). The presence of “hats” in the definition of 

N1, …, NK is meant to reflect the fact that the partition represented by the final tree is not 

prespecified but rather determined adaptively using the observed data.

2.1.2. Loss functions, risk, and their role in building regression trees—As 

described in Section 2.1.1, the specification of the loss function and corresponding terminal 

node estimators are key components in building the maximally sized tree, creating an 

associated sequence of candidate trees, and then using cross-validation to select the best tree 

among the candidate trees. In each of these steps, decisions are based on the principle of 

reducing the average loss, the underlying theoretical motivation being corresponding 

reduction in risk. In particular, given any fixed (i.e., prespecified, not adaptively determined) 

partition Nk, k = 1 … K of the covariate space and assuming that 

β(W ) = ∑k = 1
K βkI{W ∈ Nk}, the average loss n−1∑i = 1

n I{W i ∈ Nk}L(Zi, βk) is an unbiased 

estimator of the risk ℛ(β) = ∑k = 1
K E[I{W ∈ Nk}L(Z, βk)]; see, e.g., [2, Ch. 9.3]. It is also 

not difficult to show that minimizing ℛ(β) in β defines β0(W ) = ∑k = 1
K βk, 0I{W ∈ Nk} as 

the main parameter of interest, where βk, 0 ∈ ℝ minimizes E[L(Z, βk) |W ∈ Nk] in βk for 

each k. For example, with L(Z, β(W)) = (Z – β(W))2, the parameter β0(W) that minimizes 

the risk is obtained with βk, 0 = E[Z |W ∈ Nk], k = 1…K. Correspondingly, the minimizer of 

the average loss n−1∑i = 1
n I{W i ∈ Nk}(Zi − βk)2 is β (W ) = ∑k = 1

K βkI{W ∈ Nk}, where βk
is the sample mean of the Zis for subjects falling into Nk.

2.2. Estimating ℛ(β) and β(W) with Right-Censored Data

Let T > 0 denote an event time of interest (e.g., time to death) and define the transformed 

survival time Z = h(T), where h(⋅) is a specified strictly increasing function that maps [0, ∞] 

to ℝ (e.g., h(u) = log u). Following Sections 2.1.1 and 2.1.2, one can specify a suitable loss 

function L(Z, β(W)) and, in the case where each Zi and Wj is fully observed, use the average 

loss n−1∑i = 1
n I{W i ∈ Nk}L(Zi, βk) as the basis for building a regression tree. Just as before, 

this average loss is an unbiased estimator of the risk ℛ(β) = ∑k = 1
K E[I{W ∈ Nk}L(Z, βk)]

assuming that β(W ) = ∑k = 1
K βkI{W ∈ Nk}.

However, in any time-to-event study, it is relatively common for the outcome T (hence Z) to 

be right-censored, e.g., due to a subject being administratively censored or lost to follow-up. 

In such cases, the event time T is not always fully observed and instead we observe T , the 

smaller of T and some censoring time C, and an event indicator Δ = I(T ≤ C) that specifies 
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whether T  corresponds to a failure time or a censoring time. The presence of right-censoring 

means that not all of the Zis are fully observed; instead, we observe the data O = (O1, …, On), 
where Oi = (T i, Δi, W ′i)′ is the observed data for subject i,i = 1, … , n and (O1, … , On) are 

i.i.d. observations. Equivalently, Oi = (Zi, Δi, W ′i)′ where Zi = min(Zi, ℎ(Ci)), i = 1, …, n; a 

distinction will not be made between these two representations, as specifying h(⋅) allows 

them to be used interchangeably.

If only O is observed, the tree-building procedure of Section 2.1.1 cannot be applied directly 

because the loss function L(Zi, β(Wi)) cannot be calculated for any subject i such that Δi = 0 

(i.e., any censored subject). Below, we discuss two ways of extending the loss function and 

corresponding terminal node estimators to handle this situation. These extensions, 

respectively developed in Sections 2.2.1 and 2.2.2, are motivated from the perspective of 

constructing an unbiased estimator for the desired full data risk ℛ(β). In Section 2.3, we 

discuss how these estimates are used in building survival regression trees and in developing 

novel extensions of existing cross-validation procedures. Similarly to Section 2.1.2, the 

developments of Sections 2.2.1 and 2.2.2 assume that (i) the partition Nk, k = 1 … K is 

fixed (e.g., [2], Ch. 9.3); (ii) β(W ) = ∑k = 1
K βkI{W ∈ Nk} and, (iii) the full data risk 

ℛ(β) = ∑k = 1
K E[I{W ∈ Nk}L(Z, βk)] is the quantity we wish to estimate using the 

information in O. Viewed from this perspective, the parameter of interest 

β0(W ) = ∑k = 1
K βk, 0I{W ∈ Nk} remains that defined in Section 2.1.2, that is, βk, 0 minimizes 

the full data conditional risk E[L(Z, βk) |W ∈ Nk], k = 1, …, K.

To proceed, further assumptions are required. We make the standard identification 

assumption that T is conditionally independent of the censoring time C given the covariates 

W; this means that P (T > u |W ) = S0(u |W )G0(u |W ) for every u ≥ 0, where 

S0(u |W ) = P (T > u |W ) and G0(u |W ) = P (C > u |W ) respectively denote the conditional 

survival functions for T and C given W. For reasons that will become clear shortly, we need 

to further assume the existence of ε > 0 such that

G0(T |W ) ≥ ε > 0 . (3)

This positivity assumption (e.g., [11]) ensures each subject has a positive probability of 

being censored at their failure time, a fact that will be important in the next two subsections.

