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Abstract

There is considerable interest in defining metabolic reprogramming in human diseases, which is 

recognized as a hallmark of human cancer. Although radiotracers have a long history in specific 

metabolic studies, stable isotope-enriched precursors coupled with modern high resolution mass 

spectrometry and NMR spectroscopy have enabled systematic mapping of metabolic networks and 

fluxes in cells, tissues and living organisms including humans. These analytical platforms are high 

in information content, are complementary and cross-validating in terms of compound 

identification, quantification, and isotope labeling pattern analysis of a large number of 

metabolites simultaneously. Furthermore, new developments in chemoselective derivatization and 

in vivo spectroscopy enable tracking of labile/low abundance metabolites and metabolic kinetics in 

real-time. Here we review developments in Stable Isotope Resolved Metabolomics (SIRM) and 

recent applications in cancer metabolism using a wide variety of stable isotope tracers that probe 

both broad and specific aspects of cancer metabolism required for proliferation and survival.
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1. Introduction

Isotope tracing approaches in metabolic studies have a long history, where a biological 

system is given an isotopically enriched precursor such that its metabolic transformations 

can be tracked by the tracer atom. Due to the much better availability as well as ease and 

high sensitivity of detection, radioisotopes were much preferred over stable isotopes in early 

tracer studies and have been instrumental in deciphering both central (e.g. the Krebs cycle) 

and secondary metabolic pathways [5]. However, stable isotope tracers are non-hazardous, 

more amenable to human studies, and can be analyzed by both NMR and mass spectrometry 

(MS). Radioisotopes are NMR-silent except for 3H, which compromises the structural 

elucidation of the transformed products. Recent recognition that our understanding of cell 

and tissue metabolism in various human disease is grossly inadequate has driven greatly 
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improved analytical techniques (especially NMR and MS) concomitant with the 

dramatically increased availability of various stable isotope-enriched precursors. Both 

advances have led to a resurgence of interest in utilizing stable isotope tracer approaches in 

metabolic studies. When coupling stable isotope tracers with advanced metabolomic 

technologies, such as Stable Isotope-Resolved Metabolomics (SIRM) [6–8], metabolic 

networks can now be systematically and rigorously tracked using the combined structural 

capabilities of NMR and MS. Figure 1 shows the pipeline of SIRM studies in different 

biological systems, which can be readily incorporated into a systems biochemistry 

workflow. Since 2000, more than 1300 articles on cancer metabolism with stable isotope 

tracing have been published using these search terms via Clarivate Web of Science.

In this review, we focus on recent applications of SIRM in cancer metabolism. Earlier work 

[9–19] and MS and NMR methodologies [20–27] have been extensively reviewed elsewhere.

2. Analytical Tools for SIRM: NMR and Mass spectrometry

The additional neutron(s) in the nucleus of a rare stable isotope enables simple detection by 

both NMR and mass spectrometry. For example, of the natural stable isotopes of carbon, 

nitrogen, and hydrogen, the rare (1.1 % abundance) 13C atom is ~1 Da heavier than the 

abundant 12C atom (98.9%), and similarly for 15N (0.35%) versus 14N and 2H (0.02%) 

versus 1H. However, two or more different tracer atoms such as 13C, 15N, and 2H cannot be 

distinguished in the same samples with typical resolution-MS. The advances in ultra high-

resolution Fourier transform mass spectrometry (UHR-FTMS) with mass-to-charge ratio 

(m/z) resolution to the fifth decimal place for most metabolites now make it feasible to 

distinguish molecules with multiple stable isotope atoms of multiple elements. This is 

because the additional neutron mass in for example, 13C is different from that in 15N or 2H, 

so that their isotopologues (identical compounds differing by the number of tracer atoms 

[28]) are distinguishable by UHR-FTMS (Figure 2). This makes multiplexed Stable Isotope 

Resolved Metabolomics (mSIRM) experiments with the use of multiple tracer atoms readily 

feasible [29]

Stable isotopes such as 13C can also be detected directly by NMR, whereas 12C and 

radioactive 14C are invisible to NMR. More importantly, 15N and 13C can be observed 

indirectly by the attached proton, thereby affording much higher sensitivity than direct 

detection [30]. As these nuclei resonate at widely different radiofrequencies (i.e. chemical 

shifts), mSIRM can also be achieved.

The power of NMR and MS techniques in metabolic studies lies in their versatility, 

complementarity and rigor in determining isotopically enriched metabolite structures and 

concentrations, particularly in terms of the number (isotopologues) and positions (positional 

isotopomers [28]) of the tracer atoms present. The two techniques are cross-validating as 

they analyze metabolite structures and quantify them based on entirely different physical 

principles. They are also complementary as NMR can more readily provide information on 

positional isotopomers than MS and vice versa for information on isotopologues of given 

metabolites. Combining both types of information with the appropriate experimental design 

more robustly reveal the paths of metabolic transformations and detailed metabolic fluxes 
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(e.g. via time course and/or flux modeling analysis). This can all be achieved in 

unfractionated extracts of cells, tissues, or organs, and sometimes in whole organisms.

