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Abstract

We propose a novel linear discriminant analysis (LDA) approach for the classification of high-

dimensional matrix-valued data that commonly arises from imaging studies. Motivated by the 

equivalence of the conventional LDA and the ordinary least squares, we consider an efficient 

nuclear norm penalized regression that encourages a low-rank structure. Theoretical properties 

including a nonasymptotic risk bound and a rank consistency result are established. Simulation 

studies and an application to electroencephalography data show the superior performance of the 

proposed method over the existing approaches.
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1. Introduction

Modern technologies have generated a large number of datasets that possess a matrix 

structure for classification purpose. For example, in neuropsychiatric disease studies, it is 

often of interest to evaluate the prediction accuracy of prognostic biomarkers by relating 

two-dimensional imaging predictors, for example, electroencephalography (EEG) and 

magnetoencephalography, to clinical outcomes such as diagnostic status (Mu and Gage 

2011). In this article, we focus on extending one of the most commonly used classification 

methods, Fisher linear discriminant analysis (LDA) to matrix-valued predictors. Progress 

has been made in recent years on developing sparse LDA using ℓ1-regularization (Tibshirani 

1996), including Shao et al. (2011), Fan, Feng, and Tong (2012), and Mai, Zou, and Yuan 

(2012). However, all these methods only deal with vector-valued covariates; and it remains 

challenging to accommodate the matrix structure. Naively transforming the matrix data into 

a high-dimensional vector will result in unsatisfactory results for several reasons. First, 

vectorization destroys the structural information within the matrix such as shapes and spatial 

correlations. Second, turning a p × q matrix into a pq × 1 vector generates unmanageably 

high dimensionality. For example, estimating the population precision matrix for LDA can 

be troublesome if pq ≫ n. Third, ℓ1-regularization does not necessarily work well because 
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the underlying two-dimensional signals are usually approximately low-rank rather than ℓ0-

sparse.

Recently, there are some development of regression methods for matrix data. Chen, Dong, 

and Chan (2013) invented an adaptive nuclear norm penalization approach for low-rank 

matrix approximation. Zhou and Li (2014) proposed a class of regularized matrix regression 

methods based on spectral regularization. Wang and Zhu (2017) developed a generalized 

scalar-on-image regression model via total variation. Kong et al. (2019) proposed a low-rank 

linear regression model with high-dimensional matrix response and high-dimensional scalar 

covariates, while Hu, Kong, and Shen (2019) developed a nonparametric matrix response 

regression model.

In this article, we propose a new matrix LDA approach by building on the equivalence 

between the classical LDA and the ordinary least squares. We formulate the binary 

classification as a nuclear norm penalized least-squares problem, which efficiently exploits 

the low-rank structure of the two-dimensional discriminant direction matrix. The involved 

optimization is amenable to the accelerated proximal gradient method. Although our 

problem is formulated as a penalized regression problem, a fundamental difference is that 

the covariates Xi and the residuals ϵi are no longer independent in our case. This requires 

extra effort for developing the risk bound and rank consistency result. The risk bound is 

explicit in terms of the rank of the image, image size, sample size, and the eigenvalues of the 

covariance matrix for the image covariates. This result also implies estimation consistency 

provided the p × q image satisfies max(p, q) = o(n/ log3 n). Under stronger conditions, we 

show that the rank of the coefficient matrix can be consistently estimated as well. The proof 

is based on exploiting the spectral norm of random matrices with mixture-of-Gaussian 

components and extending the results in Bach (2008) to allow diverging matrix dimensions. 

Finally, we prove that our method enjoys classification error consistency.

It is worth noting that the 2D image classification problem has been studied by Zhong and 

Suslick (2015), where they proposed a penalized matrix discriminant analysis (PMDA) 

method that projects the matrix coefficient into row space and column space separately. 

Those two projections are then estimated iteratively and integrated together for 

classification. Compared with PMDA, we make the following contributions. First, the rank 

of the PMDA is set as one because of the separability assumption, while we allow the rank 

of the direction matrix to take general positive integer values and the rank can then be 

selected by a data driven procedure. Our rank assumption is more flexible in practice and 

hence often leads to a lower misclassification error in the numerical studies. Second, our 

method adopts a direct estimation approach by solving a nuclear norm penalized regression 

problem, which is computationally much faster compared with PMDA, where the estimation 

involves an iterative procedure for calculating the inverse of covariance matrices during each 

iteration. Third, our method can handle the high-dimensional data when image dimensions p 
and q are much larger than the sample size, which is the case for many applications; while 

PMDA cannot handle the case when p + q > n. Finally, we have provided theoretical 

guarantee for our estimator when p and q diverge with n. In particular, we have developed an 

nonasymptotic error bound for the estimated LDA direction, as well as results on rank 

consistency and classification error consistency. These results are stronger compared with 
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the root-n consistency of the LDA direction in Zhong and Suslick (2015), where both p and 

q are assumed to be fixed.

2. Method

We first define some useful notations. Let vec(·) be a vectorization operator, which stacks 

the entries of a matrix into a column vector. The inner product between two matrices of 

same size is defined as M, N = tr(MTN) = vec(M), vec(N).

