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Abstract

Image registration is a key technique in medical image analysis to estimate deformations between
image pairs. A good deformation model is important for high-quality estimates. However, most
existing approaches use ad-hoc deformation models chosen for mathematical convenience rather
than to capture observed data variation. Recent deep learning approaches learn deformation
models directly from data. However, they provide limited control over the spatial regularity of
transformations. Instead of learning the entire registration approach, we learn a spatially-adaptive
regularizer within a registration model. This allows controlling the desired level of regularity and
preserving structural properties of a registration model. For example, diffeomorphic
transformations can be attained. Our approach is a radical departure from existing deep learning
approaches to image registration by embedding a deep learning model in an optimization-based
registration algorithm to parameterize and data-adapt the registration model itself. Source code is
publicly-available at https://github.com/uncbiag/registration.

1. Introduction

Image registration is important in medical image analysis tasks to capture subtle, local
deformations. Consequently, transformation models [21], which parameterize these
deformations, have large numbers of degrees of freedom, ranging from B-spline models with
many control points, to non-parametric approaches [30] inspired by continuum mechanics.
Due to the large number of parameters of such models, deformation fields are typically
regularized by directly penalizing local changes in displacement or, more indirectly, in
velocity field(s) parameterizing a deformation.

Proper regularization is important to obtain high-quality deformation estimates. Most
existing work simply imposes the same spatial regularity everywhere in an image. This is
unrealistic. For example, consider registering brain images with different ventricle sizes, or
chest images with a moving lung, but a stationary rib cage, where different deformation
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scales are present in different image regions. Parameterizing such deformations from first
principles is difficult and may be impossible for between-subject registrations. Hence, it is
desirable to /earn local regularity from data. One could replace the registration model
entirely and learn a parameterized regression function fy from a large dataset. At inference
time, this function then maps a moving image to a target image [12]. However, regularity of
the resulting deformation does not arise naturally in such an approach and typically needs to
be enforced after the fact.

Existing non-parametric deformation models already yield good performance, are well
understood, and use globally parameterized regularizers. Hence, we advocate building upon
these models and to learn appropriate /ocalized parameterizations of the regularizer by
leveraging large samples of training data. This strategy not only retains theoretical
guarantees on deformation regularity, but also makes it possible to encode, in the metric, the
intrinsic deformation model as supported by the data.

Contributions. Our approach deviates from current approaches for (predictive) image
registration in the following sense. Instead of replacing the entire registration model by a
regression function, we retain the underlying registration model and /earn a spatially-varying
regularizer. We build on top of a new vector momentum-parameterized stationary velocity
field (vSV/F) registration model which allows us to guarantee that deformations are
diffeomorphic even when using a learned regularizer. Our approach jointly optimizes the
regularizer (parameterized by a deep network) and the registration parameters of the vSVF
model. We show state-of-the art registration results and evidence for locally varying
deformation models in real data.

Overview. Fig. 1 illustrates our key idea. We start with an initial momentum
parameterization of a registration model, in particular, of the vSVF. Such a parameterization
is important, because it allows control over deformation regularity on top ofthe registration
parameters. For a given source-target image-pair (/, /1), we optimize over the momentum to
obtain a spatial transformation ® such that /HO®™1 ~ /4 As the mapping from momentum to
@ is influenced by a regularizer expressing what transformations are desirable, we jointly
optimize over the regularizer parameters, 6, andthe momentum. Specifically, we use a
spatially-adaptive regularizer, parameterized by a regression model (here, a CNN). Our
approach naturally combines with a prediction model, e.g., [48], to obtain the momentum
from a source-target image pair (avoiding optimization at runtime). Here, we numerically
optimize over the momentum for simplicity and leave momentum prediction to future work.

Organization. In 82, we review registration models, relations to our proposed approach and
introduce the vSVF model. §3 describes our metric learning registration approach and §4
discusses experimental results. Finally, 85 summarizes the main points. Additional details
can be found in the supplementary material.

2. Background on image registration

Image registration is typically formulated as an optimization problem of the form
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y* = argmin A Reg [¢_l(y)] + Sim [Io c® (), 1 1] : .1)
14

Here, y parameterizes the deformation, @, A = 0, Reg[-] is a penalty encouraging spatially
regular deformations and Sim[:, -] penalizes dissimilarities between two images (e.g., sum-
of-squared differences, cross-correlation or mutual information [20]). For low-dimensional
parameterizations of ®, e.g., for affine or B-spline [36, 29] models, a regularizer may not be
necessary. However, non-parametric registration models [30] represent deformations via
displacement, velocity, or momentum vector fields and require regularization for a well-
posed optimization problem.

