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C L I M A T O L O G Y

Direct and seasonal legacy effects of the 2018 heat 
wave and drought on European ecosystem productivity
A. Bastos1*†, P. Ciais2, P. Friedlingstein3,4, S. Sitch5, J. Pongratz1,6, L. Fan7, J. P. Wigneron7, 
U. Weber8, M. Reichstein8, Z. Fu2, P. Anthoni9, A. Arneth9, V. Haverd10, A. K. Jain11, E. Joetzjer12, 
J. Knauer10, S. Lienert13, T. Loughran1, P. C. McGuire14, H. Tian15, N. Viovy2, S. Zaehle8

In summer 2018, central and northern Europe were stricken by extreme drought and heat (DH2018). The DH2018 
differed from previous events in being preceded by extreme spring warming and brightening, but moderate rainfall 
deficits, yet registering the fastest transition between wet winter conditions and extreme summer drought. Using 
11 vegetation models, we show that spring conditions promoted increased vegetation growth, which, in turn, 
contributed to fast soil moisture depletion, amplifying the summer drought. We find regional asymmetries in 
summer ecosystem carbon fluxes: increased (reduced) sink in the northern (southern) areas affected by drought. 
These asymmetries can be explained by distinct legacy effects of spring growth and of water-use efficiency dynamics 
mediated by vegetation composition, rather than by distinct ecosystem responses to summer heat/drought. The 
asymmetries in carbon and water exchanges during spring and summer 2018 suggest that future land-management 
strategies could influence patterns of summer heat waves and droughts under long-term warming.

INTRODUCTION
In the past two decades, Europe has been stricken by major summer 
heat waves and drought, with heavy impacts on food production, 
public health, air pollution, and ecosystem carbon uptake (1–3). For 
instance, the drought-heat events of 2003 and 2010 in central Europe 
and western Russia, respectively (referred to here as DH2003 and 
DH2010), broke, at the time, the >500-year-long summer temperature 
record over the continent (1). While these events were exceptional 
at the time, their likelihood will increase in the coming century due 
to anthropogenic global warming (1). In 2018, the European summer 
land temperature anomaly broke the record yet again, although with 
distinct spatiotemporal patterns (4). The 2018 summer was charac-
terized by extreme drought in central and northern Europe (Fig. 1A, 
referred to, for consistency, as DH2018), with several countries 
suffering major economic costs from crop failure. Compensations to 
farmers from crop losses due to drought in 2018 reached €340 million 
in Germany and €116 million in Sweden (5).

Several studies have shown that both DH2003 and DH2010 
resulted in strong reductions in vegetation productivity due to soil 
moisture (SM) deficits, high water vapor pressure and heat stress, 
increases in ecosystem respiration, and increased fire activity, lead-
ing to a reduction of the net CO2 uptake in ecosystems (2, 6, 7). The 
SM deficits associated with summer heat waves seem to explain most 
of the decrease in productivity in DH2003 (2, 8) and, to a smaller 
extent, in DH2010 (9, 10). Some ecosystems affected by DH2010 
showed, however, increased summer productivity, possibly because 
high temperatures in 2010 were still favorable for vegetation growth, 
especially in higher latitudes (9). Differences in impacts of summer 
heat and drought on ecosystems may also be related with different 
trajectories in water-use efficiency (WUE; i.e., unit of carbon gained 
through photosynthesis per unit of water lost through transpiration) 
over the growing season (8). In DH2003 and DH2010, grasslands and 
croplands were more strongly hit than forests, because forests have 
deep-water access, and are also more conservative in the use of water 
over the growing season (9, 11, 12).

While several studies have analyzed the impacts of DH events 
resulting from concurrent SM deficits, heat stress, and fire activity 
(direct impacts) on ecosystems’ carbon balance, less attention has 
been devoted to the influence of preceding climate conditions in the 
ecosystems’ response to the summer extremes (legacy effects). All 
three DH events in Europe were preceded by warm springs, with 
reduced rainfall and sunnier conditions. The climate anomalies in 
spring can affect the annual carbon balance by (i) directly affecting 
ecosystem productivity, (ii) altering the water and energy balance in 
the following seasons due to land-atmosphere feedbacks, and 
(iii) affecting the response of ecosystems to climate anomalies in 
subsequent seasons by altering their baseline state. Warm and sunny 
conditions in early spring directly result in earlier vegetation green-
up and growth, which might partly compensate for the summer 
productivity losses from drought and extreme heat (9, 13). However, 
spring climate conditions can have different legacy effects to the 
summer and annual carbon balance. Previous studies have high-
lighted the role of spring precipitation deficits, increased solar radia-
tion and warming in amplifying the high temperature anomalies in 
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extreme summers in Europe due to SM depletion (1, 6, 14), and 
thereby the impact of summer on ecosystem productivity. Increased 
spring growth may also negatively affect the ecosystem carbon balance 
in summer or autumn if the additional biomass cannot be sustained 
(e.g., due to summer drought), by increasing plant respiration and 
by SM depletion from increased evapotranspiration (ET). Reduced 
SM could reduce assimilation and maintenance respiration in summer 
and limit heterotrophic respiration, but increased soil temperatures 
also lead to increased heterotrophic respiration. Furthermore, spring 
drought and warming might contribute to increased summer fire 
activity through higher fuel loads and more flammable fuel. Whether 
early drought amplifies carbon losses in summer would depend on 
the net of these effects. A question that remains open is to what extent 
the earlier vegetation growth in response to increased radiation and 
warming in spring contributes to earlier SM depletion, possibly 
amplifying subsequent carbon losses (15).

Each of the recent extreme heat and drought events in Europe 
provides a unique opportunity to study the response of ecosystems 
to heat and drought events and evaluate how they affect the terrestrial 
carbon cycle. The extreme spring warming in 2018 is a good case 
study to assess seasonal legacy and compensation effects from warm 
springs in ecosystem water and carbon exchanges. Here, we focus 
our analysis on geographic Europe including western Russia (32°N 
to 75°N and −11°E to 65°E) and perform a set of factorial simula-
tions with a group of 11 dynamic global vegetation models (DGVMs) 
to (i) quantify the anomalies in carbon fluxes during spring and 
summer in 2018, (ii) evaluate possible seasonal compensation effects 
between spring and summer responses to 2018 climate anomalies, 
and (iii) identify the seasonal legacy effects of spring and summer 
climate to the SM and carbon exchange anomalies during DH2018 
event and over 2018.