Consider a binary classification problem, where X is a two-dimensional image covariate 

with dimension p×q and G = 1, 2 denotes the class labels. The LDA assumes that vec(X) | G 
= g ~ N(μg, Σ), pr(G = 1) = π1, and pr(G = 2) = π2. Suppose we have n subjects with n1 

subjects belonging to class 1 and n2 = n−n1 subjects to class 2. It is well known that LDA is 

connected to the linear regression with the class labels as responses (Duda, Hart, and Stork 

2012; Mika 2002). When pq < n, the classical LDA is equivalent to solving

β0
ols, Bols = arg min

β0, B
∑
i = 1

n
yi − β0 − Xi, B 2, (1)

where Xi is the image covariate from subject i, B is the coefficient matrix for the image 

covariate and it represents the direction of the linear discriminant classifier, β0 is the 

intercept, and the response yi = −n/n1 if subject i is in class 1, and yi = n/n2 if subject i is in 

class 2. Although this connection gives the exact LDA direction when pq < n, it has two 

potential drawbacks. First, when pq > n, the equivalence between Fisher LDA and (1) is lost 

because of the non-uniqueness of solution. Second, the formulation (1) does not incorporate 

the 2D image structure when estimating the direction because 〈Xi, B〉 = 〈vec(Xi), vec(B)〉. 
These motivate us to consider a penalized version of (1) as follows

β0, B = arg min
β0, B

1
2n ∑

i = 1

n
yi − β0 − Xi, B 2 + ωn‖B‖*, (2)

where the nuclear norm ‖B‖* = ∑jσj(B) and σj(B)s are the singular values of the matrix B. 

The nuclear norm ‖B‖* plays an important role because it imposes a low rank structure in the 

estimated direction B. An alternative choice is to add a Lasso q type penalty, that is, 

ωn B 1, 1 = ωn∑j = 1
p ∑k = 1

q bjk , where bjk is the jkth element of B. However, the Lasso type 

penalty can only identify at most n nonzero components, and for most cases in imaging 

studies, the signal is usually not that sparse. More importantly, the Lasso type of penalty 

ignores the matrix structure because it is equivalent to vectorizing the array and applying 

sparse LDA. Once B from (2) is obtained, a naive classification rule will assign the ith 

subject to class 2 if Xi, B + β0 > 0. However, it can be shown that the intercept β0 obtained 

from (2) is not optimal. Instead, we use the optimal intercept β0 that minimizes the training 

error after obtaining B. Mai, Zou, and Yuan (2012) showed that the intercept of LDA 

actually has a closed form. Their derivations can be easily applied to our case. In particular, 

if μ2 − μ1
Tvec(B) > 0, then
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β0 = − μ1 + μ2
Tvec(B)/2 + vec(B)TΣvec(B) μ2 − μ1

Tvec(B) −1log n2/n1 , (3)

where μg is the sample mean for subjects in class g and Σ is the estimated covariance matrix. 

If μ2 − μ1
Tvec(B) < 0, we can plug −B into (3) to obtain the optimal intercept β0. The 

optimal classification rule is to assign the ith subject to class 2 if Xi, B + β0 > 0.

For any fixed ωn, the optimization problem in (2) can be solved using the accelerated 

proximal gradient method (Nesterov 1983; Beck and Teboulle 2009). Zhou and Li (2014) 

studied the algorithm for the nuclear norm regularized matrix regression. As we know, 

nuclear norm is not differentiable. Fortunately, its subderivative ∂‖.‖* exists. Therefore (2) 

has local minima β0, B  if and only if 0 ∈ − 1
n ∑i = 1

n Xiϵi + ωn∂ B *. Thanks to the convexity 

of nuclear norm, the local minima is global as well. Based on these facts, singular value 

thresholding method for nuclear norm regularization was deployed for building blocks of 

Nesterov’s method. Compared with the classical gradient decent method with convergence 

of O(t−1), where t denotes the number of iteration, Nesterov’s accelerated gradient decent 

method achieves convergence rate of O(t−2). It differs from traditional algorithms by 

utilizing the estimators from previous two iterations to generate the next estimator. For 

computational algorithm, we use the matrix_sparsereg function in the Matlab TensorReg 

Toolbox (https://hua-zhou.github.io/TensorReg/) for solving nuclear norm penalized matrix 

regression. It implements an optimal Nesterov acceleration of the proximal gradient 

algorithm. Actually, one contribution of our article is to link matrix LDA to regularized 

matrix regression so that the computational machinery developed for the latter can be 

applied to matrix LDA problems. For tuning of the ωn, we adopt the BIC derived by Zhou 

and Li (2014) under the nuclear norm regularized matrix regression framework.

3. Theory

In this section we discuss the theoretical properties of the proposed regularization estimator. 

Denote the residuals ϵi = yi − β0 − 〈Xi, B〉 and the true coefficient matrix by B0. By the 

equivalence between LDA direction and least squares, we know vec(B0) can be written as cΣ
−1(μ2 – μ1)for some positive constant c. Consider the singular value decomposition 

B0 = U0Diag S0 V0
T with U0 ∈ Rp×r and V0 ∈ Rq×r. U0⊥ ∈ Rp(p−r) and V0⊥ ∈ Rq(q−r) be 

(arbitrary) orthogonal complements of U0 and V0, respectively. We make the following 

assumptions.

(A1) We assume that the second-order moment of the covariate X, E(vec(X)vec(X)T), 

denoted by Σxx, satisfies λl ≤ λmin(Σxx) ≤ λmax(Σxx) ≤ λu, where λmin(Σxx) and 

λmax(Σxx) are the smallest and largest eigenvalues of Σxx, respectively, and λl, λu are 

some positive constants.