In medical image analysis, diffeomorphic transformations, ®, are often desirable to
smoothly map between subjects or between subjects and an atlas space for local analyses.
Diffeomorphisms can be guaranteed by estimating sufficiently smooth [14] static or time-
varying velocity fields, v. The transformation is then obtained via time integration, 7.e., of
DX, )= vO d(x, § (subscript sindicates a time derivative). Examples of such methods are
the static velocity field (SVF) [42] and the large displacement diffeomorphic metric mapping
(LDDMM) registration models [4, 44, 18, 1].

Non-parametric registration models require optimization over high-dimensional vector
fields, often with millions of unknowns in 3D. Hence, numerical optimization can be slow.
Recently, several approaches which learn a regression model to predict registration
parameters from large sets of image pairs have emerged. Initial models based on deep
learning [13, 24] were proposed to speed-up optical flow computations [22, 3, 8, 7, 49, 40].
Non-deep-learning approaches for the regression of registration parameters have also been
studied [46, 45, 10, 9, 16]. These approaches typically have no guarantees on spatial
regularity or may not straightforwardly extend to 3D image volumes due to memory
constraints. Alternative approaches have been proposed which can register 3D images [35,
38, 12, 23, 2, 15] and assure diffeomorphisms [47, 48]. In these approaches, costly
numerical optimization is only required during training of the regression model. Both end-
to-end approaches [12, 23, 2, 15] and approaches requiring the desired registration
parameters during training exist [47, 48, 35]. As end-to-end approaches differentiate through
the transformation map, ®, they were motivated by the spatial transformer work [25].

One of the main conceptual downsides of current regression approaches is that they either
explicitly encode regularity when computing the registration parameters to obtain the
training data [47, 48, 35], impose regularity as part of the loss [23, 2, 15] to avoid ill-
posedness, or use low-dimensional parameterizations to assure regularity [38, 12].
Consequentially, these models do not estimate a deformation model from data, but instead
impose it by choosing a regularizer. Ideally, one would like a registration model which (1)
regularizes according to deformations present in data, (2) is fast to compute via regression
and which (3) retains desirable theoretical properties of the registration model (e.g.,
guarantees diffeomorphisms) even when predicting registration parameters via regression.
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Approaches which predict momentum fields [47, 48] are fast and can guarantee
diffeomorphisms. Yet, no model exists which estimates a local spatial regularizer of a form
that guarantees diffeomorphic transformations and that can be combined with a fast
regression formulation. Our goal is to close this gap via a momentum-based registration
variant. While we will not explore regressing the momentum parameterization here, such a
formulation is expected to be straightforward, as our proposed model has a momentum-
parameterization similar to what has already been used successfully for regression with a
deep network [48].

2.1. Fluid-type registration algorithms

To capture large deformations and to guarantee diffeomorphic transformations, registration
methods inspired by fluid mechanics have been highly successful, e.g., in neuroimaging [1].
Our model follows this approach. The map @ is obtained via time-integration of a sought-for
velocity field W(x, §. Specifically, ®{x, ) = UDP(x, ), §),P(x, 0) = x. For sufficiently smooth
(7.e., sufficiently regularized) velocity fields, v, one obtains diffeomorphisms [14]. The
corresponding instance of Eq. (2.1) is

1
v* = argmin /1[) ||u||2Ldt+ Sim [IooCD_l(l),Il , S.t.
v

o'+ Do~ ly=0, and @~ 1(0) =id.

Here, D denotes the Jacobian (of ®1), ”u”i = <L*Lu, u> is a spatial norm defined using the

differential operator L and its adjoint LT. A specific L implies an expected deformation
model. In its simplest form, L is spatially-invariant and encodes a desired level of
smoothness. As the vector-valued momentum, 1, is given by m= LT Ly, one can write the

norm as ||v|3 = (m, v).

In LDDMM [4], one seeks time-dependent vector fields Wx, §. A simpler, but less
expressive, approach is to use stationary velocity fields (SVF), LX), instead [35]. While
SVF’s are optimized directly over the velocity field v, we propose a vector momentum SVF
(VSVF) formulation, /7.e.,

m* = argmin A(mg, vp) + Sim [Io s d (1), Il]
mg

st.® '+ Do lv=0 2.2)
— -1
®~'(0) =id, and vy = (L'L) "my,

which is optimized over the vector momentum 7. vSVF is a simplification of vector
momentum LDDMM [44]. We use VSVF for simplicity, but our approach directly translates
to LDDMM and is motivated by the desire for LDDMM regularizers adapting to a
deforming image.
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3. Metric learning