RESULTS
Features of the 2018 drought and heat event
In 2018, Germany, southern Scandinavia, the United Kingdom, and 
Ireland registered extreme summer agricultural drought, given by 
SM anomalies (SManom) from the ERA5 reanalysis (see Materials and 
Methods) in June to August (JJA) (Fig. 1A). Severe drought affected 

most of central and eastern European countries and Scandinavia. 
For different definitions of extreme drought (see Materials and 
Methods), 2018 registered the largest extent affected by extreme 
drought (24 to 38 Mha) compared to 2003 (20 to 28 Mha) and 2010 
(14 to 18 Mha). Severe drought affected 23 to 44 Mha in 2018 com-
pared to 19 to 45 Mha in 2003 and 18 to 38 Mha in 2010.

For most regions, severe or extreme summer drought co-occurred 
with warmer and drier than average summer conditions and increased 
solar radiation, relative to the 1979–2018 record, although summer 
temperature anomalies were generally not as strong as in 2003 and 
2010 (fig. S1). Record-high summer temperature and radiation and 
record-low summer rainfall were mainly confined to central Europe 
(fig. S1). Compared to other years in the 40-year-long record, 
though, 2018 registered the strongest transition between a wet winter/
spring and dry summer/autumn at continental scale (Fig. 1B). At 
continental scale, DH2003, DH2010, and DH2018 were all preceded 
by wetter-than-average winters (positive SManom) and by sharp de-
creases in SM from spring to summer. Still, March and April 2018 
corresponded to the highest SManom during 1979–2018, while July 
to August were comparable to DH2003 and DH2010, and from 
September onward 2018 had the lowest SManom on record. Such sharp 
enhancement in drought conditions during and after late spring 2018 
is likely related to the extremely high spring [March-April-May (MAM)] 
temperature anomalies registered in Germany and Eastern Europe, 
as well as precipitation deficits—though generally not extreme—along 
with extremely high solar radiation in Scandinavia and eastern 
Europe (fig. S2). This extreme spring warming and brightening is a 
distinctive feature of 2018, higher than the corresponding spring 
anomalies in the regions affected by DH2003 and DH2010.

Seasonal anomalies in carbon fluxes
The spatial distribution of total SManom simulated by the multimodel 
ensemble median (MMEM; the median reduces the influence of few 
outliers) of 11 DGVMs (Materials and Methods) shows good agree-
ment with surface SManom measured by passive microwave sensors 
from the SMOS (Soil Moisture and Ocean Salinity) satellite (Mate-
rials and Methods) with SManom patterns (fig. S3). This indicates that 
the ensemble of DGVMs can overall simulate well the agricultural 
drought conditions in summer 2018.

Fig. 1. Drought patterns in summer 2018. (A) Spatial distribution of SM anomaly (SManom) from ERA5 fields (see Materials and Methods) in summer (JJA) and (B) distribution 
of seasonal SManom at continental scale for the study period 1979–2018 (gray lines) and the corresponding trajectories in 2003, 2010, and 2018. Continental Europe refers 
to the domain within 32°N and 75°N and −11°E and 65°E.
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According to the DGVM MMEM, spring 2018 was associated 
with positive net biome production (NBP) anomalies (defined 
positive for above-average CO2 uptake) over most of Europe of 
about 5 to 10 gC m−2 month−1 (Fig. 2A). Record-high CO2 uptake 
was estimated in several regions in southern (Balkans, Turkey) and 
northern (western Russia, Scandinavia, and Baltic countries) Europe. 
In summer, the NBP anomalies were more spatially heterogeneous, 
with negative NBP anomalies extending over a region encompassing 
western and central Europe and western Russia registering below 
average CO2 uptake (Fig. 2B), but positive NBP anomalies estimated in 
Scandinavia and in southern Europe. Central Europe and southern 
Sweden registered record-low sinks, with CO2 uptake dropping by 
more than 50% (−30 gC m−2 month−1) but not strong enough to turn 
ecosystems into absolute sources. Positive NBP anomalies in the south 
are most pronounced in those regions with wetter summer conditions, 
while those in the north are collocated with strong drought (Fig. 1A).

To confirm general DGVM performance, we analyzed satellite- 
based estimates of satellite vegetation optical depth in the micro-
wave L-band (L-VOD; Materials and Methods). L-VOD standardized 
changes were calculated from aggregated L-VOD for spring and 
summer months from 2010 to 2018 (fig. S3) and reflect changes in 
aboveground biomass carbon. Negative L-VOD changes dominate 
the region extending from northwestern France to eastern Poland 
and the Baltic countries, as well as southern Scandinavia, while L-VOD 
increase is found in central and northern Scandinavia, northwestern 
Russia, and most of southern Europe. When compared with simulated 
anomalies for NBP minus soil respiration for the same reference 
period and the same months, L-VOD changes show good agreement 
with DGVM estimates (fig. S3).

The positive NBP anomalies in spring and summer generally match 
those of gross primary production (GPP); (fig. S4). In spring, DGVMs 
estimate widespread GPP increase and record-high values in Scandi-
navia and southern Europe. These patterns are generally consistent 
with GPP estimates from the data-driven product FLUXCOM (fig. 
S5) (16), although FLUXCOM additionally estimates record-high 

spring GPP in central Germany. In summer, regions with negative 
(positive) NBP anomalies are associated with below (above) average 
GPP, and most of the regions with extremely high or extremely low 
NBP match regions with record GPP anomalies. An exception is found 
in eastern Europe and Baltic countries, where DGVMs estimate below- 
average NBP during summer, but enhanced or close to average veg-
etation productivity. This is due to a strong contribution of total 
ecosystem respiration (TER) and, to a lesser extent, of fires (fig. 
S4). FLUXCOM also points to positive GPP anomalies in eastern 
Europe but in a smaller sector and a larger region with decreased summer 
TER (fig. S5). These differences suggest a possible oversensitivity 
of GPP from DGVMs to the alleviation of rainfall deficits during 
summer in those regions (fig. S1).

Our results indicate an asymmetry in the summer carbon flux 
anomalies, with the northern sector of the drought-affected region 
showing increased NBP and GPP during summer, while the southern 
sector registered strong decreases in both variables. This asymmetry 
may be due to distinct responses of ecosystems to summer warming 
and drying but also from different legacy effects from spring climate 
conditions to summer water and carbon fluxes (Materials and 
Methods). To understand this asymmetry, we divide the region 
affected by DH2018 in two sectors: R1 (southern sector of DH2018, 
reduced summer CO2 uptake) and R2 (northern sector of DH2018, 
increased summer CO2 uptake).