(A2) Let r = rank(B0) be the unknown rank of the true coefficient matrix B0. Define 

Λ ∈ R(p−r) × (q−r) as
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vec(Λ) = V0 ⊥ ⊗ U0 ⊥
TΣ−1 V0 ⊥ ⊗ U0 ⊥

−1
× V0 ⊥ ⊗ U0 ⊥

TΣ−1 V0 ⊗ U0 vec(I) .

We assume its spectral ‖Λ‖2 < 1. norm

(A3) Assume the quantities ωn, min(p, q) 1/2n−1/2ωn−1, min(p, q)n−1/2, ωnp1/2q1/2 

min(p, q) tend to 0 as n → ∞.

(A4) There exists a positive constant Cμ such that μ2 − μ1 2 ≤ Cμ( p + q).

Condition (A1) requires bounded eigenvalues for the covariance matrix of the vectored 

covariate, which is standard in the literature. Condition (A2) is similar with the strict 

consistency condition in Bach (2008). It is needed to establish rank consistency. This 

condition extends the classical strong irrepresentable condition in Zhao and Yu (2006), 

which is commonly used for proving model selection consistency of Lasso. The major 

difference between our Assumption (A2) and the similar assumption in Bach (2008) is that 

the number of parameters is fixed in Bach (2008) while in our case the number is diverging 

with n. Therefore we will need to assume that the regularization parameter ωn decays slower 

than the one in Bach (2008). Condition (A3) puts more requirement on the order of p, q, and 

wn in order to obtain consistent rank estimation in addition to consistent coefficient 

estimation. This is expected since rank estimation consistency is usually not implied by 

parameter estimation consistency. Condition (A4) can be viewed as a sparsity assumption on 

B0. Recall the solution (the slope) to classical LDA problem with vector covariates depends 

on the term μ2−μ1. This assumption essentially implies that there are at most O(max(p, q)) 

number of O(1) elements in the true coefficient matrix B0 given the rank of B0 is fixed.

Next, we briefly review two important concepts, namely decomposable regularizer and 

strong convex loss function, proposed by Negahban et al. (2012) and highlight their 

connection to the risk bound property for our estimator.

Definition 1. A regularizer R(·) is decomposable with respect to a given pair of subspaces 

(M, N) where M ⊆ N⊥ if

R(u + v) = R(u) + R(v)   for all u ∈ M, v ∈ N .

In our setting, R(·) is the nuclear norm. Considering a matrix B ∈ ℛp × q to be estimated, we 

observe that nuclear norm is decomposable given a pair of subspaces

M(U, V): = B ∈ ℛp × q | row(B) ⊆ V, col(B) ⊆ U ,

N(U, V): = B ∈ ℛp × q | row(B) ⊆ V⊥, col(B) ⊆ U⊥ ,

where U, V represent B’s left and right singular vectors. For any pair of matrices B1 ∈ M 
and B2 ∈ N, the inner product of B1, B2 is 0 due to their mutually orthogonal rows and 
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columns. Hence, we conclude R(B1 + B2) = R(B1) + R(B2). Since we assume the true 

parameter has a low-rank structure, we expect the regularized estimator to have a large value 

of projection on M(U, V) and a relatively small-valued projection on N(U, V).

When the loss function L β0, Bωn  defined as 1
2n ∑i = 1

n yi − β0 − Xi, Bωn
2
 is close to L(β0, 

B0), it is insufficient to claim Bωn − B0 is small if the loss function L is relatively flat. This is 

why the strong convexity condition is required.

Definition 2. For a given loss function L and norm ‖.‖, we say L is strong convex with 

curvature kL and tolerance function τL if

δL Δ, B0 ≥ kL‖Δ‖2 − τL
2 B0 ,    for any δ ∈ C M, N; B0 ,

where C M, N; B0 : = Δ ∈ ℛp × q |R ΔN ≤ 3R ΔN⊥ + 4R B0N .

Now we are ready to state the main result on the risk bound for our estimate. The proof is 

provided in Appendix B.

Theorem 1. Suppose that (A1) and (A4) hold. Let B be the solution to (2). If

ωn ≥
12(logn)3/2 Cμ + λu1/2 ( p + q + logn)

n ,

then with probability of at least 1−Cn−1 for some constant C > 0,

B − B0 F
2 + β − β0*

2 ≤ 9
ωn2
λl

r,

where β0* = β0 − π2
−1 c − 1 + π2 − π2

2 DTΣ−1D  and c is some positive constant.

Theorem 1 gives a nonasymptotic risk bound for the proposed estimators. In other words, 

the results hold for any positive ωn satisfying the conditions there. However, in order to 

ensure the consistency of the proposed estimators, we will need the risk bound to go to 0, 

which requires ωn → 0 and max(p, q) = o(n/(r log3 n)). If the rank of B0 is fixed, then both p 
and q can diverge with n at the order of o(n/ log3 n) and their product pq > n. This result is 

compatible with Theorem 1 in Raskutti and Yuan (2015). Note that the estimated intercept β
converges to β0*, which deviates from the truth β0. This is expected because the solution to 

OLS is only equivalent with LDA’s solution in terms of the slope B, not on β0. More 

precisely, for OLS, by taking the derivative of squared loss function with respect to β0 and 

set it to 0, we essentially require E(ϵ) = 0. However, this does not hold in our case. Instead 

we need to shift the residual ϵ by d to balance off the bias in the cross-product term E(ϵX). 

