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P L A N T  S C I E N C E S

Information theory tests critical predictions of plant 
defense theory for specialized metabolism
Dapeng Li1, Rayko Halitschke1, Ian T. Baldwin1*, Emmanuel Gaquerel2,3*

Different plant defense theories have provided important theoretical guidance in explaining patterns in plant 
specialized metabolism, but their critical predictions remain to be tested. Here, we systematically explored the 
metabolomes of Nicotiana attenuata, from single plants to populations, as well as of closely related species, using 
unbiased tandem mass spectrometry (MS/MS) analyses and processed the abundances of compound spectrum–
based MS features within an information theory framework to test critical predictions of optimal defense (OD) and 
moving target (MT) theories. Information components of plant metabolomes were consistent with the OD theory 
but contradicted the main prediction of the MT theory for herbivory-induced dynamics of metabolome compo-
sitions. From micro- to macroevolutionary scales, jasmonate signaling was confirmed as the master determinant 
of OD, while ethylene signaling provided fine-tuning for herbivore-specific responses annotated via MS/MS 
molecular networks.

INTRODUCTION
Structurally diverse specialized metabolites are central players in 
plants’ adaptations to their environments and particularly in their 
defense against enemies (1). The spectacular diversification of 
specialized metabolism found in plants inspired several decades 
of intense research about its multifaceted ecological functions and 
nucleated a long list of plant defense theories that provided important 
guidance to empirical studies of the evolution and ecology of plant- 
insect interactions (2). However, these plant defense theories did not 
follow the canonical path of hypothetical-deductive reasoning in 
which critical predictions are posed at the same levels of analysis (3) 
and tested experimentally to advance the next cycle of theory devel-
opment (4). Technical constraints limited data acquisition to specific 
metabolic classes, precluded the comprehensive profiling of specialized 
metabolites, and consequently prevented the among-taxa comparisons 
that were essential for theory advancement (5). This lack of compre-
hensive metabolomics data and the processing workflows to com-
pare the metabolic space among different plant taxa in a common 
currency thwarted the scientific maturation of the field.

Recent advances in the field of tandem mass spectrometry (MS/
MS) metabolomics are allowing for comprehensive characterizations of 
metabolic variations within and among species of given phylogenetic 
clades and can be combined with computational methods for the 
calculation of structural similarity among these complex mixtures 
without a priori chemical knowledge (5). This combination of ana-
lytical and computational advances provides the missing framework 
required for the rigorous testing of many predictions made by the 
long-standing ecological and evolutionary theories on metabolic 
diversity. Information theory, first introduced by Shannon (6) in 
his seminal article in 1948, laid the groundwork for a mathematical 
analysis of information, which has been adopted by many fields 
beyond its original applications. In genomics, information theory 
has been successfully applied to quantify sequence conservation 

information (7), and in a transcriptomics study, information theo-
ry parsed the global changes that occur in the transcriptome (8). 
In a previous study, we applied the information theory statistical 
framework to metabolomics to describe tissue-level metabolic 
specialization in plants (9). Here, we combine an MS/MS-based 
workflow with the statistical framework of inform ation theory to 
characterize metabolic diversity in a common currency so as to 
compare critical predictions of plant defense theories for herbivory- 
induced metabolomes.

Plant defense theoretical frameworks are frequently mutually 
inclusive and can be classified into two groups: those that attempt 
to explain the distribution of plant specialized metabolites based on 
defensive function, such as the optimal defense (OD) (10), moving 
target (MT) (11), and apparency (12) theories, whereas others seek 
mechanistic explanations in how variation in resource availability 
influences plant growth and specialized metabolite accumulations, 
for instance, the carbon:nutrient balance hypothesis (13), the growth 
rate hypothesis (14), and the growth-differentiation balance hypothesis 
(15). These two groups of theories are posed at different levels of anal-
ysis (4). However, two theories, both addressing defensive functions 
at the functional level, have dominated the dialogue about plant 
constitutive and inducible defenses: the OD theory, which hy-
pothesized that plants invest their costly chemical defense only when 
needed, for instance, when attacked by herbivores, thus directionally 
allocating compounds with defensive function according to the 
probability of future attack (10); and the MT hypothesis, which 
proposes that axes of directional metabolite changes do not exist 
but rather that metabolites change randomly, thereby creating a 
metabolic “moving target” that could thwart the performance of 
attacking herbivores. That is, the two theories present contrasting 
predictions about the metabolic reconfigurations that occur after 
herbivore attack: the unidirectional accumulations of metabolites with 
defense functions (OD) versus nondirectional metabolic changes 
(MT) (11).

The OD and MT hypotheses address not only induced changes 
within metabolomes but also the ecological and evolutionary conse-
quences of these metabolite accumulations, such as the associated 
fitness costs and benefits of these metabolic changes in specific 
ecological contexts (16). While both hypotheses acknowledge the 
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defensive function of specialized metabolites, which may or may 
not be costly to produce, critical predictions that differentiate OD 
and MT hypotheses lie in the directionality of induced metabolic 
changes. The predictions of the OD theory have received the most 
experimental attention to date. These tests include investigations of 
the variations in specific compound classes with either direct or 
indirect defense functions across different tissues and ontogenetic 
stages in plants under both glasshouse and natural conditions (17–19). 
However, to date, the central distinguishing prediction of the two 
theories, namely, the directionality of the metabolic changes, remains 
to be tested because of the lack of workflows and statistical frame-
works to conduct a globally comprehensive analysis of metabolic 
diversity of any organism. Here, we provide such an analysis.

One of the most notable characteristics of plant specialized 
metabolites is their extreme structural diversity at all levels ranging 
from single plants, populations to congeneric species (20). Much of 
the quantitative variation in specialized metabolites can be observed 
at a population scale, whereas strong qualitative differences are 
commonly maintained at the level of species (20). Plant metabolic 
diversity is hence a primary dimension of functional diversity, 
reflecting adaptations to different ecological niches, particularly those 
that differ in the probability of attack from a broad range of insects, 
including specialist and generalist herbivores (21). Interactions with 
various insects have been recognized as important selective pressures 
since Fraenkel’s (22) seminal article on the raison d’être of plant 
specialized metabolites, and these interactions are thought to have 
sculpted plant metabolic pathways during evolution (23). Interspecies 
variations in specialized metabolite diversity may additionally reflect 
physiological trade-offs associated with constitutive and induced 
plant defense strategies against herbivory, as the two are frequently 
negatively correlated with each other across species (24). While being 
well defended at all times may be advantageous, timely defense- 
related metabolic changes provide clear benefits in allowing plants 
to allocate valuable resources to other physiological investments 
(19, 24) and avoid collateral damage to mutualists (25). In addition, 
these insect herbivory-induced reconfigurations of specialized 
metabolite production can lead to disruptive distributions in pop-
ulations (26) and may reflect direct readouts of substantial natural 
variation in jasmonate (JA) signaling, with high and low JA signal-
ing being likely maintained in populations by trade-offs between 
defense against herbivores and competition with conspecifics (27). 
Furthermore, specialized metabolite biosynthetic pathways can 
undergo rapid loss and gain transitions during evolution, resulting 
in patchy metabolic distributions among closely related species (28). 
These polymorphisms can be rapidly established in response to chang-
ing herbivory regimes (29), implying that fluctuations in herbivore 
communities are key factors driving metabolic heterogeneity.

