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Abstract

Image registration is a key technique in medical image analysis to estimate deformations between 

image pairs. A good deformation model is important for high-quality estimates. However, most 

existing approaches use ad-hoc deformation models chosen for mathematical convenience rather 

than to capture observed data variation. Recent deep learning approaches learn deformation 

models directly from data. However, they provide limited control over the spatial regularity of 

transformations. Instead of learning the entire registration approach, we learn a spatially-adaptive 

regularizer within a registration model. This allows controlling the desired level of regularity and 

preserving structural properties of a registration model. For example, diffeomorphic 

transformations can be attained. Our approach is a radical departure from existing deep learning 

approaches to image registration by embedding a deep learning model in an optimization-based 

registration algorithm to parameterize and data-adapt the registration model itself. Source code is 

publicly-available at https://github.com/uncbiag/registration.

1. Introduction

Image registration is important in medical image analysis tasks to capture subtle, local 

deformations. Consequently, transformation models [21], which parameterize these 

deformations, have large numbers of degrees of freedom, ranging from B-spline models with 

many control points, to non-parametric approaches [30] inspired by continuum mechanics. 

Due to the large number of parameters of such models, deformation fields are typically 

regularized by directly penalizing local changes in displacement or, more indirectly, in 

velocity field(s) parameterizing a deformation.

Proper regularization is important to obtain high-quality deformation estimates. Most 

existing work simply imposes the same spatial regularity everywhere in an image. This is 

unrealistic. For example, consider registering brain images with different ventricle sizes, or 

chest images with a moving lung, but a stationary rib cage, where different deformation 
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scales are present in different image regions. Parameterizing such deformations from first 

principles is difficult and may be impossible for between-subject registrations. Hence, it is 

desirable to learn local regularity from data. One could replace the registration model 

entirely and learn a parameterized regression function fΘ from a large dataset. At inference 

time, this function then maps a moving image to a target image [12]. However, regularity of 

the resulting deformation does not arise naturally in such an approach and typically needs to 

be enforced after the fact.

Existing non-parametric deformation models already yield good performance, are well 

understood, and use globally parameterized regularizers. Hence, we advocate building upon 

these models and to learn appropriate localized parameterizations of the regularizer by 

leveraging large samples of training data. This strategy not only retains theoretical 

guarantees on deformation regularity, but also makes it possible to encode, in the metric, the 

intrinsic deformation model as supported by the data.

Contributions. Our approach deviates from current approaches for (predictive) image 

registration in the following sense. Instead of replacing the entire registration model by a 

regression function, we retain the underlying registration model and learn a spatially-varying 

regularizer. We build on top of a new vector momentum-parameterized stationary velocity 
field (vSVF) registration model which allows us to guarantee that deformations are 

diffeomorphic even when using a learned regularizer. Our approach jointly optimizes the 

regularizer (parameterized by a deep network) and the registration parameters of the vSVF 

model. We show state-of-the art registration results and evidence for locally varying 

deformation models in real data.

Overview. Fig. 1 illustrates our key idea. We start with an initial momentum 

parameterization of a registration model, in particular, of the vSVF. Such a parameterization 

is important, because it allows control over deformation regularity on top of the registration 

parameters. For a given source-target image-pair (I0, I1), we optimize over the momentum to 

obtain a spatial transformation Φ such that I0○Φ−1 ≈ I1 As the mapping from momentum to 

Φ is influenced by a regularizer expressing what transformations are desirable, we jointly 

optimize over the regularizer parameters, θ, and the momentum. Specifically, we use a 

spatially-adaptive regularizer, parameterized by a regression model (here, a CNN). Our 

approach naturally combines with a prediction model, e.g., [48], to obtain the momentum 

from a source-target image pair (avoiding optimization at runtime). Here, we numerically 
optimize over the momentum for simplicity and leave momentum prediction to future work.

Organization. In §2, we review registration models, relations to our proposed approach and 

introduce the vSVF model. §3 describes our metric learning registration approach and §4 

discusses experimental results. Finally, §5 summarizes the main points. Additional details 
can be found in the supplementary material.

2. Background on image registration

Image registration is typically formulated as an optimization problem of the form
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γ* =  argmin 
γ

λ Reg  Φ−1(γ) +  Sim  I0 ∘ Φ−1(γ), I1 . (2.1)

Here, γ parameterizes the deformation, Φ, λ ≥ 0, Reg[·] is a penalty encouraging spatially 

regular deformations and Sim[·, ·] penalizes dissimilarities between two images (e.g., sum-

of-squared differences, cross-correlation or mutual information [20]). For low-dimensional 

parameterizations of Φ, e.g., for affine or B-spline [36, 29] models, a regularizer may not be 

necessary. However, non-parametric registration models [30] represent deformations via 

displacement, velocity, or momentum vector fields and require regularization for a well-

posed optimization problem.