The proof of the theorem uses Gaussian comparison inequality which allows us to deal with 

vec(X) following a general Gaussian distribution instead of standard Gaussian distribution 
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given that the largest singular value of Σxx is bounded. Based on this connection, we further 

use concentration property of spectral norm of Gaussian random matrices.

Next we show that B is rank-consistent under stronger conditions.

Theorem 2. Suppose that (A1)–(A4) hold. Then the estimate B is rank-consistent, that is, 

P rank(B) = rank B0 1 as n → ∞.

Similar to Lasso, estimation consistency does not guarantee correct rank estimation for 

matrix regularization. In fact, the assumptions here are stronger than those in Theorem 1. 

For example, Theorem 1 allows p + q = o(n/ log3 n) while Theorem 2 requires max(p,q) 

=o(n1/3/ log−3/2 n) if min(p, q) = O(1). The proof is based on the arguments in Bach (2008) 

with modifications to allow diverging p and q.

Remark 1. Although nuclear norm penalized least squares is used to estimate the 

classification direction, there is a fundamental difference between our theorems and the 

theoretical results derived for nuclear norm penalized least-squares regression (Bach 2008; 

Negahban et al. 2012). The previous work assumes that the data obey a linear regression 

model with covariates-independent additive noise, which is not true in our case. In 

particular, the covariates Xi and the residuals ϵi are no longer independent in our problem, 

which brings additional challenges in developing theoretical results.

Next we state a classification error consistency result. To be consistent with the notation in 

the classification literature, for subject i, we use Yi ∈ {−1, 1} to denote its true label, fn Xi
as the classified label for which fn is the classification rule obtained by solving (2), and l(Yi, 

f(Xi)) = I{Yi ≠ sign(f(Xi))} as the 0–1 loss function. Define the risk of fn as 

R fn = EXl(Y , fn(X)) and the Bayes risk as R* = inff R(f). In addition, we assume that the 

true label Yi given Xi is determined by the linear classification rule with coefficients β0* and 

B0. Then the following theorem shows that the proposed classifier achieves the Bayes 

optimal risk under certain conditions. The proof, given in Appendix B, is based on the 

general results in Zhang (2004), where the author studied the optimal Bayes error rate using 

a classifier obtained by minimizing a convex upper bound of the classification error 

function.

Theorem 3. Assume the same conditions for Theorem 1 hold and ωn → 0. Then R fn R*
as n → ∞.

4. Numerical Results

4.1. Simulation

We conduct simulation studies to evaluate the numerical performance of our proposed 

method. We compare its performance with that of a few alternatives: “Lasso LDA,” which 

adopts a naive Lasso penalty in LDA without taking into account matrix structure, the 

regularized matrix logistic regression (Zhou and Li 2014) using nuclear norm and Lasso 

penalties, denoted by “Logistic Nuclear” and “Logistic Lasso,” and the PMDA approach 
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proposed by Zhong and Suslick (2015). We generate n ∈ {100, 200, 500} samples from two 

classes with weights (π1, π2) ∈ {(0.5, 0.5), (0.75, 0.25)}. For each class, we generate 

predictors from a bivariate normal distribution with means μg, g = 1, 2, and covariance Σ. We 

set μ1 = 0 and μ2 = Σvec(B0). The covariance matrix Σ has a 2D autoregressive structure: 

cov xi1, j1, xi2, j2 = 0.5 i1 − i2 + |j1 − j2| for 1 ≤ i1 ≤ p and 1 ≤ j1 ≤ q. The true signal B0 is 

generated based on a 64-by-64 image. We consider three settings: a cross, a triangle and a 

butterfly. These pictures are shown in Figure 1(a). In particular, the white color denotes 

value 0 and black denotes 0.05. We apply each fitted model to an independent test dataset of 

size 1000 and summarize the misclassification rates based on 1000 Monte Carlo 

replications. The results are contained in Table 1.

The results show that our method performs much better than “Lasso LDA” and “Logistic 

Lasso” under all scenarios. This is expected because these two methods ignore the matrix 

structure. For “Logistic Nuclear,” it has similar misclassification rates with our method for 

balanced data, but does not perform as good as ours for unbalanced data. We have also 

plotted the estimates using nuclear norm and ℓ1-norm from one randomly selected Monte 

Carlo replicate in Figure 1(b,c). It can be seen that the proposed nuclear norm regularization 

is much better than ℓ1-regularization in recovering the matrix signal in different shapes. By 

comparing the recovery of different shapes in Column (b) in Figure 1, we find that our 

method works better for cross than for triangle and butterfly. This is expected since triangle 

and butterfly do not have the low-rank structure.

We also compare the performance of our method with that of PMDA proposed by Zhong 

and Suslick (2015). In Table 1, it can be seen that our proposed method has a lower 

misclassification rate under all scenarios. This is because we allow flexible values of the 

rank for the linear discriminant direction B, while in Zhong and Suslick (2015), their 

assumption is equivalent to assuming B is of rank 1. In particular, using their notation, for 

binary case, their direction B = β1ξT, where β1 ∈ ℝp and ξ ∈ ℝq. Since the true ranks of B in 

our simulation studies are all of rank greater than 1, it is not surprising that our method 

outperforms PMDA. Moreover, PMDA does not apply to the case where n < p + q, that is, 

the sample size is far smaller than the summation of image dimensions. Therefore, their 

method does not apply to one of our simulation settings (n, p, q) = (100, 64, 64) and we 

mark their results using * in Table 1. We also compare the computation time between PMDA 

and our method. In simulation, when n = 200 and true signal is a cross, given a fixed 

regularization parameter, the system running time of PMDA is around 1.5 min whereas the 

system running time of our method is no more than 13 s. Here, system running time is 

measured on a Macbook Pro laptop with a 2.9 GHz Intel Core i5. This is because PMDA 

essentially solves least-square problems with L1 penalty in each iteration when setting ω1 = 

0 in Algorithm 2 in Zhong and Suslick (2015). Our method is based on the Nesterov optimal 

gradient method which avoids computing inverse of covariance matrix and hence has a faster 

convergence rate.