2.2.1. IPCW estimators—The basic idea behind IPCW theory is to weight the 

contribution of each uncensored observation by the inverse probability of being censored. In 

the context of loss estimation, each uncensored observation therefore contributes the loss 

L(Zi, β(Wi)), weighted by Δi/G0(Ti|Wi); that is, the full data loss weighted by the inverse of 

the corresponding probability that the observation Zi was uncensored (e.g., [9]). Assuming 

(3) holds, both the average IPCW loss n−1∑i = 1
n Δi L(Zi, β(W i))/G0(T i |W i) (a function of 

the observed data only) and the average full data loss n−1∑i = 1
n L(Zi, β(W i)) (a function of 

the full data) are easily shown to have the same marginal expectation, each being an 

unbiased estimator for ℛ(β).
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As defined, computation of the average IPCW loss requires knowing G0 (⋅|⋅), an unknown 

nuisance parameter. Let G( ⋅ | ⋅ ) be an estimator for G0(⋅|⋅) derived using the observed data 

O = (O1, …, On). Then, with β(W ) = ∑k = 1
K βkI{W ∈ Nk}, we define the empirical IPCW loss 

as

LIPCW (O |G) = 1
n ∑

k = 1

K
∑
i = 1

n
I{W i ∈ Nk}Δi L(Zi, βk)

G(T i |W i)
. (4)

With no censoring, (4) reduces to the average full data loss function. If G( ⋅ | ⋅ ) is a suitably 

consistent estimate for G0(⋅|⋅), the empirical IPCW loss function consistently estimates ℛ(β)
under certain regularity conditions. The predictor β (W ) = ∑k = 1

K βIPCW , kI{W ∈ Nk} that 

minimizes (4) is obtained by minimizing n−1∑i = 1
n I{W i ∈ Nk} Δi L(Zi, βk)/G(T i |W i) in βk 

for each k. For example, using the L2 (full data) loss function (Z – β(W))2, this solution 

reduces to βIPCW (W ) = ∑k = 1
K βIPCW , kI{W ∈ Nk} where

βIPCW , k = ∑
i = 1

n Δi Zi
G(T i |W i)

I{W i ∈ Nk} ∑
i = 1

n Δi
G(T i |W i)

I{W i ∈ Nk} . (5)

As expected, and with no censoring, (5) reduces to the corresponding node-specific sample 

average of the Zis.

2.2.2. Doubly robust estimators—Robins, Rotnitzky and Zhao [12] showed that 

simple IPW estimators are inefficient due to their failure to utilize all the information 

available on observations with missing or partially missing data. To improve efficiency, these 

authors proposed a class of augmented estimating equations that make better use of the 

available information. Below, we briefly summarize how these ideas are used to improve 

both loss and parameter estimation in the presence of censored data; further detail may be 

found in Section S.1.1 of the Supplementary Web Appendix.

By construction, the empirical loss LIPCW (O |G) in (4) only makes use of complete cases, 

the information from censored observations being incorporated only through the estimation 

of G0(⋅|⋅) by G( ⋅ | ⋅ ). An augmented loss function, as developed in Section S.1.1 in the 

Supplementary Web Appendix, is designed to make greater use of the information available 

in censored observations. For the case of interest, namely β(W ) = ∑k = 1
K βkI{W ∈ Nk}, the 

empirical doubly robust loss function, derived directly from (S-6) in the Supplementary Web 

Appendix, is given by

LDR(O |G, Q) = LIPCW (O |G) + 1
n ∑

k = 1

K
∑
i = 1

n
I{W i ∈ Nk}

(1 − Δi )Qk(T i, W i)
G(T i |W i)

− ∫
0

Ti Qk(u, W i)
G(u |W i)

d ΛG (u |W i) .
(6)
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The doubly robust loss function (6) involves augmenting (4) with an additive “correction” 

term. As with (4), this augmentation term depends on G( ⋅ | ⋅ ), an estimate derived from a 

model for the conditional censoring survivor function G0(⋅|⋅), and its associated cumulative 

hazard function ΛG ( ⋅ | ⋅ ). In addition, the augmentation term further depends on a model 

for the conditional survivor function S0(⋅|⋅). This can be seen directly from the definition of 

the function Qk(u, w), which estimates Qk(u, w) = E[L(Z, βk)|T ≥ u, W = w]; see (S-3) in the 

Supplementary Web Appendix. Specifically,

Qk(u, w) = −
∫u

∞L(ℎ(r), βk)dS(r |w)
S(u |w) , (7)

where S(r |w) is a model-based estimate for S0(r|w) = P(T > r|W = w). Importantly, similarly 

to (4), it can be shown that (6) also reduces to the average full data loss when there is no 

censoring.

The doubly robust nature of (6) stems from the fact that it consistently estimates ℛ(β) under 

certain regularity conditions provided at least one of the models used for C|W and T|W has 

been correctly specified. For example, by construction, the second term on the right-hand 

side of (6) will be a consistent estimate of zero if G consistently estimates G0; in this case, 

and under further regularity conditions, both (4) and (6) estimate ℛ(β) whether or not 

S( ⋅ | ⋅ ) is consistent for S0(⋅|⋅). More generally, if G( ⋅ | ⋅ ) fails to consistently estimate G0(⋅|
⋅), then (4) is an asymptotically biased estimator of ℛ(β); however, if S( ⋅ | ⋅ ) consistently 

estimates S0(⋅|⋅), then it can be shown that the augmentation term corrects this bias and one 

still obtains a consistent estimate of ℛ(β). When both G( ⋅ | ⋅ ) and S( ⋅ | ⋅ ) consistently 

estimate their population counterparts, (6) is an asymptotically efficient augmented estimate 

(i.e., for the specified loss function and predictor β(⋅)); in practice, one can anticipate 

reduced variance when reasonable models for G0(⋅|⋅) and S0(⋅|⋅) are selected.

For certain loss functions, the corresponding estimate of β(W) under (6) is also available in 

closed form. For example, consider again the important case of the L2 full data loss (Z – 

β(W))2; then, it follows from arguments similar to those given in Section S.1.1 of the 

Supplementary Web Appendix that the minimizer βDR(W ) of (6) is given by 

βDR(W ) = ∑k = 1
K βDR, kI{W ∈ Nk} where

βDR, k

=
∑i = 1

n I{W i ∈ Nk} Δi Zi
G(Ti |W i)

+ 1 − Δi
G(Ti |W i)

m1(T i, W i) − ∫0
Ti m1(u, W i)

G(u |W i)
d ΛG (u |W i)

∑i = 1
n I{W i ∈ Nk}

,
(8)

and m1(s, w) estimates E[Z|T ≥ s, w] for each (s, w). For reasons similar to those discussed 

above, βDR(W ) exhibits the doubly robustness property and so we will hereafter refer to it as 

the doubly robust mean. Like (5), and with no censoring, it can be shown that (8) also 

reduces to the corresponding node-specific sample average of the Zis.
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2.3. Survival Trees: Model Building and Cross-Validation

Similarly to the full data setting described in Section 2.1.1, justifications for the consistency 

of the IPCW and doubly robust loss functions obtained in the previous two subsections do 

not account for the adaptive nature of the tree building process. Nevertheless, with the 

results from Sections 2.2.1 and 2.2.2, regression trees for censored data can now be built 

exactly as described in Section 2.1.1, provided one replaces the average full data loss with 

either (4) or (6) throughout. We refer to the former as an IPCW survival tree and the latter as 

a doubly robust survival tree. The resulting “default” terminal node estimators respectively 

take the forms given by (5) or (8), though one may legitimately define and use any 

reasonable censored data estimate (e.g., Kaplan-Meier estimators) to summarize the final fit. 