Here, we specifically addressed the following questions. (i) How 
are plant metabolomes reconfigured by insect herbivory? (ii) What 
principle information components of the metabolic plasticity can 
be quantified to test predictions of long-standing defense theories? 
(iii) Is the reprogramming of plant metabolomes conducted in an 
attacker-specific fashion, and if so, what roles do phytohormones 
play in tailoring the specific metabolic responses, and which metab-
olites contribute to the species specificity of elicited defense? (iv) As 
many defense theories make predictions that scale across levels of 
biological organization, we asked how consistently do the elicited 
metabolic responses scale from intra- to interspecific comparisons? 
To this end, we systematically explored the leaf metabolomes of 

Nicotiana attenuata, an ecological model plant with rich specialized 
metabolism and its response to attack from two native herbivores, 
larvae of lepidopteran Manduca sexta (Ms), a tobacco hornworm 
“specialist” that feeds largely on Solanaceae plants and Spodoptera 
littoralis (Sl), the cotton leaf worm, a “generalist” that feeds on host 
plants from the Solanaceae plus a broad range of other host plants 
from other genera and families. We parsed MS/MS metabolomics 
spectra and extracted information theory statistical descriptors to 
contrast predictions of OD and MT theories. Specificity maps were 
created to reveal the identity of key metabolites. The analysis was 
extended to N. attenuata’s native populations and closely related 
Nicotiana species to further dissect covariations among phyto-
hormone signaling and OD inductions.

RESULTS
Statistical descriptors of metabolic plasticity 
and information content from large-scale MS/MS data
To capture a holistic picture of the plasticity and structure of the 
herbivory-induced leaf metabolomes of N. attenuata, we used a 
previously developed analytical and computational workflow to com-
prehensively collect and deconvolute high-resolution data-independent 
MS/MS spectra from plant extracts (9). This indiscriminant approach 
(termed MS/MS) allows for the construction of nonredundant com-
pound spectra that are subsequently used for all compound-level 
analyses presented here. These deconvoluted plant metabolomes 
are highly diverse and composed of hundreds to thousands of 
metabolites (here, ~500- to 1000-s MS/MSs). Here, we consider 
metabolic plasticity in an information theory framework and quan-
tify the diversity and specialization of a metabolome based on the 
Shannon entropy of the metabolic frequency distribution. Using 
previously implemented formulae (8), we calculated a set of indices 
that allow for the quantification of metabolome diversity (Hj index), 
metabolic profile specialization (j index), and metabolic specificity of 
individual metabolites (Si index). In addition, we applied a relative 
distance plasticity index (RDPI) to quantify metabolome inducibility 
by herbivory (Fig. 1A) (30). Within this statistical framework, we 
consider MS/MS spectra as basic information units and process 
MS/MSs relative abundances into frequency profiles from which 
metabolome diversity is estimated using Shannon entropy. Metabo-
lome specialization is measured as the average degree of specificity of 
individual MS/MS spectra. Consequently, an increase in abundance 
of certain groups of MS/MSs after herbivore elicitation translate into 
an increase in profile inducibility, the RDPI, and specialization, the 
j index, as more specialized metabolites are produced, generating 
high Si indices, whereas a decrease in Hj diversity index reflects that 
either fewer MS/MSs are being produced or that the profile frequency 
distribution is changing toward less uniformity, simultaneously re-
ducing its overall uncertainty. With the Si index calculation, it was 
possible to highlight which MS/MSs are specific to certain herbivory 
elicitations and, reciprocally, which are relatively nonresponsive to 
elicitation, a key metric that allows MT and OD predictions to be 
distinguished.

Predictions of plant defense theories reformulated 
in the axes of information theory descriptors
Using information theory descriptors, we interpret OD theory to 
predict that the herbivory-induced changes in specialized metabolites 
from the uninduced constitutive state will result in (i) an increase in 
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Fig. 1. Testing and contrasting the predictions of OD and MT theories using an information theory statistical framework. (A) Statistical descriptors—inducibility 
(RDPI), diversity (Hj index), specialization (j index), and metabolite specificity (Si index)—for herbivory-elicited (H1 to Hx) MS/MS profiles. Increased specialization (j) 
indicates that, on average, more herbivory-specific metabolites are produced, whereas decreased diversity (Hj) indicates either fewer produced metabolites or that 
metabolite distribution within profiles is less uniform. Si value evaluates whether a metabolite is specific to a given condition (here, herbivory) or is, in contrast, 
maintained at the same level. (B) Conceptualized diagrams for defense theory predictions using information theory axes. OD theory predicts that herbivore attack 
increases defense metabolites, thereby increasing j. Simultaneously, Hj decreases, as profiles are reorganized toward lowered metabolic information uncertainty. MT 
theory predicts that herbivore attack results in nondirectional changes in the metabolome, increasing Hj as an indicator of increased metabolic information uncertainty 
and creating a random distribution of Si. We additionally propose a mixed model, the optimal MT in which some metabolites with high defensive value specifically 
increase (high Si values), while others exhibit random responses (lower Si values).
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metabolome specialization (j index) driven by increases in the 
metabolic specificity (Si index) of certain groups of specialized me-
tabolites with high defense value and (ii) a decrease in metabolome 
diversity (Hj index) caused by changes in the metabolic frequency 
profiles to more leptokurtic distributions. At the individual metab-
olite level, an orderly Si distribution in which metabolites increase 
Si values according to their defense values is expected (Fig. 1B). Along 
this line, we interpret the MT theory to predict that elicitation will 
result in (i) a decrease in j index as a result of nondirectional 
changes in metabolites and (ii) an increase in the Hj index caused 
by increasing levels of metabolic uncertainty or randomness, the 
generalized form of diversity that can be quantified by Shannon 
entropy. As for the metabolic composition, the MT theory would 
predict a random distribution of Si. Considering that some metab-
olites are specific to certain conditions but nonspecific to others and 
their defense value is context dependent, we additionally propose a 
mixed defense model, in which j and Hj increase in both directions 
following the Si distribution that only certain groups of metabolites, 
which have high defensive values, will specifically increase in Si, 
while others will have a random distribution (Fig. 1B).

Information theory–analyzed reconfigurations of  
leaf metabolomes by insect feeding follow OD  
theory predictions
To test the reformulated predictions of the defense theories in the 
axes of information theory descriptors, we reared larvae of either 
the specialist (Ms) or a generalist (Sl) herbivore on leaves of rosette- 
stage N. attenuata plants (Fig. 2A). Using MS/MS analysis, we 
retrieved 599 nonredundant MS/MS spectra from methanolic ex-
tracts of leaf tissues collected after caterpillar feeding (data file S1). 
Visualizing reconfigurations of the information content in MS/MS 
profiles using the RDPI, Hj and j indices revealed intriguing pat-
terns (Fig. 2B). A general trend was the time-dependent increases 
in all degrees of metabolic reorganizations as described by the in-
formation descriptors as caterpillars continuously fed on leaves: 
72 hours after herbivore feeding, RDPI was strongly enhanced; Hj 
was significantly decreased compared with undamaged controls as 
a result of an increase in specialization of the metabolic profile as 
quantified by the j index. This clear trend was in agreement with 
the predictions of OD theory and inconsistent with the main pre-
dictions of MT theory, which posits that stochastic (nondirectional) 
changes of metabolite levels are used as a defensive camouflage 
(Fig. 1B). Direct feeding by the two herbivores, albeit differing in 
their oral secretion (OS) elicitor contents and feeding behaviors (31), 
resulted in similar directional changes in Hj and j at both 24- and 
72-hour harvests. The only discrepancy occurred in RDPI at 72 hours 
for which Sl feeding elicited a greater overall metabolic inducibility 
compared to that elicited by Ms feeding.