Furthermore, an added, unique advantage of NMR is its ability to observe metabolic 

transformations and their rates (fluxes) in live tissues or organisms in situ. Traditionally, in 

vivo NMR mainly used 31P NMR to determine the levels of ATP, inorganic phosphate, sugar 

phosphates and phosphocreatine as well as ATP turnover rates and intracellular pH [31, 32]. 

In recent years, stable isotope tracers have been used in both animal systems and humans 

[33–37] especially in combination with the new hyperpolarization methods (e.g. dynamic 

nuclear polarization or DNP) for short segments of metabolic pathways [38, 39].

3. Stable isotope tracers for metabolic studies

The most commonly used stable isotope in metabolic studies – such as in cancer metabolism 

research – is 13C. There are numerous 13C-enriched precursors commercially available, 

including several isotopomers of D-glucose (e.g. [U-13C], [13C-1,2], [13C-1,6], [13C-3,4]) 

for probing different routes of glucose metabolism, 13C-octanoate [40, 41], -palmitate and -

acetate for probing fatty acid metabolism and fates of intracellular 13C-acetyl CoA [42, 43], 
13C-fructose, and 13C-amino acids. It is also common to use 15N-enriched amino acids either 

as 15N only or double element labeled versions such as [U-13C,15N]-glutamine [44] for 

multiplexed SIRM studies. Such a wide variety of stable isotope-labeled sources opens a 

rich avenue of experimental designs for interrogating the vast and intricate metabolic 

networks in mammalian systems. Table 1 summarizes some commonly used, commercially 

available stable isotope tracers and example metabolic pathways they probe.

4. Selective detection of a class of stable isotope-enriched metabolites

Phosphorus is an important biological element, but the major stable isotope 31P is close to 

100% abundant. 31P is a spin ½ nucleus with a gyromagnetic ratio 40% as large as that of 

the proton. Therefore it is a good NMR nucleus, and can be used to filter or edit a complex 

mixture for the detection of phosphorylated compounds, which may also be enriched with 
13C or 15N. The simplest editing experiment is the 1H{31P} HSQC experiment which detects 

only metabolites that contain the three bond 31P-O-CH coupling. These include all 

phosphorylated metabolites such as nucleotides, phosphosugars and intermediates of the 

pentose phosphate pathway [75]. This experiment greatly simplifies the 1H NMR spectrum 

of a complex unfractionated biological extract, A wide variety of edited NMR experiments 

can be used to select for different biologically important nuclei particularly 13C and 15N. 

However, it may be difficult to assign metabolites reliably based on this experiment alone. 

HSQC-TOCSY experiments relay magnetization to additional protons to enable mapping of 

more of the covalent network in phosphorylated metabolites [22, 75]. If the protons are 

attached to 13C, then their 13C satellites will be observable and quantifiable in the HSQC-

TOCSY spectrum, and thus provide information on the site-specific enrichment in 

phosphorylated metabolites [20]. Such 13C and/or 15N isotopomer analysis of metabolites 

via spectral editing decreases spectral crowding that can overwhelm low abundant 

metabolites, and such selection is difficult to accomplish with MS analysis. An alternative 
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approach to achieve selective detection of metabolites is the use of chemoselective 

derivatization as described below.

Systematic and reliable compound identification in crude extracts already requires 

significant effort, even with the combination of multidimensional NMR, tandem high-

resolution MS, and extensive compound libraries. The problems are greatly exacerbated in 

SIRM studies where the multiple isotopomers and isotopologues of the many labeled 

metabolites must be identified and quantified. In fact, each isotopologue and isotopomer of a 

biochemical is essentially a different metabolite because they have different metabolic 

provenance, which are clues that their function and fate may be different. That is, the 

metabolic biosynthetic history is “encoded” in the NMR and MS spectra of each enriched 

biochemical.

This spectral encoding precludes identification by simple NMR and MS spectral matching. 

Moreover the presence of labeled metabolites causes greater spectral crowding, and also 

reduces the detectability of given metabolites by NMR and MS as each metabolite signal is 

split into multiple signals.

Chemoselective derivatization is a means of reducing spectral crowding while enhancing 

detection both by NMR (via spectral editing) and by MS. Several chemoselective probes 

have been reported, including cholamine for carboxylate groups [76], N-(2-15N-

aminooxyethyl)-N,N-dimethyl-1-dodecylammonium (QDA) for aldehydes and ketones [1, 

77, 78], N-(2-15N-iodoacetamido)-N,N-dimethyl-1-dodecylammonium (QDE) for sulfhydryl 

[4] and ethylchoroformate (ECF) for amino, hydroxyl, and carboxyl groups [29]. Each 

chemoselective derivatizing agent places a spectrally discernable tag on one or a few 

particular functional groups, which not only help metabolite identification but also 

quantification by NMR and MS. For example, the QDA or QDE probe contains a permanent 

positive charge, which facilitates ionization and thus detectability in MS (Figure 3). In 

addition, stable isotope-enriched versions of QDA or QDE (e.g. 13CD3-QDA) can be 

prepared and reacted with metabolites as 1:1 mixture with the unlabeled probe. This greatly 

facilitates the identification and quantification of carbonyl or thiol containing metabolites 

simply by detecting a pair of adducts with an m/z difference of 4.02188 using UHR-FTMS 

(Figure 3).