4.2. Real Data Application

We apply our method to an EEG dataset, which is available at https://archive.ics.uci.edu/ml/

datasets/EEG+Database. The data were collected by the Neurodynamics Laboratory to study 
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the EEG correlates of genetic predisposition to alcoholism. It contained measurements from 

64 electrodes placed on each subject’s scalps sampled at 256 Hz (3.9-msec epoch) for 1 

second. Each subject was exposed to three stimuli: a single stimulus, two matched stimuli, 

two unmatched stimuli. Among the 122 subjects in the study, 77 were alcoholic individuals 

and 45 were controls. More details about the study can be found in Zhang et al. (1995). In 

statistics literature, EEG data have been analyzed using different models, for example, Gao 

et al. (2019a) considered an unsupervised approach for clustering EEG data, Gao et al. 

(2019b) and Gao et al. (2018) considered an evolutionary state-space model and graphical 

model for better understanding brain connectivity, respectively. However, these methods are 

not directly applicable for classification purpose here.

In our data analysis, for each subject, we use the average of all 120 runs for each subject 

under single-stimulus condition and use that as the covariate xi, which is a 256 × 64 matrix. 

The classification label is alcoholic or not. We randomly divide the dataset into training set 

of 81 subjects and test set of 41 subjects for 100 times, and each time fit the model on the 

training set and apply it on the test set to obtain the average mis-classification rate and its 

standard error. The results for different methods are summarized in Table 2. It can be seen 

that the proposed method has a significant lower mis-classification rate compared with other 

methods, which agrees with the simulation findings for the unbalanced data. PMDA does not 

work here since p+q > n ((n, p, q) = (122, 256, 64)). We also check the fitted signal matrix 

and it agrees well with the one obtained by Zhou and Li (2014).

In terms of computational efficiency, we measured the computation time among Lasso LDA, 

Logistic Nuclear, Logistic Lasso, and our method based on one evaluation of the data, that 

is, partitioning the data into training and test sets, fitting the model on the training set and 

applying it on the test set. The running time for Lasso LDA, Logistic Nuclear, Logistic 

Lasso, and our method is 0.67, 1.79, 1.27, and 1.87 s, respectively. The system running time 

is measured in Matlab R2015b on a Macbook Pro laptop with a 2.9 GHz Intel Core i5.

5. Discussion

In the literature, total variation (TV) regularization has also been commonly used for 

modeling image data in addition to the proposed nuclear norm regularization. Their focuses 

are slightly different—the former is on structured sparse pattern and the later is on low-rank 

pattern. The main reason that we choose to focus on the nuclear norm regularization in this 

article is because we have found that low rankness is a more reasonable assumption than 

sparseness assumption in our real data application. In particular, the mis-classification errors 

of our method are lower than the sparse method (LASSO) in our real data analysis. The TV 

regularization is an interesting direction to explore as it requires new computational 

algorithms and theories; and thus we leave this for the future research.

In this article, we only consider the situation where all the image measurements are taking at 

the same scale, that is, the dimension of the image covariates p and q are equal for every 

study subject. We believe this is the case for most applications. For the special cases when 

image dimensions vary across subjects, our method may still be applicable by first resizing 

Hu et al. Page 9

Technometrics. Author manuscript; available in PMC 2020 June 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the image to the same scale. It will be of future interest to develop flexible statistical 

methods to handle image data that can be of different sizes in general.
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Appendix A.: Primary Lemmas and Propositions

We start with some useful lemmas in this section. The proof of main theorems are given in 

Appendix B.

We first restate a singular value thresholding formula in Cai, Candès, and Shen (2010). This 

result is extremely useful when computing optimal solution of (A.2), by which the important 

block of Nestorov’s algorithm was formed. The proof is based on showing that 0 is one of 

subgradients of (A.1) at B.

Proposition 1. For any ω ≥ 0 and a given matrix B0 ∈ ℛp × q with singular value 

decomposition Udiag(s)VT, the minimizer B of

1
2 B − B0 F

2 + ω‖B‖* (A.1)

has the same singular vectors as B0 with singular values (si − ω)+.

Next we state a lemma on the risk bound. This result can be viewed as an analog of Theorem 

1 in Negahban et al. (2012) under our situation.

Lemma 1. Suppose that (A1) and (A2) hold, and ωn ≥ 2‖1
n ∑i = 1

n ϵiXi‖2. Then any optimal 

solution B to

β0, B = arg min
β0, B

1
2n ∑

i = 1

n
yi − β0 − Xi, B 2 + ωn‖B‖* (A.2)

satisfies the bound

B − B0 F
2 ≤ 9

ωn2
λl

r .

Proof. We apply Theorem 1 in Negahban et al. (2012) to our situation. Observe that the 

nuclear norm is decomposable, and the squared error loss satisfies τℒ B0 = 0 in that article. 