Direct and legacy impacts of spring and summer climate 
to continental net CO2 uptake
Based on the three idealized simulations (reference, SRef, spring effects, 
SMAM, and summer effects, SJJA; see Materials and Methods), we find strong 
differences between the individual impacts of each season on carbon 
fluxes (Fig. 3, A and B) and the seasonal anomalies described above (Fig. 2).

The spring-related NBP anomalies (Fig. 3A) largely reflect a positive 
correlation with temperature and radiation anomalies, with increased 
uptake confined to central and northern Europe and Turkey. In most 
of western Europe, DGVMs estimate a direct negative effect of spring 

Fig. 2. Anomalies of CO2 fluxes during spring and summer 2018. Spatial patterns of NBP anomalies (reference period 1979–2018) during (A) spring (MAM) and 
(B) summer (JJA) 2018 estimated by the MMEM of 11 DGVMs. A positive (negative) value indicates higher (lower) net CO2 uptake than the 40-year average. The color map shows 
the multimodel ensemble mean anomalies, and the stippling indicates those regions with extremely low (rank 40th) or extremely high (rank 1st) values over the reference period.
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climate to NBP (Fig. 3A), in spite of positive spring NBP anomalies 
(Fig. 2A). By contrast, DGVMs estimate a very strong direct summer- 
related decrease in NBP over most of Europe (Fig. 3B), including most 
of Scandinavia where DGVMs estimate positive summer NBP anomalies 
(Fig. 2A). This means that the spring conditions attenuated the direct 
effect of summer conditions on the loss of NBP in summer. A posi-
tive summer impact was found only in those regions where summer 
was wetter than average, mostly in southern Europe.

Spring legacy effects to summer NBP show regionally distinct patterns 
(Fig. 3C), which can be summarized in three groups: (i) regions with 
positive effect of spring climate on spring NBP and positive legacy 
NBP effects (e.g., Scandinavia, R2), (ii) regions with spring-related 

increase in NBP being offset by negative legacy effects (e.g., central 
and eastern Europe, R1), and (iii) regions with negative spring-related 
effects on spring NBP (weaker sink) offset by positive legacy effects 
(e.g., western Europe). These results reveal important differences 
between the spring and summer NBP anomalies (reference simulation 
and observations) and the individual impact of spring and summer 
to direct and legacy NBP anomalies (idealized simulations). While 
the generalized enhancement in spring CO2 uptake might have contrib-
uted to partly offset summer carbon losses in central and western 
Europe, the mismatch between the NBP anomalies simulated by 
DGVMs for each season (Fig. 2) and those resulting from the direct 
impact of each individual season (Fig. 3, A and B) hints that legacy 

Fig. 3. Direct and legacy effects of spring and summer climate to DH2018 carbon balance. Spatial distribution of the average net effect of (A) spring climate anomalies 
direct impact on spring NBP (from SMAM), (B) summer climate anomalies direct impact on summer NBP (from SJJA), (C) spring climate legacy effects in JJA (from SMAM), and 
(D) relative legacy impact of spring climate to summer NBP anomalies compared to the direct impact of summer climate to summer NBP anomalies. Red colors indicate 
regions where spring amplified (A) negative summer effects or offset (O) positive summer effects, i.e., spring contributed to a source anomaly by 25 to 100% or more than 
100% of the corresponding direct summer effect. Blue colors indicate regions where spring legacy effects offset negative summer effects or amplified positive summer 
effects, i.e., spring legacy effects contributed to a positive summer NBP anomaly. The regions where spring legacy contributes by less than 25% of the summer-related 
NBP anomaly are masked in white. See the “Model simulations” section in Materials and Methods for a description of the idealized simulations used to isolate spring and 
summer direct and legacy effects.
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effects from previous seasons might compensate or offset the impact 
of concurrent climate anomalies during the season considered.

We thus evaluate how much spring climate legacy effects (Fig. 3C) 
contributed to amplify or offset the individual impact of DH2018 
(Fig. 3B). In about 75% of the European area, legacy effects from 
spring climate contributed by 25% or more to offset or amplify the 
impact of DH2018 on summer NBP (Fig. 3D). In most of eastern 
Europe, southern Sweden, and southern Finland—the regions marked 
by strong spring warming and brightening—we find that spring climate 
anomalies contributed to amplify the negative summer impacts of 
DH2018 (red colors in Fig. 3D). On the contrary, higher latitude 
regions are dominated by positive legacy contribution of spring 
warming to summer NBP anomaly. In the Scandinavian mountains 
and parts of the Kola Peninsula, spring legacy effects offset a negative 
summer impact of DH2018 on summer NBP by more than 100% 
(values larger than 100% indicate an even stronger contribution of 
spring legacy than of summer direct effects to net source anomalies). 
In small sectors of Scandinavia (southern Norway and Kola Peninsula) 
as well as in the Iberian Peninsula, spring legacy effects amplified 
positive NBP anomalies in response to summer climate by more than 
100% (i.e., doubling the sink response).

These differences cannot be solely explained by regional differences 
in climate conditions, as regions with similar climate anomalies 
(figs. S1 and S2) showed distinct contributions of different direct 
impacts and legacy NBP responses. As in net CO2 uptake (Fig. 2B), 
a north/south asymmetry in spring legacy effects between the 
southern (R1) and northern (R2) sectors of DH2018 is found. We 
therefore analyze, in more detail, the dynamics of carbon and water 
fluxes in these two regions, including direct and legacy effects of 
spring and summer.

Regional asymmetries in net CO2 uptake and driving 
processes
For R1 and R2, we evaluate the seasonal trajectories of climate 
anomalies (Fig. 4, A and B) and of the corresponding NBP, GPP, 
and TER anomalies (Fig. 4, C to G), as well as simulated SM and ET 
anomalies (Fig. 5, A to D). The seasonal average carbon flux anomalies 
for each region are summarized in Table 1.

 Both regions, especially R1, started the year with weak negative 
(remaining above a threshold of −1) temperature and precipitation 
anomalies, and wetter than average conditions (positive SPEI06). In 
R1, temperature anomalies remained above +1 between March and 
September, being the highest in April and May. While precipitation 
remained below average, but still within the ±1 range, SPEI06 
decreased sharply concurrent with the increase in temperature and 
incoming radiation in March and April, remaining close to −2 
almost until the end of 2018. Region R2 shows similar evolution of 
climate anomalies, with precipitation being predominantly negative, 
but still within ±1 during most of the year, and drought conditions 
being exacerbated with the peaks in temperature and radiation 
anomalies in May and July. Contrary to R1, SPEI06 in R2 peaks in 
July and then recovers faster—yet remaining negative until the end 
of the year. The SManom simulated by DGVMs (Fig. 5) show similar 
evolution to that of SPEI06 in both regions. Although relative SManom 
are comparable in both regions, absolute SM content peaked at lower 
values in R1 than in R2 (Fig. 5, A and B).