Furthermore, this QDA probe can be modified to bear a 15N-aminooxy group, which reacts 

with carbonyl metabolites such as pyruvate to yield a ketoxime adduct with 3-bond coupling 

of 15N to the adjacent protons (Figure 4A). This coupling enables 15N-edited HSQC 

detection of the adduct in both 1D and 2D experiments, which would otherwise be 

impractical to discern in unedited 1H NMR analysis (Figure 4B–C).

Thus, chemoselective derivatization can be coupled with stable isotope enrichment and 

spectral editing to facilitate the analysis of low abundance metabolites whose NMR or MS 

signals are typically swamped by those of more abundant metabolites. It is also important to 

note that the derivative formation helps stabilize labile (e.g. 4-hydroxynonenal) and volatile 

metabolites (e.g. acetone) for NMR and MS analysis.
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5. Applications in Cancer Metabolism

As noted above, metabolic reprogramming is now recognized as a hallmark of human cancer 

[79] and cancer metabolism studies have most frequently taken advantage of the stable 

isotope tracer approach. The transformation of a normal cell to a highly proliferative cancer 

state is associated with numerous metabolic perturbations, which are often interactively 

linked to changes in the transcriptional program driven by alterations of critical oncoproteins 

and/or tumor suppressors. During growth, the increasingly hostile tumor microenvironment 

can further promote metabolic reprogramming to support tumor progression [80–82]. Most 

solid tumors up-regulate glycolysis and convert a high fraction of the glucose consumed to 

lactate (i.e. the Warburg effect), which is excreted along with a proton to acidify the 

extracellular space. In order to support cell growth, survival, and eventual metastasis, other 

aspects of the metabolism must also be up-regulated, especially the synthesis of precursors 

for nucleic acids, lipids, complex carbohydrates and proteins, e.g. serine and glycine (for 

purine biosynthesis, one-carbon metabolism), aspartate (for pyrimidine biosynthesis), citrate 

(for lipid biosynthesis), UDP-glucose (for glycogen synthesis), non essential amino acids 

such as alanine, glutamate, proline for protein synthesis [83], and glutamate (for antioxidant 

glutathione synthesis). It is also becoming clear that the metabolism of essential amino 

acids, particularly the branched chain amino acids Ile, Leu and Val are important in the 

development of some cancers [84].

Enhanced lactic fermentation is readily determined using 13C-glucose, by tracking the 13C 

fate in cell culture and organ systems from the uptake of 13C-glucose to the excretion of 
13C-lactate in terms of both levels and fractional enrichment as well as the fraction of 

glucose conversion to lactate. The excretion of 13C-Ala and 13C-Glu (due to exchange with 

extracellular cystine) are often observed in the 13C-glucose tracer studies of cancer cells and 

tissues, which informs the status of Ala metabolism via the alanine aminotransferase (ALT) 

activity and the demand for glutathione (cysteine being a precursor). The fate of individual 
13C atoms of glucose into intracellular metabolites can also be traced, to map both central 

catabolic and anabolic pathways that are keys to supporting cancer cell proliferation and 

survival. These include, but not limited to, the pentose phosphate pathway (PPP), the Krebs 

cycle, Ser-Gly-one carbon metabolism, and the synthesis of glutathione, non-essential amino 

acids, purine/pyrimidine nucleotides, nucleotide sugars (e.g. UDP N-acetylglucosamine or 

UDP-GlcNAc), glycogen, and lipids. Moreover, the incorporation of newly synthesized (i.e. 

labeled) non-essential amino acids into proteins and nucleotides into RNA can be 

determined following proper hydrolysis of the macromolecules [29, 85]; such 

“metabolomics of biomacromolecules” is in its infancy, but these large sinks and sources of 

metabolites are critical to detect and quantify.

The PPP is important both for generating cytoplasmic NADPH (required for anabolic and 

detoxification metabolism) and ribose for nucleotide synthesis. Thus, proliferating cancer 

cells have a strong requirement for the PPP activity. However, it is often unclear the extent of 

which the PPP contributes to NADPH production via the oxidative branch in cancer cells. It 

is feasible to discriminate the activity of the oxidative from non-oxidative branches using 

specific 13C isotopomers of glucose, such as [13C-1,2]-glucose analyzed via MS analysis 

[86] or a mixture of [13C-1]- and [13C-2]-glucose by NMR analysis [41].
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Although accelerated lactic fermentation is a common adaptation in cancer cells, there are 

numerous other adaptations that generate metabolic energy and anabolic precursors that are 

equally important. It was long conjectured that mitochondria are non-functional in cancers. 