Moreover, the dual norm ℛ* to the nuclear norm is simply the spectral norm. The curvature 
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constant κℒ in the restricted strong convexity (RSC) condition can be chosen as λl
1/2

because the squared error loss is used and the Hessian matrix E{vec(X)vec(X)T} = Σxx ≥ 
λlI. For a subspace M that contains matrices of the rank at most r, its subspace compatibility 

constant satisfies

ψ(M) = sup
U ∈ M\ 0

U *
U F

= sup
U ∈ M\ 0

∑i = 1
r σi(U)

∑i = 1
r σi(U)2

1/2 ≤ r,

where the last inequality follows by Cauchy–Schwarz inequality. Hence, subspace 

compatibility constant under the low-rank assumption (A2) is bounded by r □

Next we state a few commonly used lemmas regarding the concentration property and tail 

probability inequalities of Gaussian and sub-Gaussian random variable (matrices). Their 

proofs can be found in standard textbooks, for example, Wainwright (2019).

Lemma 2. (Hoeffding bound) Suppose that the variables Xi, i = 1, 2, …, n are independent 

and Xi has mean μi and sub-Gaussian parameter Σi. Then for all t ≥ 0, we have

P ∑
i = 1

n
Xi − μi ≥ t ≤ exp − t2

2∑i = 1
n ∑i

2 .

Lemma 3. Assume X1, …, Xn ∈ ℝp × q are iid random matrices. Suppose that ‖X1‖2 ≤ M 

almost surely, then with probability greater than 1 − δ,

1
n ∑

i = 1

n
Xi − EX1

2
≤ 6M

n log min(p, q) + log(1/δ) .

Lemma 4. Let A be an p × q matrix whose entries are independent standard normal random 

variables. Denote smin(A) and smax(A) as smallest singular value and largest singular value 

of A, respectively. Assume p ≥ q without loss of generality. Then

p − q ≤ Esmin(A) ≤ Esmax(A) ≤ p + q .

Lemma 5. Let Y ~ N(0,Id×d) be a d-dimensional Gaussian random variable. Then for any 

function F:ℛd ℛ with Lipschitz constant L, that is, |F(x) – F(y)| ≤ L‖x – y‖ for all 

x, y ∈ ℛd, we have

P{ |F (Y) − E(F (Y)) | ≥ t} ≤ 2 exp − t2

2L2 ,

for any t > 0.
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Lemma 6. (Anderson’s comparison inequality (Anderson 1955)) Let X and Y be zero-mean 

Gaussian random vectors with covariance ΣX and ΣY, respectively. If ΣX − ΣY is positive 

semi-definite then for any convex symmetric set C,

P (X ∈ C) ≤ P (Y ∈ C) .

The following lemma is very useful in establishing rank estimation consistency.

Lemma 7. Assume (A1) and (A2) hold. Let B be a global minimizer of (A.2). If n1/2ωn tends 

to +∞ and ωn tends to zero, then ωn−1 B − B0  converges in probability to the unique global 

minimizer Δ of

min
Δ ∈ Rp × q

1
2vec(Δ)TΣvec(Δ) + tr U0

TΔV0 + ‖U0 ⊥
T ΔV0 ⊥ ‖* .

Moreover, B = B0 + ωnΔ + Op ωnmin(p, q)n−1/2 + min(p, q)n−1/2 + ωn2min(p, q)1/2n−1/2 .

Proof. We can write B = B0 + ωnΔ, where Δ is the global minimum of

V n(Δ) = 1
2vec(Δ)TΣxxvec(Δ) − ωn−1trΔTΣXϵ + ωn−1 × B0 + ωnΔ * − B0 * ,

where Σxx = n−1∑i = 1
n vec Xi vec Xi

T and ΣXϵ = n−1∑i = 1
n ϵivec Xi . Then 

vec(Δ)TΣxxvec(Δ)/2 − vec(Δ)T∑xxvec(Δ)/2 converges to vec(Δ)TE Σxx − Σxx vec(Δ)/2 with 

probability of 1. Note that E Σxx − Σ F
2 = O n−1 . Denote vec(Δ)i as ai and Σxx − Σ ij as 

bij. Then we have

1
2 vec(Δ)TE Σxx − Σ vec(Δ) ≤ ∑

i, j = 1

pq
aiajE bji

≤ ∑
i, j = 1

pq
ai2aj2 ∑

i, j = 1

pq
E bij2

1
2

= ∑
i = 1

pq
ai2E ∑

i, j = 1

pq
bij2

1
2

= ∑
i = 1

pq
ai2E Σxx − Σxx F

= Δ
F

2

O n−1/2

= O min(p, q)‖Δ‖2
2n−1/2 .

Meanwhile,
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trΔTΣXϵ ≤ trΔTΔ
1
2 trΣXϵ

T ΣXϵ
1
2

= ‖Δ‖FOp n−1/2

≤ min(p, q)
1
2‖Δ‖2Op n− 1

2 .

Therefore

V n(Δ) = 1
2vec(Δ)TΣvec(Δ) + Op min(p, q)n−1/2‖Δ‖2

2 + Op min(p, q)
1
2ωn−1n−1/2‖Δ‖2 + tr U0

TΔV0

+ ‖U0 ⊥
T ΔV0 ⊥ ‖* + Op ωnp1/2q1/2min(p, q)‖Δ‖2

2 .