In practice, L is predominantly chosen to be spatially-invariant. Only limited work on
spatially-varying regularizers exists [33, 31, 39] and even less work focuses on estimating a
spatially-varying regularizer. A notable exception is the estimation of a spatially-varying
regularizer in atlas-space [43] which builds on a left-invariant variant of LDDMM [37].
Instead, our goal is to /earn a spatially-varying regularizer which takes as inputs a
momentum vector field and an image and computes a smoothed vector field. Therefore, our
approach, not only leads to spatially varying metrics but can address pairwise registration,
contrary to atlas-based learning methods, and it can adapt to deforming images during time
integration for LDDMML. We focus on extensions to the multi-Gaussian regularizer [34] as
a first step, but note that learning more general regularization models would be possible.

3.1. Parameterization of the metrics

Metrics on vector fields of dimension M are positive semi-definite (PSD) matrices of M2
coefficients. Directly learning these A2 coefficients is impractical, since for typical 3D
image volumes Mis in the range of millions. We therefore restrict ourselves to a class of
spatially-varying mixtures of Gaussian kernels.

Multi-Gaussian kernels. It is customary to directly specify the map from momentum to
vector field via Gaussian smoothing, 7.e., v= G~m (here, = denotes convolution). In practice,
multi-Gaussian kernels are desirable [34] to capture multi-scale aspects of a deformation,
where

N -1

v= * m, w; > 0, Z w; = 1. (3.1)
i=0

N-1
Z I/U,'Gl'
i=0

G;is a normalized Gaussian centered at zero with standard deviation o;and w;is a positive
weight. The class of kernels that can be approximated by such a sum is already Iargez. A
naive approach to estimate the regularizer would be to learn w;and ;. However, estimating
either the variances or weights benefits from adding penalty terms to encourage desired
solutions. Assume, for simplicity, that we have a single Gaussian, G, v= G * m, with
standard deviation o. As the Fourier transform is an L2 isometry, we can write

fm(x)Tv(x)dx = <m, v> = <nA1, 17>
(32

A T
- <U/G,U> - f 207k k(i) Tp(k)dk,

where = denotes the Fourier transform and & the frequency. Since G is a Gaussian without
normalization constant, it follows that we need to explicitly penalize small &’s if we want to
favor smoother transformations (with large o’s). Indeed, the previous formula shows that a

1\We use vSVF here and leave LDDMM as future work.
2|l the functions 4: R > 0 — R such that h()x - y]) is a kernel on Rd for d = 1 are in this class.
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constant velocity field has the same norm for every positive o. More generally, in theory, it
is possible to reproduce a given deformation by the use of different kernels. Therefore, a
penalty function on the parameterizations of the kernel is desirable. We design this penalty
via a simple form of gptimal mass transport (OMT) between the weights, as explained in the
following.

OMT on multi-Gaussian kernel weights. Consider a multi-Gaussian kernel as in Eq. (3.1),
with standard deviations 0 < oy < o1 < - <op-1. It would be desirable to obtain simple
transformations explaining deformations with large standard deviations. Interpreting the
multi-Gaussian kernel weights as a distribution, the most desirable configuration would be
Wign-1 = 0; w1 =1, Fe., using only the Gaussian with largest variance. We want to
penalize weight distributions deviating from this configuration, with the largest distance
given to up = 1; wig = 0. This can be achieved via an OMT penalty. Specifically, we define
this penalty on w=[ug, ...,Wp1] as

N-1
OMT (w) = Zwi
i=0

log

.
ON —
N 1‘ , (33)

1

where r= 1 is a chosen power. In the following, we set 7= 1. This penalty is zero if wp-1 =1
and will have its largest value for ng = 1. It can be standardized as

—rN-1

zwi

i=0

OMT(w) = [log 72~

log log (3.4)

O'N—l‘r
1

with OMT(w) € [0, 1] by construction.

L ocalized smoothing. This multi-Gaussian approach is a global regularization strategy, /.e.,
the same multi-Gaussian kernel is applied everywhere. This leads to efficient computations,
but does not allow capturing localized changes in the deformation model. We therefore
introduce /ocalized multi-Gaussian kernels, embodying the idea of tissue-dependent

localized regularization. Starting from a sum of kernels ZzN;ol w;G;, we let the weights w;

vary spatially, 7e., w{x). To ensure diffeomorphic deformations, we set the weights

wi(x) = Gy * w;(x), Where w/fX) are pre-weights which are convolved with a Gaussian

small
with small standard deviation. An appropriate definition for how to use these weights to go
from the momentum to the velocity is required to assure diffeomorphic transformations.
Multiple approaches are possible. We use the model

vo(x) %" (K(w) * m)(x)