The developments in Sections 2.2.1 and 2.2.2 show that the splitting decisions and 

associated terminal node estimators under (6) use more information in the observed data 

than do those under (4); hence, it is reasonable to anticipate improved performance of the 

doubly robust survival trees in comparison to the IPCW survival trees.

As described in Section 2.1.1, when full data are available cost complexity pruning uses the 

full data loss to create a sequence of subtrees (i.e., with respect to the maximum tree). Each 

tree in the sequence of subtrees created by cost complexity pruning is then a candidate for 

the final tree that will be selected and V-fold cross-validation is typically used to estimate 

the prediction error of each of the candidate trees and obtain the final tree. Following 

Sections 2.2.1 and 2.2.2, a straightforward extension of the basic procedure outlined in 

Section 2.1.1 suitable for censored data can be obtained by replacing the full data loss 

function in (2) with either the IPCW or doubly robust loss functions. In particular, given a 

full data loss function and following the developments of Section S.1.1 in the Supplementary 

Web Appendix, we can define a class of augmented cross-validated risk, or error, estimators 

for any candidate tree ψℓ as

θ̂(ℓ) = 1
npV ∑

v = 1

V
∑
i = 1

n
I(Si, v = 1) Δi L(Zi, β

(ψℓ, trv)
(W i))

G(T i |W i)
+ φℓ, trv(Oi) , (9)

where φℓ,trv (Oi) is some appropriate function of the observed training set for each i and 

β
(ψℓ, trv)

(W i) is the prediction from ψℓ,trv (Oi) for a subject with covariate information Wi 

that is computed from a tree that is built using only the observations in the training set D \ 

Dv and then pruned using the complexity parameter associated with ψℓ (i.e., the ℓth subtree 

obtained from the original tree fit). The error estimate (9) directly generalizes (2) for use 

with right-censored outcome data.

Using the above, we define two of several possible cross validation procedures below. First, 

suppose the original tree and all training set trees are built using the IPCW survival tree 

procedure; note that this means β
(ψℓ, trv)

(W i) is computed for each training set by calculating 

the terminal node estimates similarly to (5). Then, we obtain the IPCW cross-validation 

procedure upon setting φℓ,trv (Oi) = 0 for each i in (9) above; this procedure is discussed in 

[9, 16]. Second, suppose the original tree and all training set trees are built using the doubly 
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robust survival tree procedure described earlier; this means β
(ψℓ, trv)

(W i) is now computed 

for each training set by calculating the terminal node estimates similarly to (8). Then, we 

obtain the doubly robust cross validation procedure if we also define φℓ,trv (Oi) in a manner 

that corresponds to (6); this cross-validation procedure is a novel extension of the cross-

validation procedures discussed in [9, 16]. Further details on the computation of these 

measures can be found in Section S.1.2 of the Supplementary Web Appendix.

2.4. Computing the IPCW and Doubly Robust Loss Functions

Estimation of the conditional censoring distribution G0(⋅|W) is required for both the IPCW 

loss (4) and doubly robust loss (6) functions for both model building and cross-validation. 

Use of (6) additionally requires a model and estimator for the conditional survivor 

distribution S0(⋅|W). Methods for estimating G0(⋅|W) and S0(⋅|W) have not been discussed in 

detail; Section 3.2.1 reviews several possible approaches. Importantly, because of the 

repeated demand for these estimates in both model building and cross-validation, and in 

view of the assumptions used to justify various results in Section 2.2.2, estimates of these 

two distributions are to be computed in advance and treated as known throughout the entire 

tree building process for both the simulations and data analysis in Sections 3 and 4.

The use of pre-computed estimates G( ⋅ | ⋅ ) and S( ⋅ | ⋅ ) derived from the entire dataset 

during the tree-building and cross-validation phases merits further comment. When building 

trees, an alternative to using a pre-computed model-derived estimate S( ⋅ | ⋅ ) is to 

dynamically recalculate this estimator as the doubly robust tree is being fit (i.e., using the 

current tree to estimate a new survivor function each time a split is considered). However, 

this approach suffers from two potential drawbacks. First, dynamic recalculation creates a 

significant additional computational burden in building a single tree that is only further 

compounded when using cross-validation for model selection. Second, splitting decisions 

made early in the tree building process do not use much of the available covariate 

information, increasing the chances that an incorrect model is used for (10) when making 

early decisions that govern the overall tree structure. In turn, this increases the susceptibility 

of the splitting process to misspecification of the censoring distribution, with early splits 

possibly being more sensitive to variables that influence censoring but not survival rates. 

Regarding cross-validation, it is well known that ensuring independence of the validation set 

from the tree fitting process in either the IPCW or doubly robust settings requires that both 

G( ⋅ | ⋅ ) and S( ⋅ | ⋅ ) to be derived using using only the training set. The reason why cross-

validation forces the validation and the training set to be independent is that model 

estimation tends to adapt to the training set and therefore fits observations in the training set 

better than observations in an independent test set. However, using the whole dataset to 

compute G( ⋅ | ⋅ ) and S( ⋅ | ⋅ ) will clearly result in less variable estimates than might be 

obtained using only the training sample. More importantly, from the perspective of what is 

really being estimated using cross-validation, it is not obvious why using pre-computed 

estimators of these functions derived from the entire dataset should lead to overly optimistic 

risk estimators. Indeed, simulations (not shown) demonstrate that re-estimation for each 

training set generally results in worse performance. For all of these reasons, we have elected 
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to use pre-computed estimates throughout the tree building and model selection phases in 

our simulations and data analyses.

3. Simulations

In this section we use simulation to compare the performance of the doubly robust and 

IPCW survival trees built using a L2 full data loss function to each other as well as to trees 

built using the default exponential (Exp) method in rpart. The Exp method is equivalent to 

that proposed in [5], which is based on the negative log-likelihood for a Cox model with the 

same baseline hazard within each node. The doubly robust trees use a doubly robust loss 

function for splitting and cost complexity pruning and doubly robust cross-validation for 

selecting the final tree. The IPCW trees are fit using an IPCW loss function and IPCW 

cross-validation. Both methods are versions of CART and have been implemented within 

rpart by taking advantage of its flexibility in accommodating user-written splitting and 

evaluation functions [20]. The sections below describe the measures used to evaluate 

performance, the choices made when calculating the IPCW and doubly robust loss functions, 

and the results of the main simulation study.