= V (Δ) + Op min(p, q)n−1/2‖Δ‖2
2 + Op min(p, q)

1
2ωn−1n−1/2‖Δ‖2 + Op ωnp1/2q1/2min(p, q)‖Δ‖2

2 ,

where p1/2q1/2 in the last term comes from the Frobenius norm of any matrix in ℛp × q with 

bounded entries. Let sr be the rth largest singular value of B0, for any M < sr/(2ωn),

E sup Δ 2 ≤ M|V n(Δ) − V (Δ)|

= O min(p, q)M2E Σxx − Σ F + Mmin(p, q)
1
2ωn−1E ΣMϵ

2 1/2
+ ωnp1/2q1/2min(p, q)M2

= fO min(p, q)M2n−1/2 + Mmin(p, q)
1
2ωn−1n−1/2 + ωnp1/2q1/2min(p, q)M2 .

Obviously V (Δ) achieves its minimum in the bounded ball at Δ0 ≠ 0. Hence, by Markov 

inequality the probability of the minimum of Vn(Δ) lying strictly inside the ball ‖Δ‖2 < 

2‖Δ0‖2 tends to one and is also the unconstrained minimum. □

The following two lemmas can be viewed as analogs of Proposition 3 and Lemma 11 in 

Bach (2008). W present them without the proof.

Lemma 8. Let B0 = U0Diag S0 V0
T be the singular value decomposition of B0. Then the 

unique global minimizer of

1
2vec(Δ)TΣvec(Δ) + trU0

TΔV0 + ‖U0 ⊥
T ΔV0 ⊥ ‖*

satisfies U0 ⊥
T ΔV0 ⊥ = 0 if and only if

‖ V0 ⊥ ⊗ U0 ⊥
TΣ−1 V0 ⊥ ⊗ U0 ⊥

−1
× V0 ⊥ ⊗ U0 ⊥

TΣ−1 V0 ⊗ U0 vec(I) ‖2 ≤ 1.

Furthermore, when U0 ⊥
T ΔV0 ⊥ = 0, the solutions has these forms:
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vec(Λ) = V0 ⊥ ⊗ U0 ⊥
TΣ V0 ⊥ ⊗ U0 ⊥

−1

× V0 ⊥ ⊗ U0 ⊥
TΣ V0 ⊗ U0 vec(I) ,

vec(Δ) = − Σ−1vec U0V0
T − U0 ⊥ ΛV0 ⊥

T .
(A.3)

Lemma 9. The matrix B with singular value decomposition B = UDiag(S)VT(with strictly 

positive singular value s) is optimal for the problem in (A.2) if and only if

ΣxxB − ΣXy + ωnUVT + N = 0,

with UTN = 0, NV = 0 and ‖N‖2 ≤ ωn.

Appendix B.: Proof of Theorems

Proof of Theorem 1. Throughout the proof, we use C to denote a universal positive constant 

where its value is not important for the theoretical purpose. In order to apply Lemma 1, we 

just need to evaluate the term n−1∑i = 1
n ϵiXi 2 and then set the tuning parameter wn to be 

greater than that quantity. Note that ϵi = Y i − Xi, B − β0*. Let Xi = π1Xi
(1) + π2Xi

(2), where 

vec Xi
(g) i . i . d .N μg, Σ  and μg ∈ ℝpq × 1 for g = 1, 2. Define Xi

 i . i . d X and ϵi
 i . i . d ϵ. Observe 

that

vec E ϵiXi = π1E − n
n1

− β0* − X(1), B0 vec X(1)

+ π2E n
n2

− β0* − X(2), B0 vec X(2)

= μ2 − μ1 − π1μ1 + π2μ2 β0* − π1E vec X(1) vec X(1) T vec B0

− π2E vec X(2) vec X(2) T vec B0
= μ2 − μ1 − π1μ1 + π2μ2 β0* − π1 μ1μ1

T + Σ vec B0
− π2 μ2μ2

T + Σ vec B0 .

(B.1)

Now, to further simplify this result, we reparameterize the mean of two normal populations 

such that μ1 = 0, and μ2 = D. Then recall by the equivalence between LDA and least-squares 

solution, we have

vec(B) = cΣ−1D,

β0 = − π1μ1 + π2μ2 Tvec(B) = − π2cDTΣ−1D,

β0* = β0 − d
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for some positive constants c and d. Then (B.1) can be simplified into

D − π2Dβ0* − π2 DDT vec(B) − cD
= D − π2Dβ0 + π2DD − π2 DDT vec(B) − cD
= D 1 + π2

2cDTΣ−1D + π2d − π2cDTΣ−1D − c
=0,

given d is chosen as π2
−1 c − 1 + π2 − π2

2 DTΣ−1D .

Next we show that with high probability, ‖ϵX‖2 ≤ 2logn Cμ + λu
1/2 p + q + logn . Since ϵ 

follows a mixture of two normal distributions, ϵ is sub-gaussian with sub-Gaussian 

parameter denoted by σ, which is a positive constant due to the bounded eigenvalue 

condition in (A1). By Lemma 2, for sufficiently large n,

P ( |ϵ | > 2 logn) ≤ P ( |ϵ − E(ϵ) | > logn) ≤ 2 exp  − log2n
2σ2 ≤ Cexp( − 2logn) = C

n2 .

Then we know |ϵ| ≤ 2 log n with probability of at least 1 − Cn−2. For ‖X‖2, we first consider 

its centralized version, that is, X ~ N(0,Σ). Note that we can write the spectral norm of a 

matrix in the form of a canonical Gaussian process,

‖N(0, Σ)‖2 = sup
A:‖A‖* ≤ 1

N(0, Σ), A .