N -1
= ) Jw) [ Gi(lx = yD\Jw(»)mo(y)dy,
i=0

(35)

which, for spatially constant wjx), reduces to the standard multi-Gaussian approach. In fact,
this model guarantees diffeomorphisms, as long as the pre-weights are not too degenerate, as
ensured by our model described hereafter. This fact is proven in the supplementary material
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(A.1). Motivated by the physical interpretation of these pre-weights and by diffeomorphic
registration guarantees, we require a spatial regularization of these pre-weights via TV or
H. We use color-TV [6] for our experiments. As the spatial transformation is directly
governed by the weights, we impose the OMT penalty locally. Based on Eg. (2.2), we
optimize the following:

m* = argmin A{mg, vo) + Sim [Ioocb_l(l),ll] + AoMmT f OMT(w(x))dx
mQ

N-1 2
¥ ATV\/ T (/v teeoni vacolas)

i=0

(3.6)

subject to the constraints ®; ' + p&~ v = 0 and ®1(0) = id; A1y, AomT = 0. The partition
of unity defining the metric, intervenes in the L2 scalar product {1, 15).

Further, in Eq. (3.6), the OMT penalty is integrated point-wise over the image-domain to
support spatially-varying weights; y(x) € R™ is an edge indicator function, i.e.,

Alvil)=a+avipL, withas o,

to encourage weight changes coinciding with image edges.

Local regressor. To learn the regularizer, we propose a /ocal regressorfrom the image and
the momentum to the pre-weights of the multi-Gaussian. Given the momentum /mand image
/ (the source image /y for vSVF; /(f) at time ¢for LDDMM) we learn a mapping of the form:
foRIxR— AN~ ! where AM1 s the A1 unit/probability simplex3. We will parametrize

foby a CNN in 83.1.1. The following attractive properties are worth pointing out:

1 The variance of the multi-Gaussian is bounded by the variances of its
components. We retain these bounds and can therefore specify a desired
reqularity level.

2. A globally smooth set of velocity fields is still computed (in Fourier space)
which allows capturing large-scale regularity without a large receptive field of
the local regressor. Hence, the CNN can be kept efficient.

3. The local regression strategy makes the approach suitable for more general
registration models, e.g., for LD-DMM, where one would like the regularizer to
follow the deforming source image over time.

3.1.1 Learning the CNN regressor—~For simplicity we use a fairly shallow CNN with
two layers of filters and leaky ReLU (IReLU) [27] activations. In detail, the data flow is as
follows: conv(d+ 1, m) — BatchNorm — IReLU — conv — (1, ) BatchNorm —
weighted-linear-softmax. Here conv(a, 6) denotes a convolution layer with a input channels

S\we only explore mappings dependent on the source image 10 in our experiments, but more general mappings also depending on the
momentum, for example, should be explored in future work.
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and b output feature maps. We used /i = 20 for our experiments and convolutional filters of
spatial size 5 (5 x 5in2D and 5 x 5 x 5 in 3D). The weighted-linear-softmax activation
function, which we formulated, maps inputs to ANV-1. We designed it such that it operates
around a setpoint of weights w;which correspond to the global weights of the multi-
Gaussian kernel. This is useful to allow models to start training from a pre-specified,
reasonable initial configuration of global weights, parameterizing the regularizer.

Specifically, we define the weighted linear softmax c,,: R — AN = las
clampO 1(wj+z;— Z)

o,(2); = 3.7
e Zl 0 clampo l(wl +zi— Z) G0

where oy(2),denotes the /th component of the output, z is the mean of the inputs, Z and the
clamp function clamps the values to the interval [0, 1]. The removal of the mean in Eq. (3.7)
assures that one moves along the probability simplex. That is, if one is outside the clamping
range, then

N-1

N-1
Z clampg_ | (w; + z; — Z wi+zj—z= Z wi=1
i=0

i=0

and consequentially, in this range, o,,(z); = w; + z; — z. This is linear in zand moves along

the tangent plane of the probability simplex by construction. As a CNN with small initial
weights will produce an output close to zero, the output of o,(2) will initially be close to the
desired set-point weights, wj;, of the multi-Gaussian kernel. Once the pre-weights, w{(x),
have been obtained via this CNN, we compute multi-Gaussian weights via Gaussian
smoothing. We use o= 0.02 in 2D and o= 0.05 in 3D throughout all experiments (84).