To explore whether these metabolome-level herbivory-induced 
reconfigurations are reflected in changes at the level of individual 
metabolites, we first focused on metabolites which were previously 
investigated in N. attenuata leaves with proven antiherbivory func-
tions. Phenolamides are hydroxycinnamic-polyamine conjugates that 
accumulate during insect herbivory and are known to decrease insect 
performance (32). We retrieved the precursors of the corresponding 
MS/MSs and plotted their accumulation kinetics (fig. S1). As expected, 
phenolic derivatives such as chlorogenic acid (CGA) and rutin, which 
are not directly involved in antiherbivory defense, were down- 
regulated after herbivory. In contrast, phenolamides were highly 

enhanced by herbivory. The continuous feeding by the two herbi-
vores resulted in almost identical elicitation profiles of phenolamides, 
a pattern that was particularly apparent for the de novo synthesized 
phenolamides. The same phenomenon was observed when exploring 
the 17-hydroxygeranyllinalool diterpene glycosides (17-HGL-DTGs) 
pathway that produces abundant acyclic diterpenes with potent 
antiherbivore functions (33), in which similar expression profiles 
were triggered by Ms and Sl feeding (fig. S1).

Simulated herbivory recapitulates directionality and species 
specificity of leaf metabolome changes
Possible drawbacks of direct herbivore feeding experiments are 
the herbivore-specific differences in leaf consumption rates and 
timing of feeding that make it difficult to disentangle wounding 
and herbivore-specific effects induced by herbivory. To better resolve 
the herbivore species specificity of induced leaf metabolic responses, 
we mimicked Ms and Sl larval feeding by immediately applying 
freshly collected OSs (OSMs and OSSl) to standardized puncture W 
in leaves at consistent leaf positions. This procedure, referred to 
as the W + OS treatment, standardizes the elicitation by precisely 
timing the initiation of herbivory elicited responses without the con-
founding effects of differences in rates or amounts of tissue loss 
(Fig. 2A) (34). Using the MS/MS analytical and computational 
pipeline, we retrieved 443 MS/MS spectra (data file S1), which largely 
overlapped with those previously assembled from the direct feeding 
experiment. An information theory analysis of this MS/MS dataset 
revealed that the reprogramming of the leaf specialized metabolome 
by simulated herbivory exhibited OS-specific elicitations (Fig. 2C). 
In particular, OSMs elicited a stronger increase in metabolome spe-
cialization at 4 hours than did the OSSl treatment. Notably, metabolic 
kinetics visualized in a two-dimensional space using Hj and j as 
coordinates were consistent with a directional increase over time of 
metabolome specialization in response to simulated herbivory treat-
ments as compared to the direct herbivore feeding experiment dataset 
(Fig. 2D). In parallel, we quantified levels of amino acids, organic 
acids, and sugars (data file S2) to investigate whether this directional 
increase in metabolome specialization in response to simulated her-
bivory resulted from reconfigurations of central carbon metabolism 
(fig. S2). To better interpret this pattern, we further monitored met-
abolic accumulation kinetics of the previously discussed phenolamide 
and 17-HGL-DTG pathways. The herbivore OS-specific induction 
translated into differential reconfiguration patterns within phenol-
amide metabolism (fig. S3). Phenolamides containing coumaroyl and 
caffeoyl moieties were preferentially induced by OSSl elicitation, while 
OSMs triggered a specific induction of feruloyl conjugates. For the 
17-HGL-DTG pathway, an OS differential elicitation effect was 
detected for the downstream malonylated and dimalonylated pro-
ducts (fig. S3).

An early priming of transcriptome specialization underlies 
metabolome specialization
We next investigated OS-elicited transcriptome plasticity using a 
time-course microarray dataset that simulated herbivory using OSMs 
treatments to leaves of rosette-stage N. attenuata plants; the sampling 
kinetics largely overlapped with those used in the present metabolo-
mics study (35). Compared with metabolome reconfigurations in 
which metabolic plasticity particularly increased over time, we 
observed a transient burst of transcription in leaves induced by Ms, 
in which transcriptome inducibility (RDPI) and specialization (j) 
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were strongly enhanced at 1 hour, whereas diversity (Hj) was strongly 
decreased at this time point, followed by a relaxation of transcrip-
tome specialization (fig. S4). Metabolic gene families such as P450, 
glycosyltransferases, and BAHD acyltransferases involved in the as-
sembly of specialized metabolites from building blocks derived from 
primary metabolism followed the early high specialization pattern 
described above. The phenylpropanoid pathway was analyzed as a 
case study, and this analysis confirmed that core genes in phe-
nolamide metabolism were highly OS-induced and tightly core-
configured in their expression patterns during herbivory compared 

to those of unelicited plants. The transcription factor, MYB8, and 
structural genes, PAL1, PAL2, C4H, and 4CL, in the upstream 
part of this pathway exhibited early priming of transcriptions. 
Acyltransferases such as AT1, DH29, and CV86 that function in the 
final assembly of phenolamides exhibited prolonged up-regulated 
patterns (fig. S4). The above observations suggest that the early 
priming of transcriptome specialization and the late enhancement 
of metabolome specialization are coupled patterns, likely as a result 
of synchronized regulatory systems that launch robust defense 
responses.
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Fig. 3. Phytohormone signaling shapes the herbivore-specific metabolic information content of elicited leaves. (A) Coexpression network analysis based on PCC 
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Phytohormone signaling shapes herbivore-specific changes 
in the information content of leaf metabolic profiles
Reconfigurations in phytohormonal signaling act as regulatory 
layers that integrate herbivory information to reprogram a plant’s 
physiology. We measured accumulation kinetics for key phyto-
hormonal classes after herbivory simulation and visualized temporal 
coexpression among these [Pearson correlation coefficient (PCC) of 
>0.4] (Fig. 3A). As expected, phytohormones that are biosynthetically 
related were linked within the phytohormone coexpression networks. 
Furthermore, metabolic specificity (Si index) was mapped onto this 
network to highlight phytohormones that were differentially induced 
by the different treatments. Two dominant regions of herbivory- 
specific responses were mapped: one within the JA cluster, in which JA, 
its bioactive form JA-Ile, and other JA derivatives exhibited the highest 
Si scores; and another one was for ethylene (ET). Gibberellins ex-
hibited only moderate increases in herbivore specificity, while other 
phytohormones such as cytokinins, auxins, and abscisic acid exhibited 
low specificity to the herbivore elicitation. Strong specificity indices 
for JAs essentially translated from the amplification of peaking values 
of JA derivatives by OS application (W + OS) compared with W + W 
alone. Unexpectedly, OSMs and OSSl, which are known to differ in 
their elicitor contents (31), induced similar accumulations of JA and 
JA-Ile. ET was specifically and strongly induced by OSMs application, 
contrasting with OSSl, which did not amplify the basal wound re-
sponse (Fig. 3B).

Next, we used N. attenuata transgenic lines modified in key steps 
in JA and ET biosynthesis (irAOC and irACO) and perception 
(irCOI1 and sETR1) to analyze the relative contribution of these two 
phytohormones to herbivory-induced metabolic reprogramming. 
Consistent with the previous experiments, we confirmed a general 
decrease in Hj index concomitant with an increase in j index as 
a result of herbivore-OS elicitation in empty vector (EV) plants 
(Fig. 3, C to D) and that OSMs-elicited responses were more pro-
nounced than those triggered by OSSl. Specific deregulations were 
visualized using biplots with Hj and j as coordinates (Fig. 3E). The 
most obvious trend was that herbivory-elicited changes in metabo-
lome diversity and specialization were almost fully erased in JA 
signaling–deficient lines (Fig. 3C). In contrast, silenced ET per-
ception in sETR1 plants, while having a much lower impact on the 
overall magnitude of herbivory-metabolic changes than JA signaling, 
attenuated differences in Hj and j indices between OSMs and OSSl 
elicitations (Fig. 3D and fig. S5). This suggests that ET signaling 
serves as the fine-tuner of the herbivore species–specific metabolic 
responses in addition to the core function of JA signaling. Consistent 
with this fine-tuning function, overall metabolome inducibility was 
not altered in sETR1 plants. On the other hand, irACO plants induced 
a similar overall magnitude of herbivory-elicited metabolic changes 
compared to those of sETR1 plants but exhibited significantly dif-
ferent Hj and j scores between OSMs and OSSl elicitations (fig. S5).