In medical image analysis, diffeomorphic transformations, Φ, are often desirable to 

smoothly map between subjects or between subjects and an atlas space for local analyses. 

Diffeomorphisms can be guaranteed by estimating sufficiently smooth [14] static or time-

varying velocity fields, v. The transformation is then obtained via time integration, i.e., of 

Φt(x, t) = v ○ Φ(x, t) (subscript t indicates a time derivative). Examples of such methods are 

the static velocity field (SVF) [42] and the large displacement diffeomorphic metric mapping 

(LDDMM) registration models [4, 44, 18, 1].

Non-parametric registration models require optimization over high-dimensional vector 

fields, often with millions of unknowns in 3D. Hence, numerical optimization can be slow. 

Recently, several approaches which learn a regression model to predict registration 

parameters from large sets of image pairs have emerged. Initial models based on deep 

learning [13, 24] were proposed to speed-up optical flow computations [22, 3, 8, 7, 49, 40]. 

Non-deep-learning approaches for the regression of registration parameters have also been 

studied [46, 45, 10, 9, 16]. These approaches typically have no guarantees on spatial 

regularity or may not straightforwardly extend to 3D image volumes due to memory 

constraints. Alternative approaches have been proposed which can register 3D images [35, 

38, 12, 23, 2, 15] and assure diffeomorphisms [47, 48]. In these approaches, costly 

numerical optimization is only required during training of the regression model. Both end-

to-end approaches [12, 23, 2, 15] and approaches requiring the desired registration 

parameters during training exist [47, 48, 35]. As end-to-end approaches differentiate through 

the transformation map, Φ, they were motivated by the spatial transformer work [25].

One of the main conceptual downsides of current regression approaches is that they either 

explicitly encode regularity when computing the registration parameters to obtain the 

training data [47, 48, 35], impose regularity as part of the loss [23, 2, 15] to avoid ill-

posedness, or use low-dimensional parameterizations to assure regularity [38, 12]. 

Consequentially, these models do not estimate a deformation model from data, but instead 

impose it by choosing a regularizer. Ideally, one would like a registration model which (1) 

regularizes according to deformations present in data, (2) is fast to compute via regression 

and which (3) retains desirable theoretical properties of the registration model (e.g., 
guarantees diffeomorphisms) even when predicting registration parameters via regression.
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Approaches which predict momentum fields [47, 48] are fast and can guarantee 

diffeomorphisms. Yet, no model exists which estimates a local spatial regularizer of a form 

that guarantees diffeomorphic transformations and that can be combined with a fast 

regression formulation. Our goal is to close this gap via a momentum-based registration 

variant. While we will not explore regressing the momentum parameterization here, such a 

formulation is expected to be straightforward, as our proposed model has a momentum-

parameterization similar to what has already been used successfully for regression with a 

deep network [48].

2.1. Fluid-type registration algorithms

To capture large deformations and to guarantee diffeomorphic transformations, registration 

methods inspired by fluid mechanics have been highly successful, e.g., in neuroimaging [1]. 

Our model follows this approach. The map Φ is obtained via time-integration of a sought-for 

velocity field v(x, t). Specifically, Φt(x, t) = v(Φ(x, t), t),Φ(x, 0) = x. For sufficiently smooth 

(i.e., sufficiently regularized) velocity fields, v, one obtains diffeomorphisms [14]. The 

corresponding instance of Eq. (2.1) is

v* =  argmin 
v

λ∫0
1

v L
2 dt +  Sim  I0 ∘ Φ−1(1), I1 ,  s.t. 

Φt−1 + DΦ−1v = 0,  and Φ−1(0) = id .

Here, D denotes the Jacobian (of Φ−1), v L
2 = L†Lv, v  is a spatial norm defined using the 

differential operator L and its adjoint L†. A specific L implies an expected deformation 

model. In its simplest form, L is spatially-invariant and encodes a desired level of 

smoothness. As the vector-valued momentum, m, is given by m = L†Lv, one can write the 

norm as v L
2 = m, v .