However, tracer studies with 13C-glucose, 13C-Gln and 13C-fatty acids clearly demonstrated 

that cancer cells in general oxidize a wide range of substrates in the mitochondria, even 

under hypoxia. Indeed, many established cancer cells have a high requirement for glutamine 

which also serves as the nitrogen donor in important amidotransferase reactions such as 

those in nucleotide [57] and UDP-GlcNAc biosynthesis, and as a source of Glu which is the 

most common co-substrate for aminotransferases. We have shown in SIRM studies using 

NMR and MS that many aspects of mitochondrial metabolism including anaplerotic 

pyruvate carboxylation is activated in vivo [87, 88] and ex vivo in human lung cancer tissues 

[82, 87]

Mitochondrial metabolism, the PPP, and glycolysis together are essential to fueling 

nucleotide biosynthesis, which is fundamental to cell proliferation [89]. As indicated above, 

the ribose subunit of the free nucleotides is directly derived from glucose (or glycogen) as 

shown by tracer studies with 13C-glucose [85]. In contrast, the nucleobases derive from 

multiple sources. Uracil (and subsequently cytosine) derives primarily from aspartate, which 

is mainly synthesized de novo in cells and tissues as the extracellular concentration of Asp is 

very low and it is not efficiently transported. Asp can be synthesized via transamination of 

oxaloacetate with Glu in both the cytoplasm (via GOT1) and the mitochondria (via GOT2). 

Using [U-13C,15N]-Gln as the tracer, the elevated presence of the m+5 (i.e.13C4,15N1) 

isotopologue of Asp [25] is evidence for the activation of the aminotransferases GOT1/2 

[90]. This transamination is also part of the aspartate/malate shuttle system for transferring 

reducing equivalents from the cytoplasm to the mitochondria for oxidation via the electron 

transport chain. Under respiration deficiency, pyruvate may act as an alternative electron 

acceptor and utilize pyruvate carboxylase to maintain Asp synthesis [91–93]. Indeed, we 

determined that pyruvate carboxylase is activated in vivo in human lung cancer by 

employing 13C6-glucose infusion into patients coupled with SIRM analysis [87]. We also 

determined that Gln is a better substrate for Asp and uracil ring synthesis than glucose in 

cancer cells by comparing 13C incorporation from 13C6-glucose and [U-13C,15N]-Gln into 

the two products [85]. Interestingly, Asn is not a precursor of Asp in mammalian cells owing 

to the lack of asparaginase, but it can rescue cell growth and survival under low Gln 

availability [94].

Glycine-derived one-carbon metabolism plays a central role in cell cycle control during cell 

growth and replication [95]. Purine synthesis requires glycine as a direct donor of two 

carbons and one nitrogen. Glycine is also a source of the one-carbon unit in formyl 

tetrahydrofolate (THF) that supplies two additional purine ring carbons. Although glycine is 

freely available in the serum, it is also synthesized in cells from serine, which in turn is made 

from the glycolytic intermediate 3-phosphoglycerate. This pathway is up-regulated in some 

human cancers [95, 96] and as much as 8–9% of the glucose utilization may be shunted to 

serine synthesis [96]. In addition, purine synthesis requires Gln and we have shown that the 

three nitrogen atoms in the ring of purine nucleotides are derived from Gln by using [U-13C,
15N] Gln as a tracer. Two nitrogen atoms derive from the amidotransferase reactions and the 

third is from Asp, which should have received its amino nitrogen via transamination from 
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Gln-derived Glu [25]. Other than fueling nucleotide biosynthesis, one-carbon metabolites 

such as 5-Methyl THF is the source of methyl groups for replenishing S-adenosylmethionine 

(SAM) from S-adenosylhomocysteine (SAH). SAM is the universal methyl donor for a wide 

range of methyl transferases involved in epigenetic methylation of histones as well as 

cytosine in DNA [97].

Although many cancers are driven by alterations in oncoproteins and tumor suppressors, 

which often lead to reprogramming of cell metabolism, there are also cases where loss or 

gain of function directly in enzymes is key to carcinogenesis. For example, loss-of-function 

alterations in fumarate hydratase (FH) and succinate dehydrogenase (SDH) are important to 

the development of several aggressive familial cancers of the kidney [98–101]. Such loss of 

enzyme activity results in the accumulation of high levels of fumarate or succinate, 

respectively, which are derived predominantly from glutamine based on 13C tracer studies in 

cell cultures [56, 102] (cf. Figure 5). Cells expressing these inactive enzymes display 

substantial reductive carboxylation via a reversal of the isocitrate dehydrogenase (IDH) 

reaction to support lipogenesis for growth. The accumulated fumarate and succinate are 

potent inhibitors of the α–ketoglutarate-dependent dioxygenases, including prolyl 

hydroxylases (e.g. those that hydroxylate hypoxia-inducible factor Hif1α for marking for 

proteasomal degradation) and the epigenetic modulating enzymes Ten-eleven translocation 

enzyme (TET) (Fig. 5) and jumonji-domain histone K/R demethylases.