3.2. Discretization, optimization, and training

Discretization. We discretize the registration model using central differences for spatial
derivatives and 20 steps in 2D (10 in 3D) of 4th order Runge-Kutta integration in time.
Gaussian smoothing is done in the Fourier domain. The entire model is implemented in
PyTorch4; all gradients are computed by automatic differentiation [32].

Optimization. Joint optimization over the momenta of a set of registration pairs and the
network parameters is difficult in 3D due to GPU memory limitations. Hence, we use a
customized variant of stochastic gradient descent (SGD) with Nesterov momentum (0.9)
[41], where we split optimization variables (1) that are sharedand (2) individual between
registration-pairs. Shared parameters are for the CNN. Individual parameters are the
momenta. Shared parameters are kept in memory and individual parameters, including their
current optimizer states, are saved and restored for every random batch. We use a batch-size
of 2 in 3D and 100 in 2D and perform 5 SGD steps for each batch. Learning rates are 1.0
and 0.25 for the individual and the shared parameters in 3D and 0.1 and 0.025 in 2D,

4available at https://github.com/uncbiag/registration also including various other registration models such as LDDMM.
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respectively. We use gradient clipping (at a norm of one, separately for the gradients of the
shared and the individual parameters) to help balance the energy terms. We use PyTorch’s
ReduceLROnPlateau learning rate scheduler with a reduction factor of 0.5 and a patience of
10 to adapt the learning rate during training.

Curriculum strategy: Optimizing jo/ntly over momenta, global multi-Gaussian weights and
the CNN does not work well in practice. Instead, we train in two stages: (1) In the initial
global stage, we pick a reasonable set of global Gaussian weights and optimize only over the
momenta. This allows further optimization from a reasonable starting point. Local
adaptations (via the CNN) can then immediately capture local effects rather than initially
being influenced by large misregistrations. In all experiments, we chose these global weights

to be linear with respect to their associated variances, /.e., w; = 0'1-2/( 5_\1:—01 0']2) Then, (2)

starting from the result of (1), we optimize over the momenta and'the parameters of the
CNN to obtain spatially-localized weights. We refer to stages (1) and (2) as g/lobaland /ocal
optimization, respectively. In 2D, we run global/local optimization for 50/100 epochs. In 3D,
we run for 25/50 epochs. Gaussian variances are set to {0.01, 0.05, 0.1, 0.2} for images in
[0, 1]9. We use normalized cross correlation (NCC) with o= 0.1 as similarity measure. See
8B of the supplementary material for further implementation details.

4. EXxperiments

We tested our approach on three dataset types: (1) 2D synthetic data with known ground
truth (84.1), (2) 2D slices of a real 3D brain magnetic resonance (MR) images (§84.2), and
(3) multiple 3D datasets of brain MRIs (84.3). Images are first affinely aligned and intensity
standardized by matching their intensity quantile functions to the average quantile function
over all datasets. We compute deformations at half the spatial resolution in 2D (0.4 times in
3D) and upsample ®~1 to the original resolution when evaluating the similarity measure so
that fine image details can be considered. This is not necessary in 2D, but essential in 3D to
reduce GPU memory requirements. We use this approach in 2D for consistency.

All evaluations (except for 84.2 and for the within dataset results of §4.3) are with respect to
a separate testing set. For testing, the previously learned regularizer parameters are fixed and
numerical optimization is over momenta only (in particular, 250/500 iterations in 2D and
150/300 in 3D for global/local optimization).

4.1. Results on 2D synthetic data

We created 300 synthetic 128 x 128 image pairs of randomly deformed concentric rings (see
supplementary material, 8C). Shown results are on 100 separate test cases.

Fig. 2 shows registrations for Agpt € {15, 50, 100}. The TV penalty was set to Aty = 0.1.
The estimated standard deviations, o2(x) = Zjvz_ol wi(x)o7, capture the trend of the ground

truth, showing a large standard deviation (/.¢e., high regularity) in the background and the
center of the image and a smaller standard deviation in the outer ring. The standard
deviations are stable across OMT penalties, but show slight increases with higher OMT
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values. Similarly, deformations get progressively more regular with larger OMT penalties (as
they are regularized more strongly), but visually all registration results show very similar
good correspondence. Note that while TV was used to train the model, the CNN output is
not explicitly TV regularized, but nevertheless is able to produce largely constant regions
that are well aligned with the boundaries of the source image. Fig. 3 shows the
corresponding estimated weights. They are stable for a wide range of OMT penalties.

Finally, Fig. 4 shows displacement errors relative to the ground truth deformation for the
interior and the exterior ring of the shapes. Local metric optimization significantly improves
registration (over initial global multi-Gaussian regularization); these results are stable across
a wide range of penalties with median displacement errors < 1 pixel.