In LDDMM [4], one seeks time-dependent vector fields v(x, t). A simpler, but less 

expressive, approach is to use stationary velocity fields (SVF), v(x), instead [35]. While 

SVF’s are optimized directly over the velocity field v, we propose a vector momentum SVF 
(vSVF) formulation, i.e.,

m* =  argmin 
m0

λ m0, v0 +  Sim  I0 ∘ Φ−1(1), I1

s.t. Φt
−1 + DΦ−1v = 0 

Φ−1(0) = id,  and v0 = L†L −1m0,

(2.2)

which is optimized over the vector momentum m0. vSVF is a simplification of vector 

momentum LDDMM [44]. We use vSVF for simplicity, but our approach directly translates 

to LDDMM and is motivated by the desire for LDDMM regularizers adapting to a 

deforming image.
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3. Metric learning

In practice, L is predominantly chosen to be spatially-invariant. Only limited work on 

spatially-varying regularizers exists [33, 31, 39] and even less work focuses on estimating a 

spatially-varying regularizer. A notable exception is the estimation of a spatially-varying 

regularizer in atlas-space [43] which builds on a left-invariant variant of LDDMM [37]. 

Instead, our goal is to learn a spatially-varying regularizer which takes as inputs a 

momentum vector field and an image and computes a smoothed vector field. Therefore, our 

approach, not only leads to spatially varying metrics but can address pairwise registration, 

contrary to atlas-based learning methods, and it can adapt to deforming images during time 

integration for LDDMM1. We focus on extensions to the multi-Gaussian regularizer [34] as 

a first step, but note that learning more general regularization models would be possible.

3.1. Parameterization of the metrics

Metrics on vector fields of dimension M are positive semi-definite (PSD) matrices of M2 

coefficients. Directly learning these M2 coefficients is impractical, since for typical 3D 

image volumes M is in the range of millions. We therefore restrict ourselves to a class of 

spatially-varying mixtures of Gaussian kernels.

Multi-Gaussian kernels. It is customary to directly specify the map from momentum to 

vector field via Gaussian smoothing, i.e., v = G⋆m (here, ⋆ denotes convolution). In practice, 

multi-Gaussian kernels are desirable [34] to capture multi-scale aspects of a deformation, 

where

v = ∑
i = 0

N − 1
wiGi ⋆ m, wi ≥ 0, ∑

i = 0

N − 1
wi = 1. (3.1)

Gi is a normalized Gaussian centered at zero with standard deviation σi and wi is a positive 

weight. The class of kernels that can be approximated by such a sum is already large2. A 

naïve approach to estimate the regularizer would be to learn wi and σi. However, estimating 

either the variances or weights benefits from adding penalty terms to encourage desired 

solutions. Assume, for simplicity, that we have a single Gaussian, G, v = G ⋆ m, with 

standard deviation σ. As the Fourier transform is an L2 isometry, we can write

∫ m(x)⊤v(x)dx = m, v = m, v

= v /G, v = ∫ eπ22σ2k⊤kv(k)⊤v(k)dk,
(3.2)

where ⋅  denotes the Fourier transform and k the frequency. Since G is a Gaussian without 

normalization constant, it follows that we need to explicitly penalize small σ’s if we want to 

favor smoother transformations (with large σ’s). Indeed, the previous formula shows that a 

1We use vSVF here and leave LDDMM as future work.
2All the functions ℎ:ℝ > 0 ℝ such that h(|x − y|) is a kernel on ℝd for d ≥ 1 are in this class.
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constant velocity field has the same norm for every positive σ. More generally, in theory, it 

is possible to reproduce a given deformation by the use of different kernels. Therefore, a 

penalty function on the parameterizations of the kernel is desirable. We design this penalty 

via a simple form of optimal mass transport (OMT) between the weights, as explained in the 

following.

OMT on multi-Gaussian kernel weights. Consider a multi-Gaussian kernel as in Eq. (3.1), 

with standard deviations 0 < σ0 ≤ σ1 ≤ ⋯ ≤σN−1. It would be desirable to obtain simple 
transformations explaining deformations with large standard deviations. Interpreting the 

multi-Gaussian kernel weights as a distribution, the most desirable configuration would be 

wi≠N−1 = 0; wN−1 = 1, i.e., using only the Gaussian with largest variance. We want to 

penalize weight distributions deviating from this configuration, with the largest distance 

given to w0 = 1; wi≠0 = 0. This can be achieved via an OMT penalty. Specifically, we define 

this penalty on w = [w0, …,wN−1] as

 OMT (w) = ∑
i = 0

N − 1
wi logσN − 1

σi

r
, (3.3)

where r ≥ 1 is a chosen power. In the following, we set r = 1. This penalty is zero if wN−1 = 1 

and will have its largest value for w0 = 1. It can be standardized as

OMT(w) = logσN − 1
σ0

−r
∑
i = 0

N − 1
wi logσN − 1

σi

r
(3.4)

with OMT(w) ∈ [0, 1] by construction.