In both regions, DGVMs simulate a sharp increase in net CO2 up-
take during spring (Fig. 4, C and D), with NBP anomalies peaking in 
May at 15 gC m−2 month−1 (40% above average) and 13 gC m−2 month−1 

(33% above average) in R1 and R2, respectively, and totaling over 
the MAM season +19 ± 26 gC m−2 season−1 and +15 ± 14 gC m−2 
season−1 in R1 and R2, respectively. The confidence intervals corre-
spond to the interquartile range of DGVM estimates. These net sink 
anomalies can be explained by a stronger increase in productivity 
(Fig. 4, E and F) in response to the spring warm and bright condi-
tions than that of TER (Fig. 4, G and H). The high absolute levels of 
SM and strong increase in spring ET in both regions (Fig. 5) indi-
cate a nonlimiting supply of SM in the root zone to support plant 
transpiration and carbon assimilation. In both R1 and R2, the peaks 
in spring GPP are associated with strong increase in ET, which con-
tribute to the fast progression of drought between April and June. 
In the subsequent summer, autumn, and winter seasons, however, 
the two regions show distinct dynamics.

In region R1, the spring positive NBP anomaly was partly offset 
by a nonsignificant but tendentially negative summer NBP anomaly 
of ca. −22 ± 65 gC m−2 season−1. This anomaly can be explained by 
enhanced summer TER (+39 ± 59 gC m−2 season−1) combined with 
a smaller decrease of GPP anomalies to +23 ± 98 gC m−2 season−1 
(nonsignificant), associated with onset of water limitation 
(Fig. 5, A and C). Because of the persistent positive temperature 
anomalies, TER remained above average until the end of the year, 
while GPP recovered in September and October, decreasing again 
until December. As a result, the MMEM indicates a small positive 
NBP anomaly during September to November, followed by a weak 
negative NBP anomaly in December. Over the full year 2018, R1 was 
neutral, with an annual NBP anomaly of −8 ± 80 gC m−2 year −1, 
although DGVMs show a wide range of estimates.

In region R2, DGVMs estimate above-average productivity and 
respiration over most of the year, with seasonal dynamics following 
that of temperature anomalies. Over spring and summer, the signif-
icant positive anomalies in GPP (+28 ± 16 gC m−2 season−1 and +48 ± 
22 gC m−2 season−1; Table 1 and Fig. 4D) are stronger than the increase 
in TER (+15 ± 13 gC m−2 season−1 and +35 ± 22 gC m−2 season−1; 
Fig. 4F) and result in increased NBP in both seasons, although not 
significant in summer given the ensemble uncertainty (Table 1 and 
Fig. 4B). The persistence of higher than average GPP in R2 appears 
to be supported by higher absolute levels of SM and sufficient supply 
for transpiration (Fig. 5, B and D). Because DGVMs estimate a 
stronger anomaly in TER than in GPP and a small source anomaly 
from August onward, their annual balance was close to neutral 
(ca. +10 ± 63 gC m−2 year−1), as for R1.

Regional asymmetries in seasonal direct and legacy effects
The regionally integrated individual effects of spring and summer 
climate on NBP, GPP, and TER anomalies based on the attribution 
simulations are shown in Fig. 4 (C to H) as blue and red lines for 
SMAM and SJJA, respectively.
Direct and legacy spring effects
As shown in Fig. 4 (C and D) and summarized in Table 1, the MMEM 
estimates a positive spring effect on NBP (increased uptake) in both 
regions, but in R1, spring climate contributes only to a small fraction 
of the positive spring NBP anomaly (compare blue and black 
lines). In both regions, the DGVMs attribute the positive spring 
contribution to NBP to an increase in productivity (+29 ± 23 and 
+30 ± 14 gC m−2 season−1, in R1 and R2, respectively) in response to 
spring warming and brightening. In R2, the positive direct effect of 
spring on GPP is stronger than the corresponding increase in TER 
due to warming (+18 ± 10 gC m−2 season−1; Table 1), while in R1, 
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the TER increase is comparable to that of GPP (+30 ± 12 gC m−2 
season−1). The two regions further differ in their spring legacy 
effects on summer and autumn fluxes.

In region R1, the DGVMs estimate stronger spring GPP and TER 
anomalies than those solely explained by spring climate alone, suggest-

ing that the legacy effects from winter of 2018 or long-term trends 
also contributed to high spring GPP and TER. The spring-related 
increase in spring GPP is cancelled out by a negative legacy effect of 
spring climate to summer GPP (−34 ± 54 gC m−2 season−1; Fig. 4E). 
This negative legacy of spring warming to summer GPP can be 

Fig. 4. Seasonal evolution of climate and net CO2 uptake during 2018 in the two study regions. Spatially averaged standardized anomalies in monthly mean tem-
perature (T, red lines), precipitation (P, blue lines), incoming solar shortwave radiation (SWR, yellow lines), and SPEI06 (shaded areas, blue for wetter-than-average condi-
tions, yellow for drier-than-average conditions) for R1 (A) and R2 (B), respectively. The horizontal lines delimit the ±1 SD interval of the 1979–2018 period. In (C) and (D), the 
corresponding regional anomalies in NBP (back line and gray shades for MMEM and model interquartile range, respectively) estimated by the ensemble of 11 DGVMs for 
R1 and R2, respectively. Note the different y-axis range in (C) and (D). The blue (red) line indicates the individual effect of spring (summer) climate, and the interquartile 
range is shown by the shaded area. These effects are estimated by the factorial simulations with climatological spring (summer), i.e., SMAM (SJJA), as described in Materials 
and Methods. As in (C) and (D), (E) and (F) show the corresponding 2018 GPP anomalies, and (G) and (H) show the TER anomalies in 2018 for both regions. The annual 
totals of flux anomalies, as well as the contribution of spring and summer climate anomalies to the annual balance, are given in Table 1.
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explained by an SM deficit legacy promoted by increased spring ET 
(Fig. 5C) that contributed to the quick onset of drought and explained 
47% of the average summer SManom (Fig. 5A) and led to reduced 
GPP in summer (Fig. 4). The DGVMs also estimate a negative spring 
legacy to summer TER (−14 ± 12gC m−2 season−1; Fig. 4G). This 
reduction, though, is smaller than the reduction in productivity, 
therefore resulting in a negative spring legacy effect to summer NBP 
(Fig. 4C). Such a negative legacy of spring climate to GPP and TER 
not only prevails during summer but also extends until the follow-
ing winter, being progressively attenuated as spring legacy SM 
deficits slowly attenuate. This results in a weakly negative contribu-
tion of spring climate to the annual NBP of ca. −10 ± 49 gC m−2 in 
R1 (Table 1).