Exploring MS/MS herbivore-specific associations using  
MS/MS structural analysis
To pinpoint specialized metabolites with significant contributions 
to herbivore species–specific responses and whose production was 
fine-tuned by ET signaling, we used a previously developed struc-
tural MS/MS approach. This approach relies on a biclustering method 
for the de novo inference of metabolic families from MS/MS frag-
ment [normalized dot product (NDP)] and neutral loss (NL)–based 
similarity scoring. The MS/MS dataset constructed from the analysis 

of ET transgenic lines resulted in 585 MS/MSs (data file S1), which 
was resolved by biclustering into seven main MS/MS modules (M) 
(Fig. 4A). Some of these modules are densely populated with pre-
viously characterized specialized metabolites: for instance, M1, M2, 
M3, M4, and M7 were enriched with various phenolic derivatives 
(M1), flavonoid glycosides (M2), acyl sugars (M3 and M4), and 
17-HGL-DTGs (M7). Furthermore, metabolic specificity information 
(Si index) was also calculated for individual metabolites in each mod-
ule for which the Si distributions were visualized. Briefly, MS/MS 
spectra that exhibited high herbivory-elicited and genotypic specificity 
were characterized by high Si values with kurtosis statistics showing 
right-tailed leptokurtic distributions. One such leptokurtic distribu-
tion was detected for M1 within which phenolamides exhibited the 
highest Si scores (Fig. 4B). Previously mentioned herbivory-inducible 
17-HGL-DTGs within M7 exhibited medium Si scores, indicative of 
a moderate differential regulation by the two OS types. In contrast, 
mostly constitutively produced specialized metabolites, such as rutin, 
CGA, and acyl sugars, were among the lowest Si scores. To better 
explore the structural intricacies among specialized metabolites 
and their Si distributions, molecular networks were constructed for 
each of the modules (Fig. 4B). One critical prediction of OD theory 
(summarized in Fig. 1B) is that the reorganization of specialized 
metabolites after herbivory should lead to an unidirectional change 
in metabolites that have high defensive values, particularly through 
increases in their specificity, a pattern contrasting to the random 
distribution of defensive metabolites predicted by the MT theory. 
Most phenolic derivatives clustered in M1 have been functionally 
associated with decreases in insect performance (32). When com-
paring Si values within M1 metabolites between induced and con-
stitutive leaves of EV control plants at 24 hours, we observed a clear 
trend of increase in metabolic specificity for many of the metabo-
lites after insect herbivory (Fig. 4C). Specific increases in Si values 
were exclusively detected for defensive phenolamides but not for 
other phenolics and yet unknown metabolites coexisting within this 
module, a specialization pattern that is in agreement with the central 
predictions of OD theory regarding herbivory-induced metabolic 
changes. To test whether this specialization of the phenolamide profile 
translated from OS-specific ET induction, we plotted metabolite 
Si indices with differential expression values elicited between OSMs 
and OSSl in EV and sETR1 genotypes (Fig. 4D). In sETR1, diver-
gences in phenolamide induction between OSMs and OSSl were 
largely attenuated. The biclustering approach was also applied to 
MS/MS data collected in JA-deficient lines to infer main MS/MS 
modules associated with the JA-regulated metabolic specialization 
(fig. S6).

Natural variation in JA bursts underlie intraspecific 
variations in herbivory-induced metabolome specialization
We further extended the analysis from a single N. attenuata geno-
type to natural populations in which intense intraspecific variations 
in herbivory-induced JA levels and specialized metabolites levels 
have been previously described (26). Using this dataset that covers 
43 accessions consisting of 123 individual N. attenuata plants de-
rived from seeds collected at different native habitats in Utah, Nevada, 
Arizona, and California (fig. S7), we calculated metabolome diversity 
(here referred to as population-level  diversity) and specialization 
shaped by OSMs elicitation. Consistent with the previous study, we 
observed a wide range of metabolic variations along Hj and j axes, 
indicating that accessions differ markedly in the plasticity of their 
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metabolic responses to herbivory (fig. S7). This organization is 
reminiscent of previous observation made on the dynamic range 
of variation in herbivory-induced levels of JAs and that extreme 
values are maintained within single populations (26, 36). By testing 
population-level correlations between Hj and j with JA and JA-Ile, 
we found significant positive correlations between JAs and both 
metabolome  diversity and specialization indices (fig. S7). This 
suggested that the herbivory-induced heterogeneity in the elicita-
tion of JAs detected at the population level is likely a key metabolic 
polymorphism resulting from selection from insect herbivores.

Exploring assignments of OS-elicited responses in closely 
related Nicotiana species reveals species-specific 
coordination of specialized metabolites with JA plasticity
Previous research has shown that Nicotiana species largely differ in 
the type and relative reliance on inducible versus constitutive meta-
bolic defenses. These variations in antiherbivore signaling and de-
fenses are thought to be modulated by insect population pressures, 
plant life cycles, and the costs of defense production within the 
ecological niche in which a given species grows. We examined the 

consistency of herbivory-induced reconfigurations of leaf metabo-
lomes in six Nicotiana species, native to North and South America, 
and closely related to N. attenuata, namely, Nicotiana pauciflora, 
Nicotiana miersii, N. attenuata, Nicotiana acuminata, Nicotiana 
linearis, Nicotiana spegazzinii, and Nicotiana obtusifolia (Fig. 5A) 
(37). Six of these species, including the well-characterized species 
N. attenuata, are annuals from the Petunioides clade, while N. obtusifolia 
is a perennial plant from the sister clade Trigonophyllae (38). These 
seven species were subsequently subjected to W + W, W + OSMs, and 
W + OSSl induction to study species-level metabolic reconfigurations 
to insect herbivory.

Using the biclustering approach, we identified nine modules 
of 939 MS/MSs (data file S1). The MS/MS compositions that were 
reconfigured by different treatments differed greatly in different 
modules among species (fig. S8). Visualizing Hj (here referred to as 
species-level  diversity) and j revealed that the different species 
clustered as very distinct groups in the metabolic space, with the 
species-level demarcation effect being frequently more prominent than 
the elicitation effects. Exceptions were N. linearis and N. spegazzinii, 
which exhibited broad dynamic ranges of elicitation effects (Fig. 5B). 
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In contrast, species such as N. pauciflora and N. obtusifolia exhibited 
less pronounced metabolic responses to treatments but greater 
metabolome diversity. The species-specific distributions of induced 
metabolic responses resulted in a significant negative correlation 
between specialization and  diversity (PCC = −0.46, P = 4.9 × 10−8). 
Variations in OS-induced levels of JAs were positively correlated with 
metabolome specialization but negatively correlated with metabolic 
 diversity exhibited by each species (Fig. 5B and fig. S9). Notably, 
species colloquially referred to as “signal responsive” ones in Fig. 5C, 
such as N. linearis, N. spegazzinii, N. acuminata, and N. attenuata 

elicited remarkable OS-specific JA and JA-Ile burst at 30 min, while 
others referred to as “signal nonresponsive” ones such as N. miersii, 
N. pauciflora, and N. obtusifolia showed only marginal inductions 
of JA-Ile and without any OS specificity (Fig. 5C). At the metabolic 
level and as previously described for N. attenuata, signal responsive 
species exhibited an OS-specific and significant increase j concom-
itant with a decrease Hj. This OS-specific elicitation effect was not 
detected in species classified as signal nonresponsive ones (Fig. 5, 
D and E). The OS-specifically elicited metabolites are shared more 
frequently among signal responsive species, which clustered apart 
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Fig. 5. OS-elicited specialized metabolite responses in closely related Nicotiana species reveal species-specific trajectories correlated with plasticity in JA 
signaling. (A) Maximum likelihood–based bootstrapped phylogenetic tree [for nuclear glutamine synthetases (38)] and geographic distribution (37) of seven closely 
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from the signal nonresponsive ones that exhibited less species inter-
dependencies (fig. S8). This result suggested that the OS-specific 
induction of JAs and the OS-specific reconfigurations of downstream 
metabolomes were coupled patterns at the species level.