Localized smoothing. This multi-Gaussian approach is a global regularization strategy, i.e., 
the same multi-Gaussian kernel is applied everywhere. This leads to efficient computations, 

but does not allow capturing localized changes in the deformation model. We therefore 

introduce localized multi-Gaussian kernels, embodying the idea of tissue-dependent 

localized regularization. Starting from a sum of kernels ∑i = 0
N − 1wiGi, we let the weights wi 

vary spatially, i.e., wi(x). To ensure diffeomorphic deformations, we set the weights 

wi(x) = Gσ small  ⋆ ωi(x), where ωi(x) are pre-weights which are convolved with a Gaussian 

with small standard deviation. An appropriate definition for how to use these weights to go 

from the momentum to the velocity is required to assure diffeomorphic transformations. 

Multiple approaches are possible. We use the model

v0(x) =def. K(w) ⋆ m0 (x)

= ∑
i = 0

N − 1
wi(x)∫y

Gi( |x − y | ) wi(y)m0(y)dy, (3.5)

which, for spatially constant wi(x), reduces to the standard multi-Gaussian approach. In fact, 

this model guarantees diffeomorphisms, as long as the pre-weights are not too degenerate, as 

ensured by our model described hereafter. This fact is proven in the supplementary material 
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(A.1). Motivated by the physical interpretation of these pre-weights and by diffeomorphic 

registration guarantees, we require a spatial regularization of these pre-weights via TV or 

H1. We use color-TV [6] for our experiments. As the spatial transformation is directly 

governed by the weights, we impose the OMT penalty locally. Based on Eq. (2.2), we 

optimize the following:

m* =  argmin 
m0

λ m0, v0 +  Sim  I0 ∘ Φ−1(1), I1 + λOMT∫ OMT(w(x))dx

+ λTV ∑
i = 0

N − 1 ∫ γ ∇I0(x) ∇ωi(x) 2dx
2
,

(3.6)

subject to the constraints Φt
−1 + DΦ−1v = 0 and Φ−1(0) = id; λTV, λOMT ≥ 0. The partition 

of unity defining the metric, intervenes in the L2 scalar product 〈m0, v0〉.

Further, in Eq. (3.6), the OMT penalty is integrated point-wise over the image-domain to 

support spatially-varying weights; γ(x) ∈ ℝ+ is an edge indicator function, i.e.,

γ( ∇I ) = (1 + α ∇I )−1,  with α > 0,

to encourage weight changes coinciding with image edges.

Local regressor. To learn the regularizer, we propose a local regressor from the image and 

the momentum to the pre-weights of the multi-Gaussian. Given the momentum m and image 

I (the source image I0 for vSVF; I(t) at time t for LDDMM) we learn a mapping of the form: 

fθ:ℝd × ℝ ΔN − 1, where ΔN−1 is the N−1 unit/probability simplex3. We will parametrize 

fθ by a CNN in §3.1.1. The following attractive properties are worth pointing out:

1. The variance of the multi-Gaussian is bounded by the variances of its 

components. We retain these bounds and can therefore specify a desired 
regularity level.

2. A globally smooth set of velocity fields is still computed (in Fourier space) 

which allows capturing large-scale regularity without a large receptive field of 

the local regressor. Hence, the CNN can be kept efficient.

3. The local regression strategy makes the approach suitable for more general 

registration models, e.g., for LD-DMM, where one would like the regularizer to 

follow the deforming source image over time.

3.1.1 Learning the CNN regressor—For simplicity we use a fairly shallow CNN with 

two layers of filters and leaky ReLU (lReLU) [27] activations. In detail, the data flow is as 

follows: conv(d + 1, n1) → BatchNorm → lReLU → conv → (n1, N) BatchNorm → 
weighted-linear-softmax. Here conv(a, b) denotes a convolution layer with a input channels 

3We only explore mappings dependent on the source image I0 in our experiments, but more general mappings also depending on the 
momentum, for example, should be explored in future work.
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and b output feature maps. We used n1 = 20 for our experiments and convolutional filters of 

spatial size 5 (5 × 5 in 2D and 5 × 5 × 5 in 3D). The weighted-linear-softmax activation 

function, which we formulated, maps inputs to ΔN−1. We designed it such that it operates 

around a setpoint of weights wi which correspond to the global weights of the multi-

Gaussian kernel. This is useful to allow models to start training from a pre-specified, 

reasonable initial configuration of global weights, parameterizing the regularizer. 