3.1. Evaluation Measures

We now define several metrics that will be used to evaluate the performance of different tree 

building methods. We chose eight different measures based on the following two rules: (a) 

each measure contains information on how good the tree is; and, (b) each measure adds 

some information not contained in the other measures. For a test set consisting of ntest 

independent uncensored observations sampled from the full data distribution, the evaluation 

measures used are:

• Prediction Error (PE). Prediction error measures the ability of a regression tree to 

estimate the conditional expectation E[Z|W] for future observations. The 

prediction error for a tree ψ is defined as 1
ntest

∑i = 1
ntest (β (ψ)(W i) − E[Zi |W i])

2
, 

where E[Zi|Wi] is calculated from the underlying model used to generate the 

data.

• Pairwise Prediction Similarity (PPS). Pairwise prediction similarity (see [21]) 

measures the ability of each method to separate subjects into correct risk groups. 

Let IT(i,j) and IF(i,j) be an indicator if observations i and j have the same 

predicted outcome when run down the true tree and the fitted tree respectively. 

The pairwise prediction similarity is defined as

1 − ∑
i = 1

ntest
∑

j > i

ntest |IT (i, j) − IF (i, j)|
n
2

.

The range of this measure is [0,1], with higher being better. Hence, pairwise 

prediction similarity is the proportion of pairs of observations that get classified 

into the same risk group by the true and the fitted tree. This evaluation metric is 

Steingrimsson et al. Page 11

Stat Med. Author manuscript; available in PMC 2020 June 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



independent of the actual prediction in the terminal node and thus depends 

mainly on the structure of the tree. For a given dataset, note that perfect 

similarity can be achieved even when the split points for the two trees are not 

exactly equal to each other.

• Absolute Survival Difference (ASD). Absolute survival difference measures how 

well a tree estimates the conditional survival distribution. For a given time t let 

S(t|W) and S(t |W ) be the true and estimated conditional survival function, 

respectively. The absolute t-th survival difference is defined as 
1

ntest
∑i = 1

ntest |S(t |W i) − S(t |W i|. We will use t equal to the 25th, 50th and 75th 

quantile of the true marginal survival distribution.

• |Size of fitted tree – size of true tree|. This metric measures how far away in 

absolute value the size of the fitted tree is away from the size of the true tree, 

hence measuring the ability of the tree building process to build trees of the 

correct size.

• Number of Splits on Noise Variables. This measures how often (on average) a 

tree includes variables that do not affect the survival time. Let nsim be the number 

of simulations and NSi be the number of times a tree includes variables that do 

not affect the survival time in simulation i. The number of splits on noise 

variables is defined as 1
nsim

∑i = 1
nsim NSi.

• Proportion of Correct Trees. A fitted tree will rarely be exactly equal to the 

correct tree; that is, it cannot be expected to split on the correct covariates at 

exactly the correct split points. We thus define a tree as being “correct” if it splits 

on all variables the correct number of times, independent of the chosen split 

point and the ordering of variable splits.

3.2. Calculating the IPCW and Doubly Robust Loss Functions

Below, we address several important issues related to the implementation of the IPCW and 

doubly robust survival methods.

3.2.1. Estimating S0(⋅|⋅) and G0(⋅|⋅)—As noted in Section 2.4, the IPCW and doubly 

robust loss functions respectively require estimates of G0(⋅|⋅) and S0(⋅|⋅) for implementation, 

the latter being needed only for calculating the function (7) that appears in the augmentation 

term. The Kaplan-Meier estimator can reasonably be used to estimate G0(⋅|⋅) as long as it 

can be assumed that the censoring process is independent of covariates. However, it makes 

little sense to use this estimator for S0(⋅|⋅) when building survival regression trees since such 

methods clearly presume that T depends on W in some way. Numerous parametric and 

semiparametric methods are available for estimating a conditional survivor function. In our 

simulations, we consider estimators for S0(⋅|⋅) respectively derived from Cox regression, 

survival regression tree models, survival random forests, and parametric accelerated failure 

time (AFT) models. Each approach is described briefly below. We note here that while we 

focus on the problem of estimating S0(⋅|⋅), any of the methods to be described below could 

just as easily be used to estimate G0(⋅|⋅). However, as a general principle, one should try to 
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avoid using an estimator for one of these functions that relies on the estimator for the other. 

This is because the incorrect specification of the model that underlies one of these estimators 

affects the consistency of the other, negatively impacting double robustness.

When using a Cox regression model, individual survival curves may be estimated using 

S(t |W i) = e−Λ0(t)eη′W i, where η is the estimated regression coefficient and Λ0 ( ⋅ ) is the 

estimated cumulative baseline hazard. As an alternative, one can use a survival regression 

tree model that employs the default exponential method (exp) in rpart; that is, the 

methodology proposed by [5]. In particular, suppose the fitted survival tree has K terminal 

nodes N1, …, NK. Then, one first computes the Kaplan-Meier estimator Sk(t) using the 

original observations that fall into node Nk for each k; one can then define 

S(t |W i) = ∑k = 1
K I{W i ∈ Nk}Sk(t) as the predicted survivor function under this fitted 

survival regression tree model. The use of a Kaplan-Meier estimator here is optional; for 

example, a separate parametric model could instead be used to estimate survivorship within 

each terminal node, the advantage being that S(t |W i) is then guaranteed to be a proper 

survivor function. It is well known that ensemble procedures are able to improve upon single 

trees for purposes of prediction and are more nonparametric in nature than the Cox 

regression models. Consequently, a third option is to use the randomForestSRC package in 

R [22, 23] to estimate the individual survival curves. In our simulations, we used the rfsrc 

function, which uses the log-rank splitting rule introduced in [7]; similarly to both the Cox 

and regression tree methods, the associated predict function produces estimates of individual 

survivor curves at each ordered failure time in the observed data. Finally, one can use a 

parametric model to estimate S0(⋅|⋅). For example, consider the parametric AFT model Z = μ 
+ η′W + σΓ, where μ is an intercept, η is the model regression coefficient, σ is a scale 

coefficient, and Γ is a random variable with mean zero and unit variance. The model 

parameters can be estimated using maximum likelihood; doing so results in a survivor 

function estimate S(t |W i) that is guaranteed to be proper for each i = 1, … , n.