In addition to loss of function enzyme variants, there are rare gain-of-function mutations in 

the genes encoding IDH1 and 2, which are NADPH-dependent cytoplasmic and 

mitochondrial isoforms, respectively. These mutations alter the enzyme activity from 

oxidative decarboxylation of isocitrate to α–ketoglutarate (αKG) to reduction of αKG to 2-

hydroxyglutarate (2HG) with NADPH [103, 104]. 2HG is now known as an oncometabolite 

that accumulates to high levels in certain gliomas [105] and in acute myeloid leukemia 

(AML) [106]. This has the combined effect of depleting NADPH (which is needed both for 

anabolic purposes and for detoxifying excess H2O2 production) and αKG (which inhibits 

the αKG-dependent dioxygenases [107, 108]) as well as inhibiting histone demethylation to 

block cell differentiation [109].

NADPH is a key coenzyme and the NADPH/NADP+ ratio is tightly regulated in cells to 

support anabolic reactions and anti-oxidative defense. The possible sources of the hydride 

have been elegantly determined using different deuterated substrates that result in the 

production of NADPD [110, 111]. When combined with genetic modification of specific 

enzymes, tracing deuterium (D or 2H) can also provide information about compartmentation 

of different NADPH-producing activity such as PPP and reactions catalyzed by malic 

enzymes and IDHs [110], which prompts a need for reassessing NADPH production in 

cancer cells.

6. Future directions

In most cases, metabolic reprogramming in human cancer involves quantitative (i.e. altered 

production of existing metabolites) rather than qualitative changes (formation of new 

metabolites due to e.g. gain-of-function mutations such as in IDH [112]). Regardless of the 
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nature of the reprogrammed events, stable isotope tracing has opened many new avenues for 

resolving and quantifying metabolic fates in atomic detail that are crucial to deciphering 

reprogrammed metabolic networks required for supporting cancer cell proliferation, survival 

and metastasis. Tracer data are also essential for rigorous metabolic flux analysis (e.g. [113, 

114]), which can inform the changes in the kinetics of individual enzymes and/or 

transporters in given metabolic networks in-cell, in-tissue, and in vivo, in response to disease 

development or therapeutic interventions. This information is valuable in its own right but is 

even more powerful when linked to functional genomic data for elucidating altered 

metabolic regulatory network [115, 116].

6.1. Cancer metabolomic studies in better preclinical models

The majority of the stable isotope tracer studies have been performed in 2D cell cultures, 

which cannot recapitulate proper cell-cell and cell-extracellular matrix interactions. These 

microenvironment factors can have a significant impact on cell behavior and functions 

including gene expression profiles and drug responses [117–121]. This is a key reason for 

the U.S. National Cancer Institute to abandon the NCI-60 cell panel for drug screening 

purposes. The development of 3D cell cultures including spheroids of single cell types and 

organoids of multiple cell types [118, 122] can circumvent these drawbacks of 2D cell 

cultures. Multiple 3D cell culturing techniques are now available including scaffold (e.g. 

Matrigel, hydrogel) and scaffold-free (hanging drop, micropatterned/U-shape cell repellent 

plates) methods [118, 122, 123]. They variously suffer from technical challenges such as 

long spheroid formation times with variable efficiency and/or difficult handling for high 

throughput assays [120]. For adaptation to SIRM studies, there are added challenges from 

matrix contamination (e.g. from Matrigel) that interferes with metabolite qunatification 

and/or limitations in scaling-up.

A recently developed matrix-free 3D culture method, magnetic 3D bioprinting (M3DB) can 

overcome these difficulties. This technique utilizes nanoparticles composed of gold, iron 

oxide, and poly-L-lysine to magnetize cells, followed by spheroid or organoid assembly 

within minutes to hours under mild magnetic forces in 6- to 384-well cell repellent plates 

[120].

We have employed this system in a SIRM study of a patient-derived organoid (PDO) culture 

subjected to [13C6]-Glc ± anti-cancer selenite treatments in a 96-well plate. As shown in 

Figure 6, [13C6]-Glc transformations into the metabolites of glycolysis, PPP, Krebs cycle, 

gluconeogenesis (GNG), and purine/pyrimidine/glutathione biosynthesis pathways were 

readily observed, in addition to multiple other pathways (e.g. UDPGlcNAc synthesis) of 

importance to cancer cell growth and development (not shown). It is also clear that this PDO 

was insensitive to SeO3 treatment based on the metabolic responses, unlike A549 cells in 2D 

cultures with extensive growth and metabolic changes after only 24 h of 6.25 µM SeO3 

treatment [115, 124]. This study demonstrates the feasibility of performing SIRM studies in 

high-throughput formats on cancer cell organoids or spheroids. Future developments in this 

area such as SIRM coupled with 3D co-cultures of different cell types [125, 126] and 

microfluidics-based 3D cultures [123] will help transform our understanding on the 

influence of tumor microenvironment on cancer and stromal cell metabolism.
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Another common preclinical model for human cancer is tumor xenografts in mice including 

those of established cancer cells or preferably patient-derived tumor xenografts (PDTX). 

Stable isotope tracer studies have been performed in vivo on mouse xenograft models via 

intravenous (i.v.) injection of tracers as a bolus [127] and/or continuous infusion [128]. 