4.2. Results on real 2D data

We used the same settings as for the synthetic dataset. However, here our results are for 300
random registration pairs of axial slices of the LPBA40 dataset [26].

Fig. 5 shows results for Aomt € {15, 50, 100}; A1y = 0.1. Larger OMT penalties yield
larger standard deviations and consequentially more regular deformations. Most regions
show large standard deviations (high regularity), but lower values around the ventricles and
the brain boundary — areas which may require substantial deformations.

Fig. 6 shows the corresponding estimated weights. We have no ground truth here, but
observe that the model produces consistent regularization patterns for all shown OMT values
({15,50,100}) and allocates almost all weights to the Gaussians with the lowest and the
highest standard deviations, respectively. As AomT increases, more weight shifts from the
smallest to the largest Gaussian.

4.3. Results on real 3D data

We experimented using the 3D CUMC12, MGH10, and IBSR18 datasets [26]. These
datasets contain 12, 10, and 18 images. Registration evaluations are with respect to all 132
registration pairs of CUMC12. \We use Aopmt = 50, A1y = 0.1 for all tests®. Once the
regularizer has been learned, we keep it fixed and optimize for the vSVF vector momentum.
We trained independent models on CUMC12, MGH10, and IBSR18 using 132 image pairs
on CUMC12, 90 image pairs on MGH10, and a random set of 150 image pairs on IBSR18.
We tested the resulting three models on CUMC12 to assess the performance of a dataset-
specific model and the ability to transfer models across datasets.

Tab. 1 and Fig. 7 compare to the registration methods in [26] and across different stages of
our approach for different training/testing pairs. We also list the performance of the most
recent VoxelMorph (VM) variant [11]. We kept the original architecture configuration, swept
over a selection of VoxelMorph’s hyperparameters and report the best results here. Each
VoxelMorph model was trained for 300 epochs which, in our experiments, was sufficient for
convergence. Overall, our approach shows the best results among all models when trained/

S\We did not tune these parameters and better settings may be possible.
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tested on CUMC12 (c/c local); though results are not significantly better than for SyN,
SPMS5D, and VoxelMorph. Local metric optimization shows strong improvements over
initial global multi-Gaussian regularization. Models trained on MGH10 and IBSR18 (m/c
local and i/c local) also show good performance, slightly lower than for the model trained on
CUMCI12 itself, but higher than all other competing methods. This indicates that the trained
models transfer well across datasets. While the top competitor in terms of median overlap
(SPM5D) produces outliers (cf. Fig. 7), our models do not. In case of VoxelMorph we
observed that adding more training pairs (/.¢e., using all pairs of IBSR18, MGH18 &
LBPA40) did not improve results (¢f. Tab. 1 */c VM).

In Tab. 2, we list statistics for the determinant of the Jacobian of ®=1 on CUMC12, where
the model was also trained on. This illustrates how transformation regularity changes
between the global and the local regularization approaches. As expected, the initial global
multi-Gaussian regularization results in highly regular registrations (/.e., determinant of
Jacobian close to one). Local metric optimization achieves significantly improved target
volume overlap measures (Fig. 7) while keeping good spatial regularity, clearly showing the
utility of our local regularization model. Note that all reported determinant of Jacobian
values in Tab. 2 are positive, indicating no foldings, which is consistent with our
diffeomorphic guarantees; though these are only guarantees for the continuous model at
convergence, which do not consider potential discretization artifacts.

5. Conclusions

We proposed an approach to learn a /ocal regularizer, parameterized by a CNN, which
integrates with deformable registration models and demonstrates good performance on both
synthetic and real data. While we used vSVF for computational efficiency, our approach
could directly be integrated with LDDMM (resulting in local, time-varying regularization).
It could also be integrated with predictive registration approaches, e.g., [48]. Such an
integration would remove the computational burden of optimization at runtime, yield a fast
registration model, allow end-to-end training and, in particular, promises to overcome the
two key issues of current deep learning approaches to deformable image registration: (1) the
lack of control over spatial regularity of approaches training mostly based on image
similarities and(2) the inherent limitation on registration performance by approaches which
try to learn optimal registration parameters for a given registration method and a chosen
regularizer.