In region R2, most of the anomalies in spring carbon fluxes can 
be explained by spring climate conditions, that is, no legacy effect of 
previous winter conditions on carbon fluxes (Fig. 4, D, F, and H, 
and Table 1). As in R1, increased spring ET promotes a quick pro-

gression of drought conditions and strong drought during summer 
for R2, with the spring legacy explaining 57% of the summer SManom 
(Fig. 5B). However, the spring-related legacy effects on summer GPP are 
much smaller than in R1 (+10 ± 15 gC m−2 season−1; Table 1) as well 
as on GPP in subsequent seasons (Fig. 4F), possibly because of still 
sufficient absolute water supply to support productivity (Fig. 5B). 
Therefore, the individual effect of spring in the annual NBP anomaly 
of region R2 results only in a weak positive annual NBP anomaly of 
+7 ± 30 gC m−2, in contrast with R1.
Summer effects
Summer climate imposed concurrent negative NBP anomalies 
(Fig. 4, C and D, red lines) in both regions, but much stronger in R1 
(−72 ± 82 gC m−2 season−1) compared to R2 (−15 ± 30 gC m−2 season−1).

In region R1, the summer-related negative NBP anomaly can be 
explained by a strong reduction of summer GPP in response to drought 
despite a weak TER enhancement (−44 ± 81 and +3 ± 43 gC m−2 season−1, 
respectively; Table 1). The summer legacy anomalies in both GPP 

Fig. 5. Seasonal evolution of hydrological variables during 2018 in the two study regions. Standardized anomalies in total SM from the MMEM of the reference 
simulation (black line) and its uncertainty (shaded gray area) in R1 (A) and R2 (B). The blue (red) line indicates the individual effect of spring (summer) climate, and the 
interquartile range is shown by the shaded area. Absolute regional average SM values (in kg m−2) are given by the blue lines. The corresponding anomalies in ET are 
shown in (C) and (D) for R1 and R2, respectively. The distribution of the anomalies in WUE (defined as GPP/ET) estimated by the DGVM ensemble for forests (dark green), 
grasslands (light green), and croplands (yellow) in R1 (E) and R2 (F) during spring and summer 2018. WUE per land-cover type was calculated by weighting pixel-scale 
WUE by the corresponding pixel land-cover fraction of forests, grasslands, and croplands. It should be noted that these values will still include mixed signals from the 
three vegetation classes, especially in R1 where land-cover composition per pixel is more mixed.
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and TER last until the end of the year, being progressively attenuated 
as legacy summer SM deficits become weaker (Fig. 5). The decrease 
in TER as legacy from summer climate is slightly stronger than that 
of GPP during autumn, explaining a very weakly positive NBP 
anomaly summer legacy between September and November. The 
annual NBP anomaly from summer effects in R1 is thus −63 ± 
91 gC m−2, six times stronger than the spring effects.

In region R2, summer-related NBP anomalies can be explained 
by GPP decrease and concurrent TER increase (Table 1), but with 
variable intraseasonal dynamics. Negative impact on summer NBP 
is due to both decreased GPP in June and August and to increased 
TER in July and August (Fig. 4, D, F, and H). The sharp drop in 
summer-related GPP, TER, and NBP anomalies in June coincides 
with close to average temperatures, and wetter and brighter than 
average conditions (Fig. 4B). DGVMs also estimate a positive 
contribution of warming (Fig. 4B) in July to GPP, despite prevailing 
SM deficits, possibly as a result of a slight increase in rainfall and 
decreased ET in June (Figs. 4B and 5).

DISCUSSION
Spring warming and the onset of summer drought in 2018
In contrast to the drought-heat events in 2003 and 2010 in Europe, 
DH2018 was particular in that it showed the fastest transition from 
relatively wet conditions in winter to severe drought in summer. 
The extreme spring warming and brightening is also a distinctive 
feature of 2018.

Using an ensemble of DGVMs, we found that the warm and bright 
conditions in spring 2018 led to an increase in vegetation produc-
tivity and net CO2 uptake (Figs. 2 to 4), by advancing the growing 
season onset and stimulating spring photosynthesis. However, 
increased spring vegetation productivity contributed to increased 
ET, leading to the fast depletion of SM in late spring and summer 
(Fig. 5). While in DH2003 and DH2010, the summer drought was 
collocated with extreme summer warming (14), that is only the case 
for the southern sector of the DH2018 affected area (Fig. 1 and fig. S1). 
The results from simulation SMAM show that, in the regions affected 

by DH2018, the legacy effects from increased ET in spring contrib-
uted by about as much as the adverse summer climate conditions to 
the summer drought (Fig. 5). At the European scale, and especially 
in the DH2018 region, the SM deficits in summer from spring legacy 
match better the anomalies in spring GPP and ET (fig. S6) than the 
corresponding spring/summer temperature anomalies, indicating a 
relevant contribution of spring vegetation water use to the amplifi-
cation of DH2018. Previous studies have discussed the importance 
of preceding warm and dry springs to the onset of DH2003 and 
DH2010 (6, 14). The regions affected by these two events also registered 
sunnier than average conditions in spring (fig. S2), which likely 
stimulated GPP and ET, as shown in this study for DH2018. There-
fore, information about vegetation activity in spring could be used 
as an additional early warning indicator for extreme summers, and 
potentially used for seasonal or subseasonal predictability.

Regional asymmetries
In the previous extreme summers of 2003 and 2010, most, if not all, 
of the areas affected by drought and heat during summer registered 
strong reductions in productivity and net CO2 uptake (2, 7, 10). 
Flach et  al. (9), though, pointed out to some exceptions in the 
higher- latitude regions during DH2010, where increased GPP was 
estimated during summer, because extreme warming approached 
photosynthesis optimal temperatures. For DH2018, we found a 
similar increased summer productivity and net CO2 uptake in most of 
Scandinavia (R2) and the opposite in the southern sectors of DH2018 
(R1). The DGVM MMEM results are supported by observation-based 
datasets (Fig. 2 and figs. S3 to S5) as well as satellite-based leaf area 
index from Albergel et al. (17). In Scandinavia, daily mean and 
maximum temperatures during summer were, on a seasonal average, 
close to but below 25°C, including the regions with record-breaking 
warming, in contrast with much of central Europe that registered 
daily maximum temperatures above 25°C over JJA (fig. S7).