These tracer introduction methods involve physical constraints and/or the use of anesthetics 

and minor surgery, which traumatize, to variable extents, the animals and thereby alter their 

individual baseline metabolism. In addition, the duration of the tracer infusion is typically 

minutes to hours, which limits the observed pathways to those with relatively rapid turnover 

such as glycolysis, PPP, and the Krebs cycle. Pathways that involve de novo synthesis of 

lipids, proteins, and nucleotides require much longer periods of tracer administration, which 

is problematic with the i.v. method. We have recently introduced stable isotope tracer 

delivery via a liquid diet, which is non-invasive with no restriction on the tracer duration [2]. 

Using this method, we observed de novo protein synthesis in different mouse organs from 18 

h of [13C6]-Glc feeding (Figure 7). When applied to PDTX mouse models, we noted distinct 

glucose metabolism between primary tumor and its distant lymph node metastases [2]. 

Future applications of such tracer delivery method can greatly facilitate metabolic network 

analysis including flux modeling in vivo in animal models of human cancer.

6.2. High throughput multi-dimensional NMR

To greatly expand 1D NMR resolution, to gain much more structural insights, and to 

enhance isotopomer distribution analysis, further development in multidimensional NMR is 

needed, particularly in terms of the speed of data acquisition. There have been numerous 

developments in this area, notably non-uniform sampling [129, 130] and projection-

reconstruction [131] [132] among others [133–135]. There are also hardware approaches, 

including the use of multiple receivers for the simultaneous acquisition of 2 or more 2D 

NMR data [136, 137]. The number of increments needed for multidimensional NMR can 

also be reduced using selective excitation methods, which could be especially useful for 

sugar phosphates where the spectral dispersion is low. The combination of sparse sampling 

in 2 dimensions [138], multiple receivers coupled with relaxation enhancement could 

decrease the total experimental time by more than an order of magnitude, which should 

enable fast-throughput high-dimensional SIRM NMR analysis in the future.

6.3. Improved quantification and isotopomer analysis by MS

Despite the very high sensitivity, mass accuracy, and resolution of UHR-FTMS, identifying 

and resolving different isotopologues of numerous metabolites in crude extracts remains a 

technical challenge. UHR-FTMS models capable of mSIRM currently range in performance 

from >350,000 resolution at m/z=400 (R400) upwards to a few million, and systematic 

analysis of labeled metabolites certainly benefits from further improvement of the UHR-

FTMS hardware both in terms of sensitivity and m/z resolution (e.g. R400 up to 106 for 

Thermo’s Orbitrap Fusion™ Lumos™ and R400 >106 Bruker’s SolariX XR FTMS). It is 

also advantageous to improve on the fragmentation methods for UHR-FTMS so that more 

complex, substructure-specific MS/MS data can be acquired for metabolite identification 

and labeled position (isotopomer) analysis. For example, the recent development in UVPD 

(UV photodissociation) [139] technique for UHR-FTMS enables fragmentation at fatty acyl 

double bonds, yielding at once double-bond positions and narrowing of stable isotope 
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locations. Both are traditionally tediously difficult tasks and will be a valuable addition to 

lipid pathway analysis in SIRM studies. Moreover, the increasing choices of stable isotope 

tracer standards will greatly facilitate robust MS quantification of unlabeled and labeled 

metabolites alike. This is synergistic with the high throughput direct-introduction UHR-

FTMS methods that are undergoing both active improvements in nanoelectrospray, DESI, 

DART and others, and emergent techniques such laser-thermal desorption and “paperspray” 

among others [140]. All these (and other) developments in MS greatly extend the choice of 

experimental designs and tracer standards for standard addition-based quantification of 

labeled metabolites such as the use of deuterated amino acid standards for quantifying 13C 

and/or 15N labeled amino acids in crude extracts, anchored by UHR-FTMS [27, 29].

Ultrahigh sensitivity also means that there is an increased tendency to carry out what is 

really trace analysis at femtomole or lower quantities in the sample, for those low abundance 

but highly potent metabolites. Even moderate abundance metabolites become trace level in 

small samples, such as single cells [141, 142]. For example, in a cell of volume 1–2 pL, a 

fairly typical volume for an epithelial cancer cell, the amount of substrate present at a 

cellular concentration of 1 μM is 1–2 amol, which with an ionization efficiency of 1% in 

electrospray after chromatographic separation implies only a few thousand ions reach the 

detector.

6.4. Informatics needs for pathway mapping and analysis

Once the labeling patterns of metabolites are determined in tracer studies, they are valuable 

for rigorous reconstruction of metabolic networks, including compartmentalized events 

across cells and tissues [26, 55, 143, 144]. [2, 45, 66, 145–150] Although multiple databases 

and tools are available for pathway mapping, such as KEGG [151, 152], HMDB [153], 

Metacyc, Recon3D and others [154–160], automated reconstruction of atom-resolved 

pathways based on tracer data remains challenging [159]. There is also a general lack of 

delineation of pathway compartmentation, particularly in terms of tissue specificity in these 

databases. Databases of compartment-delineated, atom-resolved metabolic networks and 

tracer-friendly pathway reconstruction tools are urgently needed. Progress is being made on 

atom-resolved metabolic atlases and reconstructions [158, 160–163], but they are not yet 

ready for general use.