3.2.2. Estimating (7) under L2 loss—Regardless of how the survival curve is 

estimated, calculation of the augmentation term in (6) can proceed by substituting in the 

estimate S(t |W i) for S(t |W i) in (7). In the specific case of the full data L2 loss function (Z – 

β(W))2 with h(t) = log t, the calculation of (7) reduces to computing

mj(u, W i) = E[Zj |T ≥ u, W i] = −
∫u

∞log(t)jdS(t |W i)
S(u |W i)

, j = 1, 2 . (10)

Usefully, all terms involving m2( ⋅ , ⋅ ) in (6) are actually independent of β′ks and it can be 

shown that all such terms drop out of all required computations. As a result, implementation 

in practice for the L2 loss only requires computation of m1( ⋅ , W i), i = 1, …, n.

With the Cox, survival tree and random forest estimators for S(t |W ), (10) is used provided 

S(u |W i) − S( + ∞|W i) > 0 (i.e., there is at least one uncensored observation greater than u); 

otherwise, the estimator is taken to be equal to maxi = 1, …, nlog(T i)
j. For these methods, the 
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integral in the numerator of (10) also reduces to calculating a finite sum since in each case 

S(t |W i) only jumps at failure times. For the parametric AFT model, no adhoc adjustment to 

the calculation of (10) need to be made when there are no uncensored observations greater 

than u. For several common choices of parametric distributions for Γ, the required 

expectations are also available in a computationally convenient form. For example, under the 

indicated AFT model, calculations show that

m1(u, w) = E[log(T ) |T > u, W = w] = μ + η′w + σH(c(u, w)),

where H(u) = E[Γ|Γ] > u] and c(u, w) = σ−1(log(u) − μ − η′w). In our simulations, we use 

m1(⋅, ⋅) calculated assuming Γ, hence H(⋅), is an extreme value distribution and a standard 

log-logistic distribution (i.e., assuming failure times respectively follow a Weibull and a log-

logistic distribution). For the extreme value distribution, calculation of the function H(⋅) 
relies on the ability to calculate the Exponential Integral (e.g., [24], Sec. 5.1); for the log-

logistic distribution, we have H(u) = u + (log(1 + eu) – u)(1 + eu). Maximum likelihood 

estimates derived from the observed data O are then substituted in for all unknown 

parameters.

3.2.3. Selecting a truncation time τ to ensure positivity—Strictly speaking, the 

methodology summarized in Section 2.3 requires that an empirical version of the positivity 

assumption (3) holds for the observed data. It has been well documented in the causal 

inference literature that having probabilities in the denominator that are too close to zero can 

result in unstable finite sample performance for both IPCW and doubly robust estimators 

even when such an empirical version of this assumption holds. In practice, enforcing this 

assumption, hence bounding the IPCW weights, is often dealt with through the introduction 

of a truncation time τ (e.g., [11, 25]).

Independent of the simulation setting and the decisions that need to be made every time a 

full data regression tree is fit (e.g., selecting the various tuning parameters in the rpart 

function), one must consider the impact of introducing a truncation time τ. Two related 

methods of truncation, generically labeled Method 1 and Method 2, are discussed in Section 

S.1.3 of the Supplementary Web Appendix. Method 1 may be considered as the standard 

approach, and is most commonly used (e.g., [25]); Method 2 appears to be new and is of 

independent interest. To explore how the choice of τ and associated method of truncation 

influence performance under the set of metrics described in Section 3.1, we ran several 

preliminary simulations to help inform the choices made for the main simulation study. To 

ensure these evaluations reflect the modeling decisions made for S0(⋅|⋅), performance is 

studied under all approximation methods in Section 3.2.2. The description of this study and 

the associated results may be found in Section S.2.1 of the Supplementary Web Appendix. 

Based on these preliminary simulation results, all simulations in the next subsection and in 

the data analysis of Section 4 will use truncation Method 2 with 10% truncation. This 

method of truncation does necessitate minor changes in the calculation of both the IPCW 

and doubly robust loss functions and associated terminal node estimators; this can be seen, 

for example, by respectively comparing (4) and (6) with (S-8) and (S-9) in Section S.1.3 of 

the Supplementary Web Appendix. Although little difference was observed for the method 
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used to calculate the augmentation term in these preliminary simulations, results in the next 

section will be presented for all approaches described in Section 3.2.2.

3.3. Main Simulation Results

This simulation study intends to compare the performance of the doubly robust and IPCW 

survival trees built under L2 loss using Z = logT to each other as well as to trees built using 

the default exponential (exp) method in rpart. We will summarize the results from two 

simulation settings. In both settings, a training set consisting of 250 independent 

observations from the observed data distribution and a test set of 2000 observations sampled 

using the full data distribution (no censoring) are generated 1000 times. Because the exp 

method in rpart is not based on a loss function that is minimized by some estimator of the 

mean survival time, a method for predicting the mean survival time is needed in order to 

calculate prediction error as described in Section 3.1. In an attempt to be consistent with 

how these particular trees are built, we first estimate the unscaled rate, say λk, within each 

terminal node Nk; we then estimate the mean of T for a given covariate W as if T has an 

exponential distribution with rate ∑kλkI{W ∈ Nk}.

The first simulation setting (Simulation 1) is similar to the one used in [26] and is also the 

same setting as that used in Section 3.2.3 for determining a method and overall level of 

truncation. Assume there are five covariates W1 – W5 that are all uniformly distributed on 

the integers 1 – 100 and that Z = log T where the failure time T is exponential with mean 

parameter a equal to 5,2 or 1 if W1 > 50 or W2 > 75 and equal to 0.5 otherwise (i.e., high, 

medium, and low signal settings). The top row of Figure 1 provides a summary of the 

underlying models generating the survival data; observe that the correct tree has 3 nodes, 

with two of these on different branches having the same survival experience. Censoring is 

also assumed to have an exponential distribution with mean parameter chosen to achieve a 

30% censoring rate; G is estimated using a Kaplan-Meier estimator. The performance of the 

different tree building methods for this setting is shown in Figure 2 and Table 1. The 

boxplots in Figure 2 show that the doubly robust trees perform better than the IPCW trees on 

almost all of the evaluation measures in the high and medium signal setting, and show 

similar performance in the low signal setting. The default method in rpart performs similarly 

or worse than the doubly robust methods in the high signal setting, especially in prediction 

error; however, it generally does as well or slightly better in the medium and low signal 

setting. When looking at Table 1, similar patterns emerge: the doubly robust trees tend to fit 

the correct tree more often, fit trees closer to the true size, and fit similarly often on noise 

variables compared to the IPCW tree. The proportion of trees of size 1, 2, 3, 4+ is shown in 

Table S-1 in Supplementary Web Appendix S.2.2. The sometimes superior performance of 

the exp method in rpart may be at least partly attributable to the fact that the proportional 

hazards assumption that underlies its development is satisfied in this setting.