Specifically, we define the weighted linear softmax σw:ℝk ΔN − 1 as

σw(z)j = clamp0, 1 wj + zj − z
∑i = 0

N − 1clamp0, 1 wi + zi − z  
, (3.7)

where σw(z)j denotes the j-th component of the output, z is the mean of the inputs, z, and the 

clamp function clamps the values to the interval [0, 1]. The removal of the mean in Eq. (3.7) 

assures that one moves along the probability simplex. That is, if one is outside the clamping 

range, then

∑
i = 0

N − 1
 clamp0, 1 wi + zi − z = ∑

i = 0

N − 1
wi + zi − z = ∑

i = 0

N − 1
wi = 1

and consequentially, in this range, σw(z)j = wj + zj − z. This is linear in z and moves along 

the tangent plane of the probability simplex by construction. As a CNN with small initial 

weights will produce an output close to zero, the output of σw(z) will initially be close to the 

desired set-point weights, wj, of the multi-Gaussian kernel. Once the pre-weights, ωi(x), 

have been obtained via this CNN, we compute multi-Gaussian weights via Gaussian 

smoothing. We use σ = 0.02 in 2D and σ = 0.05 in 3D throughout all experiments (§4).

3.2. Discretization, optimization, and training

Discretization. We discretize the registration model using central differences for spatial 

derivatives and 20 steps in 2D (10 in 3D) of 4th order Runge-Kutta integration in time. 

Gaussian smoothing is done in the Fourier domain. The entire model is implemented in 

PyTorch4; all gradients are computed by automatic differentiation [32].

Optimization. Joint optimization over the momenta of a set of registration pairs and the 

network parameters is difficult in 3D due to GPU memory limitations. Hence, we use a 

customized variant of stochastic gradient descent (SGD) with Nesterov momentum (0.9) 

[41], where we split optimization variables (1) that are shared and (2) individual between 

registration-pairs. Shared parameters are for the CNN. Individual parameters are the 

momenta. Shared parameters are kept in memory and individual parameters, including their 

current optimizer states, are saved and restored for every random batch. We use a batch-size 

of 2 in 3D and 100 in 2D and perform 5 SGD steps for each batch. Learning rates are 1.0 

and 0.25 for the individual and the shared parameters in 3D and 0.1 and 0.025 in 2D, 

4Available at https://github.com/uncbiag/registration also including various other registration models such as LDDMM.
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respectively. We use gradient clipping (at a norm of one, separately for the gradients of the 

shared and the individual parameters) to help balance the energy terms. We use PyTorch’s 

ReduceLROnPlateau learning rate scheduler with a reduction factor of 0.5 and a patience of 

10 to adapt the learning rate during training.

Curriculum strategy: Optimizing jointly over momenta, global multi-Gaussian weights and 

the CNN does not work well in practice. Instead, we train in two stages: (1) In the initial 

global stage, we pick a reasonable set of global Gaussian weights and optimize only over the 

momenta. This allows further optimization from a reasonable starting point. Local 

adaptations (via the CNN) can then immediately capture local effects rather than initially 

being influenced by large misregistrations. In all experiments, we chose these global weights 

to be linear with respect to their associated variances, i.e., wi = σi2/ ∑j = 0
N − 1σj2 . Then, (2) 

starting from the result of (1), we optimize over the momenta and the parameters of the 

CNN to obtain spatially-localized weights. We refer to stages (1) and (2) as global and local 
optimization, respectively. In 2D, we run global/local optimization for 50/100 epochs. In 3D, 

we run for 25/50 epochs. Gaussian variances are set to {0.01, 0.05, 0.1, 0.2} for images in 

[0, 1]d. We use normalized cross correlation (NCC) with σ = 0.1 as similarity measure. See 

§B of the supplementary material for further implementation details.

4. Experiments

We tested our approach on three dataset types: (1) 2D synthetic data with known ground 

truth (§4.1), (2) 2D slices of a real 3D brain magnetic resonance (MR) images (§4.2), and 

(3) multiple 3D datasets of brain MRIs (§4.3). Images are first affinely aligned and intensity 

standardized by matching their intensity quantile functions to the average quantile function 

over all datasets. We compute deformations at half the spatial resolution in 2D (0.4 times in 

3D) and upsample Φ−1 to the original resolution when evaluating the similarity measure so 

that fine image details can be considered. This is not necessary in 2D, but essential in 3D to 

reduce GPU memory requirements. We use this approach in 2D for consistency.

All evaluations (except for §4.2 and for the within dataset results of §4.3) are with respect to 

a separate testing set. For testing, the previously learned regularizer parameters are fixed and 

numerical optimization is over momenta only (in particular, 250/500 iterations in 2D and 

150/300 in 3D for global/local optimization).