The asymmetry in summer NBP anomalies between R1 and R2, 
though, cannot be solely explained by distinct responses of ecosystems 
to DH2018, as the simulations designed to isolate the effect of summer 
show a negative impact of the extreme summer drought on GPP 

Table 1. Direct and legacy anomalies in regional carbon fluxes. Annual, spring, and summer integrated anomalies in NBP, GPP, and TER from the baseline 
simulation (SRef) and the corresponding individual contributions of spring and summer climate, estimated by the two idealized simulations (SMAM and SJJA). The 
anomaly values correspond to the MMEM, and the uncertainty is given by the interquartile range of the 11 DGVMs. The asterisks indicate ensemble anomalies 
significantly different than zero at 95% (*) and 99% (**) confidence levels estimated by a two-tailed Wilcoxon’s signed-rank test on the seasonal anomalies of the 
11 DGVMs. Units: gC m−2 season−1 for spring and summer values, and gC m−2 year−1 for annual values. 

Anomaly
R1 R2

SRef Spring effect Summer effect SRef Spring effect Summer effect

NBP

Annual −8 ± 80 −10 ± 49 −63 ± 91 10 ± 63 7 ± 30 −24 ± 26

Spring (MAM) 19 ± 26* 5 ± 29 – 15 ± 14* 8 ± 15* –

Summer (JJA) −22 ± 65 −22 ± 42 −72 ± 82* 15 ± 49 7 ± 9 −15 ± 30

GPP

Annual 89 ± 116* −2 ± 28 −44 ± 97 89 ± 30 ** 35 ± 14 ** −10 ± 29

Spring (MAM) 56 ± 19** 29 ± 23 – 28 ± 16 ** 30 ± 14 ** –

Summer (JJA) 23 ± 98 −30 ± 54* −44 ± 81 48 ± 22 ** 10 ± 15 −10 ± 29

TER
Annual 90 ± 88 ** 14 ± 34 −12 ± 42 71 ± 31 ** 21 ± 20 ** 12 ± 19

Spring (MAM) 37 ± 17 ** 30 ± 12 ** – 15 ± 13 ** 18 ± 10 ** –

Summer (JJA) 39 ± 59* −14 ± 12* 3 ± 43 35 ± 22 ** 3 ± 15 15 ± 21
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and NBP in both regions (Figs. 3 and 4 and fig. S6). These results are 
in line with previous studies reporting systematically negative effects 
of summer drought and heat on vegetation productivity (2, 7, 10). 
By isolating the spring and summer impacts on ecosystem activity, 
we found that asymmetries in summer NBP and GPP anomalies can 
be explained by distinct legacy effects of increased spring vegetation 
growth to summer productivity between R1 and R2 (Figs. 3D and 4).

In the northern sector of DH2018 (most of R2), spring legacy 
effects offset, in part or completely, the carbon losses due to summer 
heat and drought (Fig. 3D). In western Scandinavia and Northern 
Russia, enhanced spring productivity contributed to an increased 
carbon sink in subsequent months through increased leaf growth, 
which helped to sustain higher photosynthesis levels over summer 
and offset the negative impact of DH2018 (Figs. 3D and 4 and fig. S6). 
It is likely that 2010 spring legacy effects explain the positive summer 
GPP anomalies in northern areas affected by DH2010 pointed out 
by Flach et al. (9), because these regions had also experienced extreme 
spring warming in 2010. However, more biomass also requires more 
energy to maintain over summer, resulting in an increase in auto-
trophic respiration (fig. S6), increased buildup of fuel for summer 
fires (fig. S4), and increased litterfall, providing more substrate for 
decomposition over late summer to winter. This results in a weak 
spring contribution to the annual NBP in R2 (Fig. 4). The intraseasonal 
dynamics of carbon and water fluxes in R2 indicates a prevailing 
temperature-limited regime, which indicates that although drought 
in R2 was comparable, in relative terms, to R1, the higher absolute 
SM content in R2 during summer (Fig. 5) was enough to support 
vegetation productivity. On the contrary, in the southern areas of 
DH2018 (R1), as well as in the Baltic sector of R2, earlier and stronger 
spring growth and ET in 2018 led to an exceptionally fast onset of 
drought (Fig. 5) and to subsequent plant collapse (Fig. 4), as the 
additional biomass produced in spring suddenly became more difficult 
to sustain underwater stress. The spring-related decrease in GPP in 
R1 during summer suggests strong summer water limitation.

The distinct seasonal compensation effects between the northern 
and southern regions can, thus, be partly explained by different limitation 
regimes: the mountainous and northern sectors of R2 maintaining 
a temperature-limited regime, and R1 and the southern Baltic coastal 
areas of R2 transitioning to a summer water-limited regime. A small 
band along the western coast of Scandinavia had positive rainfall 
anomalies in summer (fig. S1) and less extreme SM deficits (Fig. 1), 
which might have provided enough water supply to support increased 
GPP and ET over summer. Nevertheless, we find positive spring 
legacy effects in some regions with strong summer drought and 
rainfall deficits. Therefore, we evaluate whether differences in land-
c over type and WUE can explain the different limitation regimes in 
R1 and R2 (Fig. 5).

Consistent with (9, 11), we find that those areas within the 
DH2018 region where spring contributed positively to summer NBP 
were dominated by forests (fig. S8), while the regions where spring 
had negative effects on summer CO2 uptake were associated with 
higher cropland fractions. On the one hand, trees have deep roots 
and can access deep water reserves, while crops and grasses cannot. 
In addition, trees are better able to regulate stomatal conductance 
and increase WUE under drought stress (8, 12), attenuating early 
water loss from increased spring warming and enhanced productivity. 
Most ecosystems in R2 are forests, with only the southern Baltic sectors 
of R2 having a higher fraction of croplands, and R1 is largely dominated 
by agricultural areas. DGVMs simulate higher WUE rates in summer 

over pixels dominated by forests and grasslands than those domi-
nated by croplands, consistent with observation-based studies (11), 
and an increase in WUE during the summer drought (8) in both 
regions (Fig. 5). However, the two regions also differ in spring, with 
WUE in R1 being lower for forests and croplands compared to R2. 
This implies that in R1, increased vegetation growth during spring 
happened at a higher cost of water, amplifying summer SM deficits 
and shifting the ecosystems into a water-limited regime. The stronger 
spring SM depletion in R1 compared to R2 might, in turn, have con-
tributed to the higher summer temperature anomalies registered in 
the southern sector of DH2018 from increased sensible heat fluxes 
(fig. S1).