We next investigated whether these coupling patterns were 
constrained by JA availability using exogenous JA application by 
treating plants with lanolin paste containing methyl JA (MeJA), 
which is rapidly de-esterified to JA in the plant’s cytoplasm. We 
found the same trend of graded changes from signal-responsive 
to signal-nonresponsive species induced by the continuous supply 
of JA (Fig. 5, D and E). Briefly, the MeJA treatment strongly 
reprogramed the metabolomes of N. linearis, N. spegazzinii, N. acuminata, 
N. attenuata, and N. miersii toward pronounced increases in j and 
decreases in Hj. N. pauciflora only showed an increase in j but not Hj. 
N. obtusifolia, which was previously shown to accumulate extremely 
low levels of JAs, was also poorly responsive to MeJA treatment in 
terms of metabolome reconfigurations. These results suggested that 
JA production or signal transduction is physiologically constrained 
in the signal nonresponsive species. To test this hypothesis, we in-
vestigated the transcriptomes of four of the species (N. attenuata, 
N. miersii, N. pauciflora, and N. obtusifolia) induced by W + W, 
W + OSMs, and W + OSSl (39). Consistent with the pattern of me-
tabolome reconfigurations, species were well separated in the tran-
scriptomic space with N. attenuata exhibited the highest OS- induced 

RDPI while N. obtusifolia being the lowest (Fig. 6A). However, the 
transcriptome diversity induced by N. obtusifolia was found to 
be the lowest among the four species, a pattern opposite to the highest 
metabolome diversity of N. obtusifolia previously shown among 
seven species. Previous research has revealed that a group of genes 
involved in early defense signaling, including JA signaling, accounted 
for the specificity of herbivore-associated elicitors induced early de-
fense responses within Nicotiana species (39). Comparing the JA 
signaling pathway among the four species revealed interesting pat-
terns (Fig. 6B). A majority of genes in this pathway, such as AOC, 
OPR3, ACX, and COI1, exhibited comparably high induction levels 
among the four species. However, a key gene, JAR4, which converts 
JA to its bioactive form JA-Ile accumulated transcripts at very low 
levels specifically in N. miersii, N. pauciflora, and N. obtusifolia. In 
addition, transcripts of another gene, AOS, were not detected only 
in N. obtusifolia. These changes in gene expression are likely to be 
responsible for the low JA production in the signal nonresponsive 
species and the extreme phenotype of constrained induction for 
N. obtusifolia.

Impact of species-specific induced responses on  
herbivore resistance
In this last section, we examine how the insect species-specific re-
modeling of metabolomes of different plant species contributed 
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Fig. 6. OS-elicited transcriptome responses in closely related Nicotiana species highlight key genes in the JA signaling pathway responsible for the plant 
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to herbivore resistance. Previous research has highlighted that 
Nicotiana spp. differed greatly in their induced resistance to Ms and 
Sl larval performance (40). Here, we investigated how this pattern 
was linked to their metabolic plasticity. Using the above-mentioned 
four Nicotiana species and testing the correlation between herbivory- 
induced metabolome diversity and specialization and the plants’ 
resistance to Ms and Sl, we found that the resistance to the generalist 
Sl was positively correlated with both diversity and specialization, 
whereas the resistance to the specialist Ms showed weaker cor-
relations with specialization and was not significantly correlated with 
diversity (fig. S10). For resistance to Sl, both N. attenuata and 
N. obtusifolia, previously shown to differ greatly in their responses 
to herbivore induction at both the level of JA signaling and metab-
olome plasticity, showed similarly high levels of resistance.

DISCUSSION
Over the past six decades, plant defense theories have provided theo-
retical frameworks from which researchers have made predictions 
about the evolution and function of the considerable diversity of the 
specialized metabolites of plants. Most of these theories have not 
followed the normal procedures of strong inference (41), presenting 
critical predictions posed at the same levels of analysis (3), which 
would allow the field to move forward when the tests of critical 
predictions allow a particular theory to be supported, while rejecting 
others (42). Instead, new theories made predictions at different levels 
of analysis, adding new descriptive layers of consideration (42). 
However, two theories, MT and OD, posed at the functional level of 
analysis, could be readily interpreted as making critical predictions 
regarding herbivore-induced changes in specialized metabolism: OD 
theory predicted that the changes in specialized metabolism “space” 
would be highly directional, favoring metabolites with high defen-
sive value, while the MT theory posited that the changes would 
be nondirectional and randomly positioned in the metabolic space. 
Previous examinations of the predictions of the OD and MT have 
been tested with a narrow set of a priori “defense” compounds. These 
metabolite-focused tests preclude the analysis of the extent and 
trajectory of metabolome reconfigurations during herbivory and do 
not allow for a consistent statistical framework within which to test 
these critical predictions that require the ability to quantify changes 
in a plant’s metabolome in holistic terms. Here, we used innovations 
in computational MS-based metabolomics and deconvoluted MS 
analyses in the common currencies of information theory descrip-
tors to test the critical predictions posed at the global metabolome 
level that distinguish the two theories. Information theory has been 
applied in many fields, particularly in ecology in the context of bio-
diversity and trophic flow studies (43). However, as far as we know, 
this is the first application to describe plants’ metabolic information 
space and address ecological questions regarding the function of 
temporal metabolic changes in response to environmental cues. In 
particular, the power of the present approach lies in its ability to 
compare patterns within and among plant species to examine how 
herbivory has shaped plant metabolism at different scales in the 
evolutionary hierarchy, from microevolutionary patterns within spe-
cies to among-species macroevolutionary patterns.

Principal components analysis (PCA) that transforms multi-
variable dataset into a reduced dimensionality space such that the 
main trends in the data are interpretable is frequently adopted as 
an exploratory technique to parse datasets such as deconvoluted 

metabolomes. However, dimensionality reduction loses part of 
the information content in the dataset, and PCA provides no quan-
titative information about traits that are particularly germane for 
ecological theory, such as: How does herbivory reconfigure diversity 
(e.g., richness, distribution, and abundance) in specialized metabolites? 
Which metabolites are predictors for a given herbivory-induced state? 
Decomposing the information content of leaf specialized metabolite 
profiles in terms of specificity, diversity, and inducibility revealed that 
herbivore feeding activated idiosyncratic metabolic rearrangements. 
Unexpectedly, we observed that the resulting metabolic landscapes, 
as described by the implemented information theory indices, largely 
overlapped after attack by the two herbivores, Sl, a nocturnal feed-
ing generalist, and Ms, a Solanaceae specialist, despite their distinct 
feeding behaviors and concentrations of fatty acid–amino acid con-
jugate (FAC) elicitors in their OS (31). Simulated herbivory treat-
ments, by treating standardized puncture wounds with herbivore OS, 
revealed similar trends. This standardized procedure of mimicking 
a plant’s responses to herbivore attack removes confounding factors 
caused by variations in herbivore feeding behaviors that result in 
different amounts of damage occurring at different times (34). FACs 
that are known to be the major elicitors in OSMs that induce JA and 
other phytohormonal responses in N. attenuata are hundreds of 
times lower in OSSl (31). However, OSSl elicited similar levels of JA 
accumulations compared to OSMs. The JA response in N. attenuata 
was previously shown to be very sensitive to OSMs in which FACs 
can retain its activity even when diluted 1:1000 with water (44). It is 
thus likely that the FACs in OSSl, albeit low, were sufficient to elicit 
a full induction of JA burst compared to OSMs. Previous studies have 
shown that porin-like proteins (45) and oligosaccharides (46) can 
serve as molecular cues in OSSl that trigger plant defense responses. 
However, it is still unclear whether these elicitors in OSSl were re-
sponsible for the JA accumulations observed in the current study.