The second simulation setting (Simulation 2) involves a violation of the proportional hazard 

assumption and is similar to Setting D in [5]. Assume covariates W1 – W5 are independently 

uniformly distributed on the interval [0,1]. The event times are simulated from a distribution 

with survivor function S(t|W) = (1 + teλI(W1≤0.5,W2>0.5)+0.367)−1 where λ = 1,1.5 and 2 

respectively represents a low, medium, and a high signal setting. Denote the parameter 
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defining this distribution as a = λI(W1 ≤ 0.5, W2 > 0.5); then, a = 1,1.5, or 2 when W1 ≤ 0.5 

and W2 > 0.5 and is zero otherwise. The bottom row of Figure 1 summarizes the underlying 

models generating the survival data in this setting; as in Simulation 1, the correct tree has 3 

nodes, with two of these on different branches having the same survival experience (i.e., for 

a = 0). Censoring times are uniformly distributed on [0, b] with b chosen to get a 30% 

censoring rate; G is again obtained using a Kaplan-Meier estimator. The results are shown in 

Figure 3 and Table 2. Table 2 again shows that the doubly robust trees fit a higher proportion 

of correct trees, build trees closer to the correct size, and fit less often on noise variables than 

both the IPCW and the exponential methods. Figure 3 shows that the doubly robust trees 

perform noticeably better than both the IPCW trees and exponential method in the high and 

medium setting; performance is comparable for all methods in the low signal setting. The 

proportion of trees of size 1, 2, 3, 4+ is shown in Table S-2 in Supplementary Web Appendix 

S.2.2. For both simulation settings similar trends occur when the censoring rate is 50%; see 

Supplementary Web Appendix S.2.2 for the corresponding figures and tables.

Both Simulations 1 and 2 use a censoring distribution that is independent of covariates; the 

censoring distribution is also estimated accordingly with a product-limit estimator. In 

Supplementary Web Appendix S.2.3, we present additional results from simulations where 

the underlying censoring distribution depends on covariates and is estimated using a random 

survival forest procedure [23]. The results show similar trends to those summarized in this 

section; see Figures S-8 and S-9 and Tables S-7 and S-8 in Supplementary Web Appendix 

S.2.3.

Interesting features common to all simulation settings considered include (i) the general 

level of improvement that the doubly robust methods provide over the IPCW method, 

consistent with the goals of attempting to improve performance through better use of the 

available information; and, (ii) the relative insensitivity of these results to the choice of 

model used in the augmentation term, consistent with the desired double robustness 

property.

4. The TRACE dataset

In this section we use doubly robust trees to analyze the trace dataset, available in the R 

package timereg [27]. The dataset consists of 1878 randomly sampled subjects from 6600 

patients collected by the TRACE study group [19]. The event of interest is death from acute 

myocardial infarction; subjects that were either alive when they left the study or died from 

other causes were considered censored. Two observations with an undefined censoring status 

were removed from the dataset, leaving 1876 patients. Information on age, gender, if the 

person had diabetes, if clinical heart pump failure was present, if the patient had ventricular 

fibrillation, and a measure of the heart pumping effect was also available.

Analyses in [19], conducted on the full dataset, separate out long-term (i.e., surviving 

beyond 30 days) and short-term survival, utilizing Cox regression for the former and logistic 

regression for the latter. Their analyses suggest that the effect of the ventricular fibrillation 

variable, an acute condition experienced in the hospital that increases the risk of death, is 

time-dependent with an effect that largely disappears after 60 days. The analyses in [27] 
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utilize the first 5 variables only, excluding the information on heart pumping effect measure 

(a variable that appears to be strongly related to clinical heart pump failure). In the analyses 

presented below, we therefore focus on the subset of the data involving 1689 patients that 

survived beyond 30 days and include age (continuous), gender (male/female), diabetes (yes/

no), clinical heart pump failure (yes/no) and ventricular fibrillation (yes/no) in our analyses. 

The censoring rate for this subset is 53.8%; a Cox regression model fit to the censoring 

distribution suggests that the censoring distribution is independent of all covariates, with a p-

value from a likelihood ratio test equal to 0.536. No significant deviations from the 

proportional hazard assumption (i.e., for censoring) were found when tested using the 

cox.zph function. Hence, in the analysis below, the censoring distribution required for 

estimating the IPCW and doubly robust loss functions was estimated using a Kaplan-Meier 

estimator. In the Supplementary Web Appendix S.2.4 companion analyses on the subset of 

1646 patients that survived beyond 60 days are also summarized.

We will analyze the data using several different tree building methods: the IPCW and Exp 

(default rpart) methods; doubly robust trees where the augmentation term is computed using 

four of the methods for estimating (10) as described in Section 3.2.2 (i.e., Cox, Tree, 

Weibull, and Log Log (log-logistic)) and also with a parametric AFT model using a log-

normal distribution (Log Norm). Because most of the observations that are censored have 

large observed times, modifications of the survival regression tree method (i.e., Tree) and 

random survival forests method (i.e., RF) described in Section 3.2.2 were also considered. In 

particular, the TreeSM method uses the same tree as the Tree method, but estimates within-

node survival curves using a node-specific parametric Weibull model in place of a Kaplan-

Meier estimator; this facilitates calculation of the needed conditional expectations at larger 

time points. The RF SM method is a related modification of the RF procedure. Specifically, 

for each tree in the boostrap ensemble, we fit node-specific parametric Weibull models by 

maximum likelihood, obtaining an individualized set of parameter estimates for every 

subject in every boostrap sample; in order to have sufficient information to estimate these 

parameters, we set the minimum number of failures in each terminal node to be 50. It is now 

possible to process the resulting “forest” of parameter estimates obtained for each individual 

in several ways, each leading to a different final ensemble estimate of m1( ⋅ , W i) in (10). For 

example, one can (a) average the Weibull parameter estimates for each individual over the 

boostrap samples to obtain an individual’s ensemble estimate of the Weibull parameters and 

then compute m1( ⋅ , W i) using the approach described in Section 3.2.2; (b) estimate the 

corresponding survival curve for each subject for each boostrap sample, compute the 

resulting ensemble estimate S(u |W i) by averaging these curves over the bootstrap samples, 

and then use this estimate in (10) to compute m1( ⋅ , W i); or, (c) compute a version of (10) for 