Model experiments and evaluation
Our results show that the impact of a given extreme event on eco-
systems cannot be quantified by simply evaluating co-occurring 
anomalies in carbon fluxes, because these are—at least partly—history 
dependent. Likewise, legacy effects cannot be isolated by comparing 
anomalies in carbon fluxes between seasons, because they include 
carry-on effects from other seasons in addition to the anomalies due 
to the concurrent climate anomalies, and interseasonal correlation 
between climate anomalies is generally low. Quantifying the individual 
contribution of a given climate extreme to the net seasonal and 
annual carbon balance thus requires model experiments designed 
to isolate these effects.

Using an ensemble of 11 DGVMs with idealized simulations to 
attribute CO2 flux anomalies to the individual impacts of spring 
(SMAM) and summer (SJJA) abnormal climate conditions, we found 
more widespread positive and negative legacy effects from warm 
spring to summer carbon fluxes during DH2018 than shown by 
Buermann et al. (15). In their study, Buermann et al. (15) used global 
simulations at coarser spatial and temporal resolution and considered 
the whole period 1982–2011 by comparing differences between summer 
and spring anomalies over multiple years, in which warm springs are 
not always necessarily followed by warm/dry summer conditions. 
Here, we focus on an extreme isolated event and our results are based 
on factorial runs designed to specifically attribute direct concurrent 
and legacy effects of spring (and summer) conditions to carbon flux 
anomalies. Our results are, thus, valid only for the specific case of the 
extreme spring and summer of 2018, in which the legacy signal is 
probably stronger than in other years.

We assess the effects of aggregated spring climate anomalies in 
2018 on carbon and water fluxes. These anomalies include slightly 
below-average rainfall and increased spring radiation. Because warming/
brightening and drying are coupled through surface feedbacks (14), 
identifying the individual contribution of spring warming versus 
spring rainfall and radiation, or the individual role of vegetation in 
amplifying or dampening summer climate anomalies would require 
specific simulations or the analysis of multiple events with different 
anomaly combinations. Nevertheless, the method proposed here 
to quantify the individual contribution of a given climate anomaly 
could be applied on single climate variables to isolate their individual 
effect. The method could further be extended to other events and 
used to evaluate legacy effects from other seasons (e.g., winter), provid-
ing a more comprehensive understanding on seasonal compensation 
effects in the carbon cycle.

We have found that the MMEM of key variables simulated by 
DGVMs generally matches well several observation-based datasets. 
Both the spatial patterns and seasonal dynamics of drought was 
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shown to be well captured by the DGVM MMEM compared to both 
SM from ERA5 and surface SM from satellite microwave measure-
ments (figs. S4 and S6). Likewise, the DGVM MMEM also shows 
good agreement in the spatial patterns of summer 2018 GPP anomalies 
compared to the FLUXCOM data-driven product based on eddy 
covariance measurements and of simulated aboveground biomass 
changes with vegetation optical depth from satellite microwave ob-
servations (figs. S4 and S5). Schewe et al. (3) analyzed simulations 
from global vegetation models (some of them used in this study) 
and concluded that models underestimated the impacts of extreme 
events on ecosystems. We find that the DGVM MMEM locates 
extremes in GPP consistent with FLUXCOM, especially during 
summer. A possible reason for the better agreement of the simula-
tions in this study with observations compared to global runs of the 
same models is the use of the new ERA5 forcing, which has improved 
performance in Europe (18), and increased temporal and spatial 
resolution compared to previous global DGVM simulations, which 
should better represent spatial and temporal extremes in climate 
variables.

Despite the good agreement between DGVM MMEM and 
observation-based datasets, there is still a large dispersion among 
models in the strength (and in a few cases, the sign) of the flux 
anomalies (Fig. 4, Table 1, and fig. S9). The good skill of the MMEM 
in spite of the wide model range in modeled carbon fluxes in response 
to climate anomalies is not particular to our study. For example, 
Bastos et al. (19) have shown the improved performance of the 
ensemble mean of 16 DGVMs (relative to that of individual models) 
in capturing the response of tropical ecosystems to El Niño warming 
and drying, compared with atmospheric data and satellite observa-
tions. We find that models differ more (i.e., have a wider between- 
model range) in their estimates of the absolute anomalies in spring 
and summer 2018 than in the individual contribution of spring and 
summer climate anomalies to carbon fluxes (Table 1). Although the 
individual impacts of each season cannot be validated with observa-
tions, this increases confidence in our findings about seasonal direct 
and legacy effects. Nevertheless, our results highlight the need for 
caution when quantifying climate impacts using individual models.

Last, extreme events and the response of ecosystems are expected 
to be modulated by local conditions, for examples, local soil depth 
and texture or tree species composition, which cannot be captured 
by these large-scale simulations. We also note that DGVMs do not 
simulate wetlands and peatlands that usually keep high water tables. 
Rooting depth in DGVMs is also highly variable, and root water 
uptake processes are usually oversimplified (20). To understand 
how these limitations affect DGVM estimates, results can be evaluated 
by direct site-scale simulations and direct comparison with eddy 
covariance data.

CONCLUSIONS
In summer 2018, Europe registered the largest extent affected by 
extreme drought when compared with previous extreme summers 
of 2003 and 2010 (DH2003 and DH2010). However, not all areas 
under extreme drought were associated with extreme summer heat 
or precipitation deficits. The 2018 extreme summer drought and heat 
event differed from DH2003 and DH2010 by (i) its geographical 
distribution, centered in higher-latitude regions; (ii) a sudden tran-
sition from wet spring to dry summer conditions; and (iii) a strong 
preceding heat wave in spring.

We found strong regional asymmetries with different sign of the 
carbon flux anomalies during extreme drought between central/
eastern Europe (reduced CO2 uptake) and Scandinavian (increased 
CO2 uptake) ecosystems, supported by observation-based datasets. 
Using process-based models, we show that DH2018 affected negatively 
ecosystems’ CO2 uptake, consistent with previous findings for DH2003 
and DH2010. The asymmetries in summer CO2 uptake were rather 
explained by distinct legacy effects of spring warming and brightening 
to the summer SM deficits and carbon cycle fluxes, partly mediated 
by distinct vegetation responses to progressive drying. Our results 
thus support a negative direct impact of extreme summer drought 
and heat on ecosystems, expected to increase in frequency or intensity 
in the future. Whether these summer carbon losses might be com-
pensated by a comparable increase in favorable spring conditions 
depends on the evolution of seasonal climate patterns.