4.1. Results on 2D synthetic data

We created 300 synthetic 128 × 128 image pairs of randomly deformed concentric rings (see 

supplementary material, §C). Shown results are on 100 separate test cases.

Fig. 2 shows registrations for λOMT ∈ {15, 50, 100}. The TV penalty was set to λTV = 0.1. 

The estimated standard deviations, σ2(x) = ∑j = 0
N − 1wi x σj2, capture the trend of the ground 

truth, showing a large standard deviation (i.e., high regularity) in the background and the 

center of the image and a smaller standard deviation in the outer ring. The standard 

deviations are stable across OMT penalties, but show slight increases with higher OMT 

Niethammer et al. Page 9

Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. Author manuscript; available in PMC 2020 June 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



values. Similarly, deformations get progressively more regular with larger OMT penalties (as 

they are regularized more strongly), but visually all registration results show very similar 

good correspondence. Note that while TV was used to train the model, the CNN output is 

not explicitly TV regularized, but nevertheless is able to produce largely constant regions 

that are well aligned with the boundaries of the source image. Fig. 3 shows the 

corresponding estimated weights. They are stable for a wide range of OMT penalties.

Finally, Fig. 4 shows displacement errors relative to the ground truth deformation for the 

interior and the exterior ring of the shapes. Local metric optimization significantly improves 

registration (over initial global multi-Gaussian regularization); these results are stable across 

a wide range of penalties with median displacement errors < 1 pixel.

4.2. Results on real 2D data

We used the same settings as for the synthetic dataset. However, here our results are for 300 

random registration pairs of axial slices of the LPBA40 dataset [26].

Fig. 5 shows results for λOMT ∈ {15, 50, 100}; λTV = 0.1. Larger OMT penalties yield 

larger standard deviations and consequentially more regular deformations. Most regions 

show large standard deviations (high regularity), but lower values around the ventricles and 

the brain boundary – areas which may require substantial deformations.

Fig. 6 shows the corresponding estimated weights. We have no ground truth here, but 

observe that the model produces consistent regularization patterns for all shown OMT values 

({15,50,100}) and allocates almost all weights to the Gaussians with the lowest and the 

highest standard deviations, respectively. As λOMT increases, more weight shifts from the 

smallest to the largest Gaussian.

4.3. Results on real 3D data

We experimented using the 3D CUMC12, MGH10, and IBSR18 datasets [26]. These 

datasets contain 12, 10, and 18 images. Registration evaluations are with respect to all 132 
registration pairs of CUMC12. We use λOMT = 50, λTV = 0.1 for all tests5. Once the 

regularizer has been learned, we keep it fixed and optimize for the vSVF vector momentum. 

We trained independent models on CUMC12, MGH10, and IBSR18 using 132 image pairs 

on CUMC12, 90 image pairs on MGH10, and a random set of 150 image pairs on IBSR18. 

We tested the resulting three models on CUMC12 to assess the performance of a dataset-

specific model and the ability to transfer models across datasets.

Tab. 1 and Fig. 7 compare to the registration methods in [26] and across different stages of 

our approach for different training/testing pairs. We also list the performance of the most 

recent VoxelMorph (VM) variant [11]. We kept the original architecture configuration, swept 

over a selection of VoxelMorph’s hyperparameters and report the best results here. Each 

VoxelMorph model was trained for 300 epochs which, in our experiments, was sufficient for 

convergence. Overall, our approach shows the best results among all models when trained/

5We did not tune these parameters and better settings may be possible.
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tested on CUMC12 (c/c local); though results are not significantly better than for SyN, 

SPM5D, and VoxelMorph. Local metric optimization shows strong improvements over 

initial global multi-Gaussian regularization. Models trained on MGH10 and IBSR18 (m/c 

local and i/c local) also show good performance, slightly lower than for the model trained on 

CUMC12 itself, but higher than all other competing methods. This indicates that the trained 

models transfer well across datasets. While the top competitor in terms of median overlap 

(SPM5D) produces outliers (cf. Fig. 7), our models do not. In case of VoxelMorph we 

observed that adding more training pairs (i.e., using all pairs of IBSR18, MGH18 & 

LBPA40) did not improve results (cf. Tab. 1 */c VM).