Accurate reconstruction of metabolic networks at the atomic level is the foundation for 

metabolic flux analysis, including Flux Balance Analysis (FBA) and Kinetic Modeling 

Analysis (KMA). The FBA approaches use reaction stoichiometries and steady state 

assumptions [164] such that detailed kinetic parameters of the enzymes/transporters 

participating in the networks are not required. The resulting flux models do not provide 

individual enzyme/transporter kinetics, nor can the model predict flux changes in response 

to perturbations of participant proteins. The KMA approaches require a full set of enzyme/

transporter kinetic parameters to solve sets of differential equations either at steady state, or 

under non-steady state conditions [165–173]. The models established provide individual 

enzymes/transporter kinetics and can predict how metabolic networks respond to changes in 

protein components. Currently, parameterization of these sets of equations requires extensive 

expert input and is time-consuming. Future informatics development in assisting the 

Lane et al. Page 10

Trends Analyt Chem. Author manuscript; available in PMC 2020 June 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



parameterization effort, e.g. narrowing the initial parameter space, is of particular 

importance to encourage non-expert in engaging the kinetic flux modeling approaches. The 

power of these approaches lies not only in quantitative understanding of reprogrammed 

metabolism in cancer or other human diseases but also in facilitating system level integration 

of reprogrammed metabolism with gene expression and proteomics changes. Such 

integration is fundamental to deciphering the regulatory metabolic networks and in turn 

gaining mechanistic insights into disease progression and therapeutic efficacy.

By overcoming the multitude of educational and technical challenges that currently limit the 

experimental, analytical, and informatics tools already in place and under development, we 

fully expect that the application of stable isotope tracers to metabolic research in cancers or 

other diseases will greatly expand and flourish in the future.
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Highlights

• Stable isotope resolved metabolomics maps and quantifies metabolic 

networks

• Stable isotope tracing tracks known and novel reprogrammed metabolism

• NMR and mass spectrometry complement, cross-validate, and maximize 

isotope distribution analysis in metabolites
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Figure 1. SIRM Pipeline.
Stable isotope-enriched precursors are introduced to the biological system for a defined 

period, followed by harvesting the tissue, biofluid or medium, metabolite extraction and 

analysis by MS and NMR. The isotopomers and isotopologue distributions are then 

incorporated into metabolic network maps and flux models. Such results may also be 

combined with genomics, proteomics and in vivo NMR information acquired on the same 

samples.
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Figure 2. UHR-FTMS distinguishes isotopes of identical nominal mass.
Panel A indicates the m/z difference between 2H and 13C or 13C and 15N in the mamu range 

as well as the expected resolving power of a commercial FTMS instrument. Panel B shows 

the resolution of 2H, 13C, and 15N in ATP in a crude cancer cell extract (adapted from [3]). 

LW is the width at half height in milli atomic mass units (mamu).
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Figure 3. Chemoselective probe design for facilitating MS-based structural analysis and 
quantification.
The probe design includes the carbonyl-selective aminooxy for QDA [1] or thiol-selective 

iodoacetamide groups for QDE [4], plus two common structural motifs of a dodecyl chain 

for extractability into organic phases and a quaternary ion for ready ionization in MS. Each 

probe can also be prepared as a pair with R equal to CH3 and 13CD3 (*QDA or *QDE). The 

resulting adducts of metabolites with a 1:1 mixture of QDA and *QDA can be readily 

discerned by an m/z difference of 4.02188 by UHR-FTMS, as illustrated by a “bar-code”-

like profile of the adduct pairs in the spectrum on the top right (adapted from [1]).
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Figure 4. Chemoselective derivatization enables NMR detection of carbonyl metabolites.
The QDA probe from Figure 3 was modified to contain a 15N aminooxy group, which forms 

a ketoxime adduct upon reaction with carbonyl metabolites such as pyruvate (A). The 

resulting three-bond coupling between 15N and neighboring protons of carbonyl metabolites 

enables their detection in crude A549 cell extracts by 1D (B) and 2D (C) 15N-edited HSQC 

experiments. Also shown in B is the comparison of unedited 1H and 15N-edited HSQC 

spectra with clear detection of carbonyl metabolites in the latter but not in the former
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Figure 5. Metabolism and epigenetic regulation.
The diagram depicts 13C tracing from 13C6-glucose ( ) or 13C/15N tracing from 13C5,15N2 

glutamine ( ) to the synthesis of nucleotides and effectors (dark red text) involved in 

epigenetic modifications, including αketoglutarate (αKG), 2-hydroxyglutarate (2HG), 

succinate, and fumarate. IDH1/2 mutants produce the histone demethylation inhibitor 2HG 

from αKG while inactivating SDH and FH mutations generate high levels of succinate and 

fumarate, which are inhibitors of αKG-dependent dioxygenases including TET involved in 

demethylation of methylcytosine in DNA. Green arrows denote anaplerotic inputs into the 

Krebs cycle mediated by pyruvate carboxylase (PCB) ( ) and glutaminase (GLS) reactions. 