To the best of our knowledge, our model is the first approach to learn a local regularizer of a
registration model by predicting local multi-Gaussian pre-weights. This is an attractive
approach as it (1) allows retaining the theoretical properties of an underlying (well-
understood) registration model, (2) allows imposing bounds on local regularity, and (3)
focuses the effort on learning some aspects of the registration model from data, while
refraining from learning the entire model which is inherently ill-posed. The estimated local
regularizer might provide useful information in of itself and, in particular, indicates that a
spatially non-uniform deformation model is supported by real data.
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Much experimental and theoretical work remains. More sophisticated CNN models should
be explored; the method should be adapted for fast end-to-end regression; more general
parameterizations of regularizers should be studied (e.g., allowing sliding), and the approach
should be developed for LDDMM.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1:
Architecture of our registration approach. We jointly optimize over the momentum,

parameterizing the deformation @, and the parameters, 6, of a convolutional neural net
(CNN). The CNN Jocally predicts multi-Gaussian kernel pre-weights which specify the
regularizer. This approach constructs a metric such that diffeomorphic transformations can
be assured in the continuum.

Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. Author manuscript; available in PMC 2020 June 10.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnue Joyiny

Niethammer et al. Page 16

Source image Target image

Warped source Deformation grid Standard dev.

15
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Figure 2:
Example registration results using local metric optimization for the synthetic test data.

Results are shown for different values of AopmT With the total variation penalty fixed to Aty
= 0.1. Visual correspondence between the warped source and the target images are high for
all settings. Estimates for the standard deviation stay largely stable. However, deformations
are slightly more regularized for higher OMT penalties. This can also be seen based on the

standard deviations (best viewed zoomeaq).
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Figure 3:
Estimated multi-Gaussian weights (blue=0; yellow=1) for the registrations in Fig. 2 w.r.t.

different AgmT’s. Weight estimates are very stable across AomT. While the overall standard
deviation (Fig. 2) approximates the ground truth, the weights for the outer ring differ
(ground truth weights are [0.05, 0.55, 0.3, 0.1]) from the ground truth. They approximately
match for the background and the interior (ground truth [0, O, 0, 1]).
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Figure 4:

Displacement error (in pixel) with respect to the ground truth (GT) for various values of the
total variation penalty, Aty (t) and the OMT penalty, AomT (0). Results for the inner and the
outer rings show subpixel registration accuracy for all /ocal metric optimization results (*_I).
Overall, local metric optimization substantially improves registrations over the results
obtained via initial global multi-Gaussian regularization (global).
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Source 1mage Target 1mage

Warped source Deformation grid Standard dev.

Aomt = 50

AomT = 100

Figureb5:
Example registration results using local metric optimization for different Agpmt’s and Ay =

0.1. Visual correspondences between the warped source images and the target image are
high for all values of the OMT penalty. Standard deviation estimates capture the variability
of the ventricles and increased regularity with increased values for AomT (best viewed
zoomeda).

Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. Author manuscript; available in PMC 2020 June 10.

<0197

0196

0195

0194

0193

0192

0191

-0.198

20197

0.196

0.195

0194

0193

0.192

0198

0197

0.196

0.195

0194



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnuely Joyiny

Niethammer et al. Page 20

wo (o = 0.01) wi (o = 0.05) wo (o = 0.10) ws(o = 0.20)

o - -
I | (| -
=

g L A & .
< B 0.00012
o loor “ 0.00020
m 008 0.00018
Il

E - 0o0s 1 0.00026
z 00¢ 0.00024
@]

< w e
_ " s
o s =0.0010
-

” o |.“ . |““.
= 3 ke . 00008
2 e

O 0.0004
< o 0.0002

Figure6:
Estimated multi-Gaussian weights for different Aqp for real 2D data. Weights are mostly

allocated to the Gaussian with the largest standard deviation (see colorbars; best viewed
zoomed). A shift from ug to ns can be observed for larger values of Agpmt. While weights
shift between OMT setting, the ventricle area is always associated with more weight on w
(best viewed zoomedq).
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Figure7:
Mean target overlap ratios on CUMC12 (in 3D) with A1y = 0.1 and AgpmT = 50. Our

approach (marked red) gives the best result overall. Local metric optimization greatly
improves results over the initial global multi-Gaussian regularization. Best results are
achieved for the model that was trained on this dataset (c/c local), but models trained on
MGH10 (m/c local) and on IBSR18 (i/c local) transfer well and show almost the same level
of performance. The dashed line is the median mean target overlap ratio (7.e., mean over all
labels, median over all registration pairs).
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Statistics for mean (over all labeled brain structures, disregarding the background) target overlap ratios on
CUMC12 for different methods. Prefixes for results based on global and local regularization indicate training/
testing combinations identified by first initials of the datasets. For example, m/c means trained/tested on
MGH10/CUMCI12. Statistical results are for the null-hypothesis of equivalent mean target overlap with respect
to c/c local. Rejection of the null-hypothesis (at a = 0.05) is indicated with a check-mark (v). All p-values are
computed using a paired one-sided Mann Whitney rank test [28] and corrected for multiple comparisons using
the Benjamini-Hochberg [5] procedure with a family-wise error rate of 0.05. Best results are bold, showing

Table 1:

that our methods exhibits state-of-the-art performance.