In Tab. 2, we list statistics for the determinant of the Jacobian of Φ−1 on CUMC12, where 

the model was also trained on. This illustrates how transformation regularity changes 

between the global and the local regularization approaches. As expected, the initial global 

multi-Gaussian regularization results in highly regular registrations (i.e., determinant of 

Jacobian close to one). Local metric optimization achieves significantly improved target 

volume overlap measures (Fig. 7) while keeping good spatial regularity, clearly showing the 

utility of our local regularization model. Note that all reported determinant of Jacobian 

values in Tab. 2 are positive, indicating no foldings, which is consistent with our 

diffeomorphic guarantees; though these are only guarantees for the continuous model at 

convergence, which do not consider potential discretization artifacts.

5. Conclusions

We proposed an approach to learn a local regularizer, parameterized by a CNN, which 

integrates with deformable registration models and demonstrates good performance on both 

synthetic and real data. While we used vSVF for computational efficiency, our approach 

could directly be integrated with LDDMM (resulting in local, time-varying regularization). 

It could also be integrated with predictive registration approaches, e.g., [48]. Such an 

integration would remove the computational burden of optimization at runtime, yield a fast 

registration model, allow end-to-end training and, in particular, promises to overcome the 

two key issues of current deep learning approaches to deformable image registration: (1) the 

lack of control over spatial regularity of approaches training mostly based on image 

similarities and(2) the inherent limitation on registration performance by approaches which 

try to learn optimal registration parameters for a given registration method and a chosen 
regularizer.

To the best of our knowledge, our model is the first approach to learn a local regularizer of a 

registration model by predicting local multi-Gaussian pre-weights. This is an attractive 

approach as it (1) allows retaining the theoretical properties of an underlying (well-

understood) registration model, (2) allows imposing bounds on local regularity, and (3) 

focuses the effort on learning some aspects of the registration model from data, while 

refraining from learning the entire model which is inherently ill-posed. The estimated local 

regularizer might provide useful information in of itself and, in particular, indicates that a 

spatially non-uniform deformation model is supported by real data.
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Much experimental and theoretical work remains. More sophisticated CNN models should 

be explored; the method should be adapted for fast end-to-end regression; more general 

parameterizations of regularizers should be studied (e.g., allowing sliding), and the approach 

should be developed for LDDMM.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Architecture of our registration approach. We jointly optimize over the momentum, 

parameterizing the deformation Φ, and the parameters, θ, of a convolutional neural net 

(CNN). The CNN locally predicts multi-Gaussian kernel pre-weights which specify the 

regularizer. This approach constructs a metric such that diffeomorphic transformations can 

be assured in the continuum.
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Figure 2: 
Example registration results using local metric optimization for the synthetic test data. 

Results are shown for different values of λOMT with the total variation penalty fixed to λTV 

= 0.1. Visual correspondence between the warped source and the target images are high for 

all settings. Estimates for the standard deviation stay largely stable. However, deformations 

are slightly more regularized for higher OMT penalties. This can also be seen based on the 

standard deviations (best viewed zoomed).
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Figure 3: 
Estimated multi-Gaussian weights (blue=0; yellow=1) for the registrations in Fig. 2 w.r.t. 

different λOMT’s. Weight estimates are very stable across λOMT. While the overall standard 

deviation (Fig. 2) approximates the ground truth, the weights for the outer ring differ 

(ground truth weights are [0.05, 0.55, 0.3, 0.1]) from the ground truth. They approximately 

match for the background and the interior (ground truth [0, 0, 0, 1]).
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Figure 4: 
Displacement error (in pixel) with respect to the ground truth (GT) for various values of the 

total variation penalty, λTV (t) and the OMT penalty, λOMT (o). Results for the inner and the 

outer rings show subpixel registration accuracy for all local metric optimization results (*_l). 

Overall, local metric optimization substantially improves registrations over the results 

obtained via initial global multi-Gaussian regularization (global).
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Figure 5: 
Example registration results using local metric optimization for different λOMT’s and λTV = 

0.1. Visual correspondences between the warped source images and the target image are 

high for all values of the OMT penalty. Standard deviation estimates capture the variability 

of the ventricles and increased regularity with increased values for λOMT (best viewed 
zoomed).
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Figure 6: 
Estimated multi-Gaussian weights for different λOMT for real 2D data. Weights are mostly 

allocated to the Gaussian with the largest standard deviation (see colorbars; best viewed 

zoomed). A shift from w0 to w3 can be observed for larger values of λOMT. While weights 

shift between OMT setting, the ventricle area is always associated with more weight on w0 

(best viewed zoomed).
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Figure 7: 
Mean target overlap ratios on CUMC12 (in 3D) with λTV = 0.1 and λOMT = 50. Our 

approach (marked red) gives the best result overall. Local metric optimization greatly 

improves results over the initial global multi-Gaussian regularization. Best results are 

achieved for the model that was trained on this dataset (c/c local), but models trained on 