While few studies have described differential metabolic finger-
prints induced by different herbivores or exogenous JA or SA (salicylic 
acid) applications (47), none have conducted a systemic exploration of 
herbivore species–specific perturbations in a plant’s phytohormonal 
network and its holistic consequences for specialized metabolic 
profiles. The present analysis further confirmed that intrinsic hor-
monal network connections with other phytohormones beyond JAs 
shape the specificity of herbivory-induced metabolic reconfigura-
tions. In particular, we detected a markedly larger elicitation of ET by 
OSMs than by OSSl. This pattern is consistent with the greater FACs 
contents in OSMs, which are necessary and sufficient to elicit ET 
bursts (48). ET’s signaling functions for plant specialized metabo-
lite dynamics in the context of plant-herbivore interactions remains 
sporadic and targeted to single compound groups. Moreover, the 
vast majority of research has used exogenous applications of ET or 
its precursors or various inhibitors to study ET’s regulation in 
which these exogenous chemical applications can have numerous 
nonspecific side effects. To our knowledge, this study represents 
the first to conduct a large-scale systematic examination of ET’s 
role in orchestrating a plant’s metabolome dynamics using transgenic 
plants impaired in ET production and perception. The herbivore- 
specific induction of ET was shown to ultimately modulate the 
metabolome response, most notably for the herbivore-specific 
de novo accumulations of phenolamides as revealed by transgenic 
manipulations of ET biosynthetic (ACO) and perception (ETR1) genes. 
ET has previously been shown to fine-tune the JA-induced nicotine 
accumulation by regulating putrescine N- methyltransferases (49). 
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However, it is still unclear mechanistically how ET fine-tunes pheno-
lamide induction. In addition to ET’s signaling functions, invest-
ments in polyamine-based phenolamides could be modulated by 
competitive shunting of metabolic flux into S-adenosyl-l-methionine, 
the common intermediate for both ET and polyamine biosynthetic 
pathways. The mechanisms responsible for the modulation of pheno-
lamide levels by ET signaling remain to be investigated in future work.

Strong focus toward specific metabolic classes due to the sheer 
number of specialized metabolites of unknown structures has long 
precluded rigorous assessments of the temporal shifts in metabolic 
diversity following biotic interactions. A central result from the 
present information theory analysis–based unbiased metabolite- 
derived MS/MS spectra acquisition was that herbivore feeding or 
simulated herbivory consistently lowers the overall metabolic diver-
sity of leaf metabolomes while increasing their degree of specialization. 
This temporal increase in the specialization of metabolomes elicited 
by herbivory is revealed to be coupled with coordinated increases in 
transcriptome specialization. Features contributing most (with high 
Si values) to this greater metabolome specialization were specialized 
metabolites with previously characterized antiherbivory functions. 
This pattern is consistent with the predictions of the OD theory but 
not with MT predictions regarding the stochasticity of the metabo-
lome reprogramming. However, the data were also consistent with 
predictions of a mixed model (optimal MT; Fig. 1B), as other un-
characterized metabolites having yet unknown defensive functions 
may still follow a random Si distribution.

One notable pattern further captured by this study was that dif-
ferent levels of evolutionary organizations, from microevolutionary 
levels (single plants and Nicotiana populations) to larger evolutionary 
scales (closely related Nicotiana species), differed markedly in their 
capacities to “optimally defend” against herbivores. Moore et al. (20) 
and Kessler and Kalske (1) have independently proposed to transpose 
the three functional levels of biodiversity originally distinguished 
by Whittaker (50) to constitutive and induced temporal changes 
in chemodiversity; these authors did not outline procedures either 
for large-scale metabolome data acquisition or for how metabolic 
diversity could be calculated from these data. In the present study, 
minor adjustments to Whittaker’s functional categorization would 
consider -metabolic diversity as the diversity of MS/MS spectra in 
a given plant and -metabolic diversity as the fundamental intra-
specific metabolic space for a set of populations, while -metabolic 
diversity would be the extension of the analysis to congeneric 
species.

JA signaling is central for a broad spectrum of metabolic responses 
to herbivory. However, rigorous quantitative tests on the contribu-
tions of intraspecific modulations of JA biosynthesis to metabolome 
diversity are lacking, and whether JA signaling functions as a general 
locus for stress-elicited metabolic diversification at higher macro-
evolutionary scales has remained elusive. We observed that herbivory- 
induced metabolome specialization in N. attenuata and variations 
of metabolome specialization within N. attenuata populations and 
among closely related Nicotiana species were systematically positively 
correlated with JA signaling. Furthermore, the herbivory-induced 
metabolic specialization on a single genotype basis was largely abol-
ished when JA signaling was impaired (Fig. 3, C and E). As changes 
in the metabolic profiles of natural N. attenuata populations were 
mostly quantitative, variation in metabolic  diversity and special-
ization in this analysis were likely largely driven by the strong elici-
tation of metabolite-rich compound classes that dominating the 

metabolome profile in accessions and resulting in positive correla-
tions with JA signaling.

More revealing was the analysis of closely related Nicotiana 
species as those differed greatly in their biochemical machineries, 
resulting in qualitatively specialized metabolite profiles. The inform-
ation theory processing of the captured metabolic profiles revealed 
a trade-off, exacerbated by the herbivory induction, between meta-
bolic  diversity and specialization. JA signaling plays a central role 
in this trade-off; increases in metabolome specialization, which are 
consistent with the main OD prediction, were positively correlated 
with JA signaling, while JA signaling was negatively correlated with 
metabolic  diversity. These patterns suggested that a plant’s OD 
capacities are largely defined by JA plasticity at both microevolutionary 
and larger evolutionary scales. Exogenous JA application experiments, 
to bypass JA biosynthetic deficiencies, further revealed that closely 
related Nicotiana species could be distinguished as signal responsive 
and signal nonresponsive species just as they were by their patterns 
of JA and metabolome plasticity in response to herbivory induction. 
Signal nonresponsive species were physiologically constrained by 
their inability to produce and respond to endogenous JA, likely due 
to mutations in a few key genes in the JA signaling pathway (AOS 
and JAR4 in N. obtusifolia) of which transcripts were absent. This 
result highlights that these interspecific macroevolutionary patterns 
may largely be driven by variations in internal hormone perception 
and responsiveness.

Beyond plant-herbivore interactions, exploring metabolic diver-
sity is relevant to all important theoretical advances in the study of 
organisms’ adaptations to their environments and complex pheno-
typic trait evolution. With the increase in data volumes acquired by 
modern MS instruments, hypothesis testing regarding metabolic 
diversity can now transcend differences in individual/classes of 
metabolites and proceed to global analyses revealing unsuspected 
patterns. In this process of larger-scale analyses, an important 
metaphor is the idea of constructing a meaningful map from which 
data can be explored. Hence, an important outcome of the present 
combination of unbiased MS/MS metabolomics and information 
theory is that it provides a simple metric with which to construct a 
map that allows for the browsing of metabolic diversity at the different 
taxonomical scales, an essential requirement for the study of micro/
macroevolution and community ecology.