Moreover, our results stress the importance of spring climate 
conditions and of ecosystem dynamics in amplifying or dampening 
the summer carbon and water anomalies, which can potentially be 
useful to predict summer extremes in advance. The important role 
of land cover in mediating the seasonal legacy effects and attenuating/
amplifying impacts of summer drought suggests a potential role of 
future land-management strategies under increasing temperature 
to influence patterns of summer heat waves and droughts. Future 
modeling experiments evaluating the role of vegetation cover in 
mediating the development of drought-heat extremes are needed.

MATERIALS AND METHODS
Climate fields
Here, we use the most recent atmospheric reanalysis from the European 
Center for Medium-Range Weather Forecast (ECMWF), the ERA5 
Reanalysis, which provides climate fields at 0.25° spatial and hourly 
temporal resolution from 1979 until present. ERA5 has several improved 
features compared to the ERA-Interim product, particularly finer 
spatial and temporal resolution, which allow better representation 
of extremes, and improved performance over Europe relative to other 
datasets, particularly SM (18). Although SM is not used as forcing 
for our model simulations, the better performance of ERA5 is indicative 
of improved hydrology.

Drought conditions
To assess agricultural drought conditions, we use the volumetric 
soil water content fields from ERA5 (0 to 289 cm). To compare 
between regions and with simulated SM from DGVMs, which have 
variable soil depth, we analyze standardized anomalies (z-score units). 
These are calculated by removing the average seasonal cycle and 
dividing by the long-term SD on a pixel basis. Extreme drought 
was defined as values of SManom below −2.5 SD units, and severe 
drought was defined as values of SManom between −2.5 and − 2 SD 
units. The extent affected by extreme and severe drought was calcu-
lated by summing up the area corresponding to the pixels within 
each drought class. Extreme and severe droughts are, however, depen-
dent on how drought is calculated. We therefore further estimate 
drought conditions by analyzing the probability distribution of 
SM for each pixel, as proposed by Sheffield et al. (21). We first 
evaluate the probability distribution that provides the best fit for 
the pixel’s summer SManom over the 40 years (evaluated by the 
Kolmogorov-Smirnov test) and then calculate the cumulative prob-
ability of a given SManom.
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FLUXCOM
FLUXCOM uses carbon and energy fluxes and meteorological mea-
surements at site-level, gridded spatial-temporal information from 
remote sensing (RS) and meteorological datasets (Meteo) together 
with machine learning (ML) techniques to scale up these fluxes to 
global extents (16, 22). The purely data-driven estimates are in-
dependent to process-based DGVM model output. Here, we use the 
ensemble estimate of GPP from three ML methods together with 
two flux partitioning methods (RS + Meteo) driven by daily ERA5 
meteorological forcing for the period 1979–2018. The FLUXCOM 
product is known to underestimate the magnitude of interannual 
variability (22). Therefore, we show results of GPP and TER anomalies 
as standardized anomalies.

Above-ground biomass and SM from L-VOD
The SMOS-IC SM and L-VOD data were retrieved from a two- 
parameter inversion of the L-MEB model (L-band microwave emission 
of the biosphere) from the multiangular and dual-polarized SMOS 
observations between 2010 and 2018 (23). We used the SMOS SM 
and L-VOD product in the IC version (24).

We used the 30 “best” observations from the combined observa-
tions acquired from the ascending and descending orbits. Best ob-
servations were selected based on the criteria of lowest values of the 
TB-RMSE (brightness temperature – root mean square error) index, 
an index used to evaluate the impact of radio-frequency interference 
(RFI) effects (24). All observations were initially filtered by consider-
ing the condition TB-RMSE ≤ 8K to ensure low overall RFI effects.

The annual median of the L-VOD index has been found to be a 
good proxy of above-ground biomass (25). The SMOS-IC product 
has been found to be very accurate in several intercomparison studies 
of microwave remotely sensed L-VOD and SM retrievals.

Model simulations
To evaluate the response of ecosystems to the climate anomalies, we 
used 11 DGVMs: CABLE-POP (26), ISBA-CTRIP (27), DLEM (28), 
ISAM (29), JSBACH (30), LPJ-GUESS (31), LPX (32), OCN (33), 
ORCHIDEE (34), ORCHIDEE-MICT (35, 36), and SDGVM (37). 
Three factorial simulations were run for the European domain 
between 32°N and 75°N and −11°E and 65°E, following a spin-up to 
equilibrate carbon pools.

In simulation SRef, the models were forced with observed annual 
CO2 concentration and changing climate between 1979 and 2018 
and fixed land-cover map from 2010 (table S1). The CO2 concentra-
tion values were obtained from (38); the climate fields were the hourly 
fields from ERA5 reanalysis dataset described above; and the land- 
cover map was obtained from the LUH2v2h dataset (39). The effects of 
land-use change were not considered because they should not con-
tribute significantly to annual anomalies, and our focus is the effect 
of climate extremes on ecosystem dynamics. For those models in-
cluding nitrogen cycling, nitrogen forcing from the N2O Model Inter- 
Comparison Project (NMIP) project was used (40).

Two additional simulations for 2018 were run in which the 
DGVMs were forced with the 2018 fields from ERA5 in all months 
except spring (MAM; simulation SMAM) and summer (JJA; simula-
tion SJJA), which were forced with climatological values (average 
hourly fields for 1979–2018) as described in table S1. The difference 
between the baseline simulation (SRef) and SMAM (SJJA) provides the 
individual contribution of spring (summer) climate to the anomalies 
in the concurrent season (i.e., the direct effects of MAM or JJA climate 

anomalies on surface energy, water, and carbon exchanges) and in 
the subsequent seasons. Because the simulations SMAM and SJJA are 
run until the end of 2018 with the same climate forcing as SRef, the 
differences in the simulated surface exchanges in the subsequent 
seasons can only be due to legacy effects on SM from the climate 
anomalies in spring (SMAM) or summer (SJJA) combined with the 
response of ecosystems to those anomalies.

Because models show a wide range of anomaly responses to 
droughts and a few models stand out as outliers, we use MMEM, 
instead of a simple mean, for the ensemble estimates. The weights 
were based on the model’s correlation of the European-scale spatial 
and temporal variability of GPP between March and August with 
that of FLUXCOM.

Water-use efficiency was defined as WUE = GPP/ET, because 
not all models output transpiration separately. Likewise, not all 
models output GPP and ET per plant functional type individually. 
Therefore, to estimate WUE in the two study regions for different 
land-cover types, pixel-level WUE was weighted by the correspond-
ing land-cover fraction of forests, grasslands, and croplands in 
LUH2v2h, but it should be noted that these values will still include 
mixed signals from the three vegetation classes.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/24/eaba2724/DC1
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