This allows us to apply Gaussian comparison inequality (Slepian 1962). Define Z ∈ ℝp × q

that satisfies vec(Z) ~ N(0, I). Then by Lemma 6, we have

P N(0, Σ) 2 > t1 = P sup
A: A * ≤ 1

N(0, Σ), A > t1

≤ P sup
A: A * ≤ 1

Z, A > t1λu
−1/2

= P Z 2 > t1λu
−1/2

(B.2)

for any t1 > 0 because Σ ≤ λuI due to (A1). Apply Lemma 5 (or more generally the Tracy-

Widow law), we have

P Z 2 − E Z 2 > logn ≤ Cexp( − 2 logn) = Cn−2

for some constant C > 0. Since E Z 2 ≤ p + q by Lemma 4, with probability of at least 1 – 

Cn−2, Z 2 ≤ p + q + logn, which leads to ‖N(0, Σ)‖2 ≤ λu
1/2 p + q + logn  by (B.2). 

Therefore with probability of at least 1 – Cn−2,
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ϵX 2 ≤ (2 logn) X 2
≤ 2 logn μ1 2 + N(0, Σ) 2
≤ 2 logn Cμ( p + q) + λu1/2( p + q + logn)
≤ 2 logn Cμ + λu1/2 ( p + q + logn)

using Condition (A4) and since we assume μ2 = 0 without loss of generality.

Now we apply the standard matrix concentration inequality, (e.g., Lemma 3) with 

M = 2logn Cμ + λu
1/2 p + q + logn  and δ = n−1. Note that P(‖Xiϵi‖2 ≤ M, i = 1, …, n) = (1 

− Cn−2)n ≥ 1 − Cn−1 by Bernoulli’s inequality. Hence, we obtain that with probability of at 

least 1 − Cn−1,

1
n ∑

i = 1

n
Xiϵi − E(ϵX)

2
≤ 6M

n log min(p, q) + log1/δ

≤
12(logn)3/2 Cμ + λu1/2 p + q + logn

n .

This completes the proof. □

Proof of Theorem 2. By Lemma 7, we obtain B = B0 + ωnΔ + op ωn . Since the rank is a 

lower semi-continuous function, the rank of B is larger than r with probability tending to one 

by the consistency result, where r is the rank of B0. Suppose B has singular value 

decomposition USVT and Uc, Vc are singular vectors corresponding to U and V except the r 
largest singular values. By Lemma 9, Σxx B − B0 − ΣXϵ and B have simultaneous singular 

value decomposition. Therefore it suffices to show Uc
T Σxx B − B0 − ΣXϵ Vc 2 < ωn with 

probability tending to one. Note that

UcT Σxx B − B0 − ΣXϵ Vc
= UcT ωnΣxxΔ + op ωn − Op n−1/2 Vc
= ωnUcT(ΣΔ)Vc + op ωn ,

where ΣΔ is the matrix in Rp×q satisfying vec(ΣΔ) = Σvec(Δ). Because of the regular 

consistency and a positive eigengap for B0, the projection onto the first singular vectors of B
converges those of B0. Hence, the projection on the orthogonal space is also consistent, 

which means UcUc
T converges to U0 ⊥ U0 ⊥

T  and VcVc
T converges to V0 ⊥ V0 ⊥

T . Then by 

Lemma 8, we have
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‖UcT Σxx B − B0 − ΣXϵ Vc‖2
= ‖UcUcT Σxx B − B0 − ΣXϵ VcVcT‖2
= ωn‖U0 ⊥ U0 ⊥

T (ΣΔ)V0 ⊥ V0 ⊥
T ‖2 + op ωn

= ωn‖U0 ⊥ U0 ⊥
T Σ −Σ−1 U0V0

T − U0 ⊥ ΛV0 ⊥
T × V0 ⊥ V0 ⊥

T ‖2 + op ωn
= ωn‖U0 ⊥ ΛV0 ⊥

T ‖2 + op ωn
= ωn‖Λ‖2 + op ωn ,

where the third equality is due to (A.3). Since ‖Λ‖2 < 1, the last expression is less than ωn 

with probability tending to one, which completes the proof. □

Proof of Theorem 3. Based on Corollary 3.1 of Zhang (2004), we have

R fn ≤ R* + 2c ϵ1 + ϵ2 1/s,

where Q is the squared error loss function defined by Q(f) = EX{y – f(X)2}, ϵ1 = inff 

EX(2P(Y = 1 | X) – 1 – f(X))2, ϵ2 satisfies Q fn ≤ inffQ(f) + ϵ2, and c and s can be chosen 

as c = 0.5 and s = 2 as explained by the Example 3.1 (for least-squares loss function) in that 

article. Now note that since fn is determined by the classification coefficient B and β0 that 

are both consistent based on Theorem 1. Therefore, ϵ2 can be chosen arbitrarily close to 0. 

Also, as we assume the true class label Y given X is determined by the linear classification 

rule with β0* and B0, then inff EX{2P(Y = 1 | X) − 1 − f(X)}2 = 0. Therefore, ϵ1 = 0. This 

concludes the proof. □
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Figure 1. 
The figures for cross image: (a) original signal; (b) our nuclear regularization estimate; and 

(c) ℓ1-regularized estimate.
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Table 2.

EEG data analysis: misclassification rates (%) and associated standard errors.

Our method Lasso LDA Logistic Nuclear Logistic Lasso PMDA

22.20(0.53) 24.12(0.70) 24.44(0.80) 26.24(0.91) *
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