At the macroevolutionary level, core to Ehrlich and Raven’s (51) 
plant-insect coevolution theory is the prediction that interspecific 
variations in metabolic diversity are responsible for lineage diversi-
fication in plants. However, in the five decades since this seminal 
work was published, few tests of this hypothesis have been conducted 
(52), in large part due to the phylogenetic rarity of comparable met-
abolic characters across distant plant lineages that can be used to 
anchor targeted analytical measurements. The present information 
theory–processed MS/MS workflows enable such a taxonomic scale 
comparison of these macroevolutionary patterns in specialized me-
tabolism by quantifying MS/MS structural similarities of unknown 
metabolites, without a priori metabolite selection, and translate these 
MS/MSs into a set of simple statistical indices. The process is analo-
gous to a phylogenetic analysis, which quantifies the rate of diversi-
fication or character evolution using sequence alignment without 
a priori predictions.

At the biochemical level, the screening hypothesis by Firn and 
Jones (53) implies that metabolic diversity is maintained at different 
hierarchical scales to provide the raw material to exapt bioactivities 
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of previously extraneous or alternatively adapted metabolites. In-
formation theory approaches provide a framework in which to quantify 
these evolutionary transitions in metabolite specificity that should 
occur during metabolite exaptation as part of the proposed evolu-
tionary screening processes: from low to high specificity for exapted 
metabolites whose bioactivity becomes adaptive for a given environ-
mental context.

In conclusion, during the early days of molecular biology when the 
seminal plant defense theories were developed, deductive hypothesis– 
driven methods were widely considered to be the only means of 
making scientific advances, in large part due to the technical con-
straints of measuring entire metabolomes. While hypothesis-driven 
approaches are particularly useful in choosing among alternative 
causal mechanisms, their ability to advance our understanding of 
biochemical networks is more limited compared to the computa-
tional methods currently available in contemporary data-intensive 
science. Consequently, theories that made predictions far beyond 
the reach of the available data could not be fully falsified, thereby 
abrogating the hypothesis formulation/testing cycle through which 
a research field makes progress (4). We foresee that the metabolomics 
computational workflow presented here could reinvigorate interest 
in both proximate (how) and ultimate (why) questions regarding 
metabolic diversity and contribute to a new era of theory-guided 
data science that revisits the important theories that inspired previous 
generations.

MATERIALS AND METHODS
Plant treatment and sample preparation
Direct herbivore feeding was conducted by rearing one second instar 
Ms or Sl larvae on one N. attenuata leaf of individual rosette-stage 
plants, each with 10-plant replicates. Insect larvae were clip-caged, 
remaining leaf tissues were collected and flash-frozen at 24 and 
72 hours after infestation, and metabolites were extracted.

Simulated herbivory treatment was conducted in a highly syn-
chronized fashion by producing, with a fabric pattern wheel, three 
rows of punctures onto each side of the midvein of three fully ex-
panded leaves from plants in the rosette stage of growth and imme-
diately applying 1:5 diluted Ms or Sl OSs to the puncture wounds 
with a gloved finger. One treated leaf was harvested and processed 
as described above. Primary metabolites and phytohormones were 
extracted using previously described methods (54).

For exogenous JA applications, three petioles of leaves from each 
of six rosette-stage plants per species were treated with 20 l of 
lanolin paste containing 150-g MeJA (Lan + MeJA), with 20 l 
of lanolin plus wounding treatment (Lan + W), or with 20 l of pure 
lanolin as control. Leaves were harvested at 72 hours after treatment, 
flash-frozen in liquid nitrogen, and stored at −80°C until use.

Four JA and ET transgenic lines, namely, irAOC (36), irCOI1 (55), 
irACO, and sETR1 (48), have been previously characterized in our 
group. irAOC strongly exhibits decreased JA and JA-Ile levels, whereas 
irCOI1 is insensitive to JAs and exhibits increases in JA-Ile accumu-
lations compared to EV. Similarly, irACO attenuates ET production, 
whereas ET-insensitive sETR1 up-regulates ET production in com-
parison to EV.

ET measurement
ET measurements were conducted noninvasively with a photoacoustic 
laser spectrometer (Sensor Sense ETD-300 real-time ET sensor). Half 

leaves were excised immediately after treatment and transferred to 
4-ml sealed glass vials, and the headspace was allowed to accumulate 
over a 5-hour time period. During measurements, each vial was 
flushed with a flow of purified air at 2 liters/hour for 8 min, which 
had previously passed through a catalyzer provided by Sensor Sense 
to remove CO2 and water.

Microarray and RNA sequencing data analysis
Microarray data were originally published in (35) and deposited in 
the National Center for Biotechnology Information (NCBI) Gene 
Expression Omnibus database (accession no. GSE30287). Data 
corresponding to leaves elicited by W + OSMs treatments and un-
damaged controls were extracted for the present study. Raw in-
tensities were log2, and baseline was transformed and normalized 
to their 75th percentile using the R software package, before statis-
tical analysis.

The raw RNA sequencing (RNA-seq) data of Nicotiana species 
were retrieved from the NCBI short reads archive (SRA) under the 
project number PRJNA301787, which was reported by Zhou et al. 
(39) and processed as described in (56). Raw data corresponding to 
W + W, W+ OSMs, and W + OSSl treatments of Nicotiana species 
were selected for the present study analysis and processed as follows: 
raw RNA-seq reads were first converted to FASTQ format. HISAT2 
converted FASTQ to SAM, and SAMtools converted SAM files to 
sorted BAM files. StringTie was used to calculate gene expression as 
fragments per kilobase of transcript per million reads sequenced.

Ultrahigh-performance liquid chromatography–electrospray 
ionization/quadrupole and time-of-flight–MS conditions 
for profile mode analysis and MS/MS data acquisition
An Acclaim column (150 mm by 2.1 mm; particle size 2.2 m) with 
a 4-mm by 4-mm guard column of the same material was used for 
the analysis. The following binary gradient was used with a Dionex 
UltiMate 3000 ultrahigh-performance liquid chromatography (UHPLC) 
system: 0 to 0.5 min, isocratic 90% A [deionized water, 0.1% (v/v) 
acetonitrile and 0.05% formic acid], 10% B (acetonitrile and 0.05% 
formic acid); 0.5 to 23.5 min, gradient phase to 10% A and 90% B; 
23.5 to 25 min, isocratic 10% A and 90% B. Flow rate was 400 l/min. 
For all MS analyses, the column eluent was infused into an Impact 
II (Bruker Daltonics, Bremen, Germany) equipped with quadrupole 
and time-of-flight (qTOF) analyzers and fitted with an electrospray 
source operated in positive ionization mode (capillary voltage, 
4500 V; capillary exit, 130 V; dry temperature, 200°C; dry gas flow, 
10 liters/min).