Method mean std 1% 5% 50% | 95% | 99% p MW-stat | sig?
FLIRT 0.394 | 0.031 | 0.334 | 0.345 | 0.396 | 0.442 | 0.463 | <le-10 | 17394.0 v
AIR 0.423 | 0.030 | 0.362 | 0.377 | 0.421 | 0.483 | 0.492 | <le-10 | 17091.0 v
ANIMAL | 0.426 | 0.037 | 0.328 | 0.367 | 0.425 | 0.483 | 0.498 | <le-10 | 16925.0 v
ART 0.503 | 0.031 | 0.446 | 0.452 | 0.506 | 0.556 | 0.563 | <le-4 11177.0 v
Demons 0.462 | 0.029 | 0.407 | 0.421 | 0.461 | 0.510 | 0.531 | <le-10 | 15518.0 v
FNIRT 0.463 | 0.036 | 0.381 | 0.410 | 0.463 | 0.519 | 0.537 | <le-10 | 15149.0 v
Fluid 0.462 | 0.031 | 0.401 | 0.410 | 0.462 | 0.516 | 0.532 | <1e-10 | 15503.0 v
SICLE 0.419 | 0.044 | 0.300 | 0.330 | 0.424 | 0.475 | 0.504 | <1e-10 | 17022.0 v
SyN 0.514 | 0.033 | 0.454 | 0.460 | 0.515 | 0.565 | 0.578 | 0.073 9677.0 X
SPM5N8 0.365 | 0.045 | 0.257 | 0.293 | 0.370 | 0.426 | 0.455 | <le-10 | 17418.0 v
SPM5N 0.420 | 0.031 | 0.361 | 0.376 | 0.418 | 0.471 | 0.494 | <le-10 | 17160.0 v
SPM5U 0.438 | 0.029 | 0.373 | 0.394 | 0.437 | 0.489 | 0.502 | <le-10 | 16773.0 v
SPM5D 0.512 | 0.056 | 0.262 | 0.445 | 0.523 | 0.570 | 0.579 | 0.311 9043.0 x
c/lc VM 0.517 | 0.034 | 0.456 | 0.460 | 0.518 | 0.571 | 0.580 | 0.244 9211.0 x
m/c VM 0.510 | 0.034 | 0.448 | 0.453 | 0.509 | 0.564 | 0.574 | 0.011 10197.0 v
ilc VM 0.510 | 0.034 | 0.450 | 0.453 | 0.508 | 0.564 | 0.573 | 0.012 10170.0 v
*/c VM 0.509 | 0.033 | 0.450 | 0.453 | 0.509 | 0.561 | 0.570 | 0.007 10318.0 v
m/c global | 0.480 | 0.031 | 0.421 | 0.430 | 0.482 | 0.530 | 0.543 | <l1e-10 | 13864.0 v
m/c local 0.517 | 0.034 | 0.454 | 0.461 | 0.521 | 0.568 | 0.578 | 0.257 9163.0 x
c/c global 0.480 | 0.031 | 0.421 | 0.430 | 0.482 | 0.530 | 0.543 | <le-10 | 13864.0 v
c/c local 0.520 | 0.034 | 0.455 | 0.463 | 0.524 | 0.572 | 0.581 - - -
i/c global 0.480 | 0.031 | 0.421 | 0.430 | 0.482 | 0.530 | 0.543 | <le-10 | 13863.0

i/c local 0.518 | 0.035 | 0.454 | 0.460 | 0.522 | 0.571 | 0.581 | 0.338 8972.0
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Table 2:

Mean (standard deviation) of determinant of Jacobian of ®=1 for global and local regularization with Aty =
0.1 and AopmT = 50 for CUMC12 within the brain. Local metric optimization (local) improves target overlap

measures (see Fig. 7) at the cost of less regular deformations than for global multi-Gaussian regularization.
However, the reported determinants of Jacobian are still all positive, indicating no folding.

| mean | 1% | 5% | 50% | 95% | 99%
Global | 1.00(0.02) | 0.60(0.07) | 0.72(0.08) | 0.98(0.03) | 1.39(0.05) | 1.69(0.14)
Local | 0980.02) | 0.05(0.04) | 0.24(0.03) | 0.840.03) | 2.180.07) | 3.90(0.23)
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