each bootstrap sample for each individual directly, averaging these bootstrap estimates to 

obtain an ensemble estimate of m1( . , W i). Method (b) is closest to what is done in the RF 

method as implemented here and leads to the same final tree as Method (a). The results 

reported for RF SM in this section use method (c). With the exception of Exp, all trees are 

again estimated using L2 loss and Z = log T using 10% Method 2 truncation. Using these 

choices, these analyses intend to separate patients into distinct risk groups on the basis of 

long-term survival, classified according to (truncated) mean log-survival time.
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Using 10-fold cross-validation, the Exp method was observed to be particularly sensitive to 

how the dataset was partitioned into subsets, with different splits resulting in different 

estimates of the size of the optimal subtrees. The remaining methods demonstrated varying 

levels of sensitivity, with the IPCW method demonstrating greater sensitivity in comparison 

to the Tree, TreeSM, RF SM, Cox and the doubly robust AFT methods that make use of 

parametric models in computing (10), with the methods that use proper survival functions 

(AFT methods, TreeSM, and RF SM) being the most stable. To reduce the impact of this 

sensitivity on comparisons of results, we utilized repeated cross-validation for all methods, 

creating 100 different sets of 10-fold cross-validation sets. We calculated the cross-

validation error for each of these 100 sets for each model size and averaged the results 

within size across the 100 different 10-fold partitions. The final tree is then selected as the 

tree that has the smallest average cross-validation error. This procedure has previously been 

shown to work well in reducing the variance of the cross-validation error in [28]. Barplots 

with the number of trees fit for each size for all nine methods can be found in Figure S-10 in 

the Supplementary Web Appendix S.2.4. These results confirm that the doubly robust trees 

with proper survivor functions used for computing (10) (i.e., Weibull, Log Log, Log Norm, 

TreeSM and the RF SM method) were the most stable and also the most conservative (i.e., 

fewest terminal nodes); this was followed by Cox, Tree, IPCW, and then Exp.

The four unique trees obtained using these various methods are shown in the top row of 

Figure 4. All of the trees built involve age; the only other variables selected, depending on 

the method, were clinical heart pump failure (CHF) and diabetes (Exp method only). The 

final trees obtained under the doubly robust AFT model (i.e., Weibull, Log Norm, Log Log), 

TreeSM and the RF SM methods were all the same, each having two terminal nodes with a 

primary split on age (< 75 vs. ≥ 75). The Cox and Tree methods built the same tree (5 

terminal nodes), splitting on age first (< 72 vs. ≥ 72) in a manner similar to the doubly robust 

AFT, TreeSM, and RF SM methods; subsequent splits are made on CHF and then again on 

age (≥ 82 vs < 82) for those with CHF. This tree structure defines 3 risk groups among those 

with CHF by age, namely patients with ages < 72, [72, 81], and 82+ years. The terminal 

node estimates that appear in the trees for these 6 doubly robust methods are computed via 

(8) using the indicated choices of censoring and survival distribution estimators. The IPCW 

tree creates the same risk groups to those for the Cox and Tree methods for patients without 

CHF. For patients with CHF, the IPCW tree creates rather different risk groups, separating 

patients by ages < 68, [68,69], [70, 71], and 72+ years. Interestingly, the terminal node 

means in the < 68 and [70, 71] age groups are also estimated to be equal and considerably 

higher than the group with the shortest mean survival (i.e., those aged 68–69). The terminal 

node estimates that appear are computed using (5). The bottom row of Figure 4 shows the 

corresponding survivor curves, estimated via Kaplan-Meier within each terminal node. 

These curves are estimated from the untruncated survival data; that is, the truncation used to 

facilitate building the trees and defining the risk groups does not impact these estimated 

survival curves. The estimated survival curves show that the loss-based procedures (i.e., 

IPCW and doubly robust trees) generally do a good job of stratifying subjects into discrete, 

well-separated survival risk groups when compared to Exp method, which creates many 

overlapping survival curves and a significantly larger survival tree.

We close this section with a few remarks:
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1. The DR Cox and Tree methods present the most intuitively appealing 

stratification, with patients having CHF generally having worse survival 

compared to those that do not and older patients having worse survival compared 

to younger patients. The DR AFT, TreeSM, and RF SM methods also reflect a 

clear delineation by age. Such patterns are somewhat less evident with both the 

IPCW and Exp methods.

2. As might be anticipated from the analyses in [19], in particular Figure 3, the 

ventricular fibrillation variable does not add new information beyond the age and 

CHF variables in the above analyses. Boxplots of this variable by age (not 

shown) suggest that those that experienced ventricular fibrillation while in the 

hospital also tended to be younger by several years; the decreasing long-term risk 

associated with ventricular fibrillation (i.e., assuming one survives the initial 

event) combined with relative youth may help to explain why age and CHF, not 

ventricular fibrillation, appear as the most critical variables in these analyses.

3. The bottom row of Figure 4, in particular the results for the Tree and Cox, 

illustrates a strong similarity of the survival curves for older subjects without 

clinical heart pump failure and younger subjects with clinical heart pump failure; 

this suggests the possibility of being able to summarize these results using four 

rather than five groups. However, the suggested four-level risk model cannot be 

derived from these results because of the strongly hierarchical nature of trees 

(i.e., the exclusive use of ‘and’ statements in creating risk groups).

4. Results for companion analyses on the subset 1646 patients that survived beyond 

60 days are summarized in the Supplementary Web Appendix S.2.4 and 

compared to the analyses described above. The results are generally consistent 

for the doubly robust and IPCW trees, in that the trees obtained for those 

surviving beyond 60 days can be obtained by collapsing the lowest-level pair of 

terminal nodes into a single group.

5. Discussion

We have proposed a modification of the IPCW-loss based recursive partitioning procedure 

introduced in [9] for right-censored outcomes that uses modern semiparametric efficiency 

theory for missing data to take better advantage of existing data. We have implemented these 

methods using a modification of rpart and demonstrated that the proposed methods tend to 

build more stable tree structures in both simulation and practice. The simulation results and 

data analysis suggest that these new methods are capable of building models with improved 

survival risk separation. Our simulation results demonstrate, in particular, the potential for 

substantial improvements in performance when compared to the IPCW survival tree 

procedure and (at worst) competitive performance with the methods of Leblanc and Crowley 

[5].