Data-independent or indiscriminant MS/MS fragmentation anal-
ysis (hereafter referred to as MS/MS) was conducted to gain struc-
tural information about the overall detectable metabolic profile. The 
concept of the indiscriminant MS/MS approach relies on the fact that 
the quadrupole is operated with a very large mass isolation window 
[so that quasi all mass/charge ratio (m/z) signals are considered for 
fragmentation]. For this, several independent analyses are performed 
with increasing collision-induced dissociation collision energy (CE) 
values since the Impact II instrument cannot create CE ramping. 
Briefly, samples were first analyzed by UHPLC–electrospray ionization/
qTOF-MS using the single MS mode (low fragmentation condition 
derived from in-source fragmentation) by scanning from m/z 50 to 
1500 at a repetition rate of 5 Hz. MS/MS analyses were conducted 
using nitrogen as collision gas and involved independent measure-
ments at the following four different collision-induced dissociation 
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voltages: 20, 30, 40, and 50 eV. The quadrupole was operated through-
out the measurement with the largest mass isolation window, from 
m/z 50 to 1500. This mass range was automatically activated by the 
operating software of the instrument when the precursor m/z and 
the isolation width are experimentally set to 200 and 0 Da, respec-
tively. Mass fragments were scanned as in the single MS mode. Mass 
calibration was performed using sodium formate (50 ml of isopro-
panol, 200 l of formic acid, and 1 ml of 1 M NaOH in water). Data 
files were calibrated postrun on the average spectrum from a given 
time segment, using the Bruker high-precision calibration algorithm. 
Raw data files were converted to NetCDF format using the export 
function of the Data Analysis v4.0 software (Bruker Daltonics, Bremen, 
Germany). The MS/MS dataset has been deposited in the open me-
tabolomics database MetaboLights (www.ebi.ac.uk) under accession 
no. MTBLS1471.

Deconvolution of compound-specific MS/MS
MS/MS assembly was achieved via correlational analysis between MS1 
and MS/MS mass signals for low and high collision energies and 
newly implemented rules. The correlation analysis for precursor-to- 
product assignment for was implemented using an R script and rules 
were implemented using a C# script (https://github.com/MPI-DL/
indiscriminant-MS-MS-assembly-pipeline).

To reduce false-positive errors resulting from spurious correla-
tions from background noise due to the fact that some m/z features 
are only detected in a few samples, we applied “fill peaks” function 
of R package XCMS (use for background noise correction) to replace 
“NA” (not detected peak) intensities. When the fill peaks function 
is used, there still were many “0” intensity values in the dataset that 
affect the calculation of correlations; we then compared data pro-
cessing results obtained with and without the fill peaks function 
and calculated a background noise value from the average correction 
estimates, and these 0 intensity values were then replaced with the 
calculated background value. We also only considered features with 
intensities that were more than three times the background value and 
considered these as “true peaks.” Only m/z signals with at least eight 
true peaks for the samples precursors (MS1) and fragments datasets 
were considered for PCC calculation.

A precursor mass feature is further defined if its intensity across 
sample significantly correlate with the decreased intensity of the same 
mass feature subjected to low or high collision energies and that this 
feature is not annotated as an isotope peak by CAMERA. The 
correlation analysis was then conducted by calculating all possible 
precursor-to-product pairs within 3 s—estimated retention time 
window for peak deviation. m/z values were only considered as 
fragments if they were lower than that of the precursor and MS/MS 
fragmentation occurred in the same sample position within the 
dataset as the precursor from which it is derived.

On the basis of these two simple rules, we excluded assigned 
fragments at m/z values larger than that of the identified precursor 
as well as based the sample position for occurrence precursor and 
assigned fragments. Many in-source fragmentation-generated mass 
features produced in the MS1 mode can also be selected as candidate 
precursors resulting in redundant compound MS/MS. To reduce this 
data redundancy, we merged spectra if their NDP similarity exceeded 
0.6 and they belong to the chromatographic “pcgroup” annotated by 
CAMERA. Last, we merged all four CE results for precursor-to- 
fragment associations into a final deconvoluted composite spectrum 
by choosing the highest intensity peak among all candidate peaks of 

the same m/z value at the different collision energies. This latter 
processing step is based on the composite spectrum concept and 
accounts for the different CE conditions required to maximize 
fragmentation possibilities since certain fragments are detected 
only at specific collision energies.

Information theory framework for defining metabolome 
diversity and specialization and metabolic specificity
Metabolic profile inducibility was calculated using RDPI (30). Metabolic pro-
file diversity, the Hj index, was calculated using Shannon entropy of MS/
MS frequency distribution derived from the abundance of MS/MS 
precursors by the following equation as described by Martínez et al. (8).

  Hj = −   ∑ 
i = 1

  
m

     P  ij    log  2  ( P  ij  )  

where Pij correspond to relative frequency of the ith MS/MS (i = 1, 
2, …, m) in the jth sample ( j = 1, 2, …, t).

The average frequency of the ith MS/MS among samples was 
calculated as

   P  i   =   1 ─ t     ∑ 
j = 1

  
t
     P  ij    

Metabolic specificity, the Si index, was defined as the expression 
identity of a given MS/MS regarding frequencies among considered 
samples. The MS/MS specificity was calculated as

    S  i   =   1 ─ t   (     ∑ 
j = 1

  
t
      
 P  ij   ─  P  i  

    log  2     
 P  ij   ─  P  i  

   )     

The metabolome specialization j index was measured for each 
jth sample, the average of the MS/MS specificities using the follow-
ing formula

     j   =   ∑ 
i = 1

  
m

     P  ij    S  i    

MS/MS similarity scoring
MS/MS spectra were aligned in a pairwise manner and their simi-
larity calculated according to two scores. First, a standard NDP, also 
referred to as cosine correlation method, was used to score fragment 
similarity among spectra using the following equation

  NDP =   
  (   ∑ i  S1&S2     W  S1,i    W  S2,i   )     

2
 
  ─────────────  

 ∑ i      W S1,i  
2    ∑ i      W S2,i  

2  
    

where S1 and S2 correspond, respectively, to spectrum 1 and spec-
trum 2, and WS1, i and WS2, i indicate peak intensity-based weights 
given to ith common peaks differing by less than 0.01 Da between 
the two spectra. Weights were calculated as follows

  W =  [Peak intensity]   m   [Mass]   n   

with m = 0.5 and n = 2 as suggested by MassBank.
A second scoring method involving the analysis of shared NLs 

among individual MS/MS was implemented. For this, we used a list 
of 52 NLs commonly encountered during tandem MS fragmentation 

http://www.ebi.ac.uk
https://github.com/MPI-DL/indiscriminant-MS-MS-assembly-pipeline
https://github.com/MPI-DL/indiscriminant-MS-MS-assembly-pipeline
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and more specific ones that had been previously annotated for MS/
MS spectra of N. attenuata secondary metabolite classes (data file S1) 
(9, 26). A binary vector of 1 and 0 was created for each MS/MS cor-
responding to present and absent of certain NL. NL similarity score 
was calculated for each pair of binary NL vectors based on Euclidean 
distance similarity.

MS/MS biclustering and molecular networking
To perform biclustering, we used the R package DiffCoEx, which is 
based on an extension of the weighted gene coexpression analysis 
(WGCNA). Using NDP and NL-scoring matrices for MS/MS spectra, 
we computed a comparative correlation matrix using DiffCoEx. The 
biclustering was performed with the parameters of “cutreeDynamic” 
set to method = “hybrid”, cutHeight = 0.9999, deepSplit = T, and 
minClusterSize = 10. The R source code of DiffCoEx is downloaded 
from additional file 1 by Tesson et al. (57); the required R WGCNA 
package can be found at https://horvath.genetics.ucla.edu/html/
CoexpressionNetwork/Rpackages/WGCNA.

To perform MS/MS molecular networking analysis, we calculated 
pairwise spectral connectivity based on both NDP and NL similarity 
types and visualized the topology of the network using Cytoscape 
software with the organic layout in the yFiles layout algorithms 
extension app for Cytoscape.

Statistical analysis
Statistical analysis of the data was performed using R version 3.0.1. 
Statistical significance was evaluated using two-way analysis of vari-
ance (ANOVA), followed by Tukey’s honestly significant difference 
(HSD) post hoc tests. For analysis of differences between herbivory 
treatments and controls, Student’s t tests were used with the two-tailed 
distribution of two sets of samples with equal variance.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/24/eaaz0381/DC1

View/request a protocol for this paper from Bio-protocol.
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