{ } encloses scrambled 13C labeling patterns of succinate, fumarate, malate, and Asp after 

one turn of the Krebs cycle. ●: 12C; OAA: oxaloacetate; HK: hexokinase; G6PDH: 

glucose-6-phosphate dehydrogenase; PDH: pyruvate dehydrogenase; IDHm: isocitrate 

dehydrogenase mutant; PUR: purine synthesis; PYR: pyrimidine synthesis; PPP: pentose 

phosphate pathway; 1-C: one-carbon pathway; exo: exocyclic.
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Figure 6. SIRM study on patient-derived organoids (PDO) in response to anti-cancer selenite.
PDO was isolated from a non-small cell lung cancer patient (UK022) tumor xenograft in 

Matrigel and subsequently grown as M3DB cultures (example 20x image shown) in [13C6]-

Glc+DMEM medium ± 10 µM selenite (SeO3) for 48 hr. Atom-resolved tracing from 

[13C6]-Glc to glycolytic, Krebs cycle, and gluconeogenic (GNG) metabolites is shown along 

with the 13C labeling patterns of these metabolites in response to SeO3. Also shown are the 

SeO3-induced changes in 13C labeling patterns of the products of PPP, purine (PUR)/

pyrimidine (PYR) synthesis, and glutathione (GSH) synthesis. The numbers in X-axis 

represent the number of 13C atoms (isotopologues) in each metabolite while “Ring” in ATP 

and UTP indicates the sum of all 13C-nucleobase isotopologues.  denote GNG 

and anaplerotic inputs into the Krebs cycle mediated by PCB, respectively. ●: 12C; : 

PDH-, PCB-, or malic enzyme (ME) initiated Krebs cycle reactions, respectively; : GNG; 

F1,6BP: fructose-1,6-bisphosphate; PEP: phosphoenolpyruvate; PRPP: 

phosphoribosylpyrophosphate; PEPCK: PEP carboxykinase; MDH: malate dehydrogenase; 

AST: aspartate amino transferase. All other symbols and abbreviations are as in Fig. 5.
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Figure 7. ECF-UHR-FTMS analysis indicates differential [13C6]-glucose incorporation into 
proteins in 5 mouse organs.
Extracted tissue proteins were hydrolyzed in 6N HCl by focused-beam microwave (F 
µwave) digestion. The free amino acids liberated were derivatized with ethyl chloroformate 

(ECF) before analysis by UHR-FTMS (A). Fractional enrichment distribution of 13C 

isotopologues of the proteinaceous amino acids Ala, Asp, Glu, and Ser is shown in B to E, 

respectively. The x-axis represents the number of 13C atoms present in each isotopologue. 

Values shown were mean ± SEM (n=3). * and ** in B, E denote false discovery q values for 

liver or kidney versus lung, brain, and heart; 0.01<q<0.05 and 0.001<q<<0.01, respectively. 

* in C denotes p values (<0.05–0.01) for 13C3- (3) versus 13C2-Asp (2) for kidney, brain, and 

heart (reprinted from Fig. S6, ref [2]. under a Creative Commons Attribution 4.0 

International License http://creativecommons.org/licenses/by/4.0/).
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Table 1.

Common stable-isotope enriched compounds and their uses

Tracer Pathways sampled references

[U-13C]-glucose glycolysis, Krebs cycle, PPP, glycogen synthesis, hexosamine biosynthesis pathway, serine-
glycine-one carbon metabolism, nucleotide and lipid synthesis

[10, 45]

[13C-1,2]-glucose Non-oxidative versus oxidative branches of the PPP [46, 47]

[13C-3,4]-glucose anaplerosis via pyruvate carboxylation [48, 49]

[13C-1]-pyruvate Lactic fermentation [50]

[U-13C]-lactate Krebs cycle, gluconeogenesis [51–54]

[U-13C,15N]-glutamine glutaminolysis, Krebs cycle, gluconeogenesis, transamination, nucleotide and lipid synthesis [55–59]

[U-13C]-palmitate
[U-13C]-octanoate
[U-13C]-oleate

beta-oxidation, fatty acid synthesis, fatty acid uptake [41, 60–62]
[63]

[U-13C]-serine Serine and one-carbon metabolism; purine biosynthesis; lipid synthesis (PS, sphingolipids) [64] [65]

2H3-serine Serine and one-carbon metabolism; purine biosynthesis; lipid synthesis (PS, sphingolipids) [29]

[U-13C]-glycine Purine biosynthesis; glutathione biosynthesis [65, 66]

13C branched chain amino acids Amino acid metabolism [67–69]

15N arginine, citrulline Arginine/NO metabolism [70]

[U-13C]-glycerol Lipid synthesis, gluconeogenesis-PPP interactions [41, 71, 72]

2H2O Lipid synthesis in vivo [73, 74]

See also Cambridge Isotope Laboratories (CIL) note: MET_RSCH_CANCER (2/13/18)
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