MGH10 (m/c local) and on IBSR18 (i/c local) transfer well and show almost the same level 

of performance. The dashed line is the median mean target overlap ratio (i.e., mean over all 

labels, median over all registration pairs).
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Table 1:

Statistics for mean (over all labeled brain structures, disregarding the background) target overlap ratios on 

CUMC12 for different methods. Prefixes for results based on global and local regularization indicate training/

testing combinations identified by first initials of the datasets. For example, m/c means trained/tested on 

MGH10/CUMC12. Statistical results are for the null-hypothesis of equivalent mean target overlap with respect 

to c/c local. Rejection of the null-hypothesis (at α = 0.05) is indicated with a check-mark (✓). All p-values are 

computed using a paired one-sided Mann Whitney rank test [28] and corrected for multiple comparisons using 

the Benjamini-Hochberg [5] procedure with a family-wise error rate of 0.05. Best results are bold, showing 

that our methods exhibits state-of-the-art performance.

Method mean std 1% 5% 50% 95% 99% p MW-stat sig?

FLIRT 0.394 0.031 0.334 0.345 0.396 0.442 0.463 <1e-10 17394.0 ✓

AIR 0.423 0.030 0.362 0.377 0.421 0.483 0.492 <1e-10 17091.0 ✓

ANIMAL 0.426 0.037 0.328 0.367 0.425 0.483 0.498 <1e-10 16925.0 ✓

ART 0.503 0.031 0.446 0.452 0.506 0.556 0.563 <1e-4 11177.0 ✓

Demons 0.462 0.029 0.407 0.421 0.461 0.510 0.531 <1e-10 15518.0 ✓

FNIRT 0.463 0.036 0.381 0.410 0.463 0.519 0.537 <1e-10 15149.0 ✓

Fluid 0.462 0.031 0.401 0.410 0.462 0.516 0.532 <1e-10 15503.0 ✓

SICLE 0.419 0.044 0.300 0.330 0.424 0.475 0.504 <1e-10 17022.0 ✓

SyN 0.514 0.033 0.454 0.460 0.515 0.565 0.578 0.073 9677.0 ✗

SPM5N8 0.365 0.045 0.257 0.293 0.370 0.426 0.455 <1e-10 17418.0 ✓

SPM5N 0.420 0.031 0.361 0.376 0.418 0.471 0.494 <1e-10 17160.0 ✓

SPM5U 0.438 0.029 0.373 0.394 0.437 0.489 0.502 <1e-10 16773.0 ✓

SPM5D 0.512 0.056 0.262 0.445 0.523 0.570 0.579 0.311 9043.0 ✗

c/c VM 0.517 0.034 0.456 0.460 0.518 0.571 0.580 0.244 9211.0 ✗

m/c VM 0.510 0.034 0.448 0.453 0.509 0.564 0.574 0.011 10197.0 ✓

i/c VM 0.510 0.034 0.450 0.453 0.508 0.564 0.573 0.012 10170.0 ✓

*/c VM 0.509 0.033 0.450 0.453 0.509 0.561 0.570 0.007 10318.0 ✓

m/c global 0.480 0.031 0.421 0.430 0.482 0.530 0.543 <1e-10 13864.0 ✓

m/c local 0.517 0.034 0.454 0.461 0.521 0.568 0.578 0.257 9163.0 ✗

c/c global 0.480 0.031 0.421 0.430 0.482 0.530 0.543 <1e-10 13864.0 ✓

c/c local 0.520 0.034 0.455 0.463 0.524 0.572 0.581 - - -

i/c global 0.480 0.031 0.421 0.430 0.482 0.530 0.543 <1e-10 13863.0 ✓

i/c local 0.518 0.035 0.454 0.460 0.522 0.571 0.581 0.338 8972.0 ✗
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Table 2:

Mean (standard deviation) of determinant of Jacobian of Φ−1 for global and local regularization with λTV = 

0.1 and λOMT = 50 for CUMC12 within the brain. Local metric optimization (local) improves target overlap 

measures (see Fig. 7) at the cost of less regular deformations than for global multi-Gaussian regularization. 

However, the reported determinants of Jacobian are still all positive, indicating no folding.

mean 1% 5% 50% 95% 99%

Global 1.00(0.02) 0.60(0.07) 0.71(0.03) 0.98(0.03) 1.39(0.05) 1.69(0.14)

Local 0.98(0.02) 0.05(0.04) 0.24(0.03) 0.84(0.03) 2.18(0.07) 3.90(0.23)
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