Some of the many interesting avenues for further research include: investigations of the 

impact of using alternative loss functions; improved techniques for estimating the 

augmentation term; studies involving the combination of doubly robust survival trees with 
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ensemble procedures, providing an interesting competitor to methods developed in [22, 23] 

and [29]; extensions capable of dealing with more complex outcomes, such as competing 

risks and data obtained under case-cohort designs; and, asymptotic justifications of 

consistency (e.g., [7]). The underlying theory used to motivate these extensions does not rely 

on the platform for implementation; for example, exactly the same ideas can be applied to 

partDSA for survival outcomes [26], which currently uses IPCW loss functions to build 

models. The interest in extending partDSA for survival outcomes to doubly robust loss 

function is emphasized by the third remark at the end of Section 4, as it has the capability of 

constructing risk stratification rules through the use of both ‘and’ and ‘or’ statements. We 

intend to explore several of these extensions in subsequent work.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Summary of underlying survival models for Simulation 1 (top row) and Simulation 2 

(bottom row).
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Figure 2. 
Boxplots for Simulation 1 for 30% censoring. Lower values imply better performance for all 

measures except PPS, where higher is better. IPCW is the IPCW tree building method, Exp 

is the default exponential rpart method, and Tree, Cox, RF, Weibull, and Log Log are the 

doubly robust trees fit using an augmentation term in which the required conditional 

expectation term is respectively estimated using a survival tree, Cox model, survival forest, 

and a Weibull and log-logistic parametric AFT model (see Section 3.2.2).
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Figure 3. 
Boxplots for Simulation 2 for 30% censoring. Lower values imply better performance for all 

measures except PPS, where higher is better. IPCW is the IPCW tree building method, Exp 

is the default exponential rpart method, and Tree, Cox, RF, Weibull and Log Log are the 

doubly robust trees fit using an augmentation term in which the required conditional 

expectation term is respectively estimated using a survival tree, Cox model, survival forest, 

and a parametric Weibull and log-logistic AFT model (see Section 3.2.2).
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Figure 4. 
Summary of results for the trace dataset restricted to patients surviving beyond 30 days 

obtained using different tree building methods. DR AFT represents the trees built where the 

required conditional expectation needed for the augmentation term is estimated using a 

parametric AFT model (see Section 3.2.2); the trees built in each case were all equal. The 

Tree, TreeSM, RF SM, and Cox methods also use doubly robust functions; see Section 3.2.2 

for descriptions of the Tree,Cox and Section 4 for a corresponding description of the 

TreeSM and RF SM methods. The IPCW and Exp are the IPCW and exponential trees, 
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respectively. The first row shows the final trees built for the different methods. The second 

row shows the Kaplan-Meier risk curves for the different trees, where each curve is 

estimated from the observed survival data falling into the corresponding terminal node. In 

the DR Cox, Tree, IPCW and Exp plots, the heavy dashed line denotes patient subgroups 

with CHF and the solid line denotes patient subgroups without CHF. The dotted line in the 

Exp and RF plots denotes terminal nodes for which no prior split was made on CHF.
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Table 1.

Results from Simulation 1 for 30% censoring showing proportion of correct trees (higher is better), |size – 3| 

(lower is better) and average number of noise variables used to split (lower is better). IPCW is the IPCW tree 

building method, Exp is the default exponential rpart method, and Tree, Cox, RF, Weibull and Log Log are the 

doubly robust trees fit using an augmentation term in which the required conditional expectation term is 

estimated using a survival tree, Cox model, survival forest, and a parametric Weibull and log-logistic AFT 

model, respectively (see Section 3.2.2).

IPCW Exp Cox Tree Weibull Log Log RF

Correct Trees 0.90 0.87 0.91 0.91 0.91 0.92 0.92

High |Size - 3| 0.18 0.26 0.17 0.16 0.17 0.16 0.16

Noise Var 0.10 0.12 0.09 0.09 0.10 0.10 0.09

Correct Trees 0.60 0.81 0.74 0.75 0.73 0.73 0.72

Medium |Size - 3| 0.37 0.32 0.35 0.35 0.36 0.37 0.42

Noise Var 0.14 0.15 0.12 0.12 0.12 0.12 0.17

Correct Trees 0.05 0.15 0.09 0.09 0.08 0.09 0.08

Low |Size - 3| 1.66 1.36 1.53 1.55 1.55 1.58 1.56

Noise Var 0.09 0.15 0.07 0.09 0.08 0.10 0.12
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Table 2.

Results from Simulation 2 for 30% censoring showing proportion of correct trees (higher is better), |size – 3| 

(lower is better) and average number of noise variables used to split (lower is better). IPCW is the IPCW tree 

building method, Exp is the default exponential rpart method, and Tree, Cox, RF, Weibull and Log Log are the 

doubly robust trees fit using an augmentation term in which the required conditional expectation term is 

respectively estimated using a survival tree, Cox model, survival forest, and a parametric Weibull and log-

logistic AFT model (see Section 3.2.2).

IPCW Exp Cox Tree Weibull Log Log RF

Correct Trees 0.68 0.64 0.82 0.82 0.82 0.82 0.81

High |Size - 3| 0.54 0.62 0.33 0.29 0.29 0.29 0.33

Noise Var 0.16 0.17 0.12 0.10 0.10 0.12 0.13

Correct Trees 0.29 0.35 0.47 0.48 0.48 0.44 0.51

Medium |Size - 3| 0.95 1.14 0.88 0.88 0.87 0.95 0.84

Noise Var 0.12 0.16 0.16 0.15 0.15 0.17 0.13

Correct Trees 0.05 0.08 0.11 0.11 0.10 0.09 0.10

Low |Size - 3| 1.72 1.63 1.65 1.64 1.66 1.67 1.64

Noise Var 0.07 0.17 0.07 0.08 0.08 0.09 0.09

Stat Med. Author manuscript; available in PMC 2020 June 10.


	Abstract
	Introduction
	Regression Trees, Loss Functions, and Censoring
	Review of Regression Trees for Uncensored Outcomes
	Basic procedure
	Loss functions, risk, and their role in building regression trees

	Estimating R(β) and β(W) with Right-Censored Data
	IPCW estimators
	Doubly robust estimators

	Survival Trees: Model Building and Cross-Validation
	Computing the IPCW and Doubly Robust Loss Functions

	Simulations
	Evaluation Measures
	Calculating the IPCW and Doubly Robust Loss Functions
	Estimating
S0(⋅|⋅) and
G0(⋅|⋅)
	Estimating (7) under L2 loss
	Selecting a truncation time τ to ensure positivity

	Main Simulation Results

	The TRACE dataset
	Discussion
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Table 1.
	Table 2.

