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G E N E T I C S

Incomplete annotation has a disproportionate impact 
on our understanding of Mendelian and complex 
neurogenetic disorders
David Zhang1,2,3*, Sebastian Guelfi1*, Sonia Garcia-Ruiz1,2,3, Beatrice Costa1, Regina H. Reynolds1, 
Karishma D’Sa1, Wenfei Liu1, Thomas Courtin2, Amy Peterson3, Andrew E. Jaffe3,4,5,6,7,8, 
John Hardy1,9,10,11,12, Juan A. Botía1,13, Leonardo Collado-Torres3,4, Mina Ryten1,2,3†

Growing evidence suggests that human gene annotation remains incomplete; however, it is unclear how this affects 
different tissues and our understanding of different disorders. Here, we detect previously unannotated transcription 
from Genotype- Tissue Expression RNA sequencing data across 41 human tissues. We connect this unannotated 
transcription to known genes, confirming that human gene annotation remains incomplete, even among well-studied 
genes including 63% of the Online Mendelian Inheritance in Man–morbid catalog and 317 neurodegeneration- 
associated genes. We find the greatest abundance of unannotated transcription in brain and genes highly 
expressed in brain are more likely to be reannotated. We explore examples of reannotated disease genes, such as 
SNCA, for which we experimentally validate a previously unidentified, brain-specific, potentially protein-coding 
exon. We release all tissue-specific transcriptomes through vizER: http://rytenlab.com/browser/app/vizER. We 
anticipate that this resource will facilitate more accurate genetic analysis, with the greatest impact on our 
understanding of Mendelian and complex neurogenetic disorders.

INTRODUCTION
Genetic and transcriptomic studies are fundamentally reliant on ac-
curate and complete human gene annotation, being defined as the 
genetic coordinates of all transcripts of a given gene. Among other 
analyses, this is required for the quantification of expression or 
splicing from RNA sequencing (RNA-seq) experiments, interpreta-
tion of significant genome-wide association study (GWAS) signals, 
and variant interpretation from genetic tests. As our understanding 
of transcriptomic complexity improves, it is apparent that existing 
gene annotation principally originating from four sources (RefSeq, 
GENCODE, Ensembl, AceView) remains incomplete (1–4). Com-
parison of these different existing gene annotation databases reveals 
that more than 17,000 Ensembl genes fall into intronic or intergenic 
regions according to the AceView database, and the choice of refer-
ence annotation greatly influences the performance of variant inter-
pretation software, such as VEP and ANNOVAR (5, 6). Thus, this 
evidence suggests that incomplete annotation may cause pathogenic 

variants to be overlooked within exonic regions that are yet to be 
annotated as well as limiting our understanding of risk loci.

Despite accumulating evidence that the map of the human tran-
scriptome remains incomplete, it is not yet fully understood which 
tissues and consequently diseases are most affected. The extent to 
which this poses an issue is unlikely to be equal across all types of 
tissues or cells. In particular, the fact that the human brain harbors 
longer transcripts, higher transcript diversity, and higher cellular 
heterogeneity than other tissues might be expected to make identi-
fying all transcripts from this tissue more challenging (7, 8). More-
over, the difficulties of accessing brain tissue and dependence on 
postmortem tissue may also limit the quantity of high-quality, brain- 
specific data inputted into gene annotation pipelines to date. Several 
analyses of bulk RNA-seq data derived from human brain tissues 
have discovered transcription originating from intronic or intergenic 
regions (henceforth termed unannotated) (9–11). For example, Jaffe 
and colleagues found that as much as 41% of transcription in the human 
frontal cortex was unannotated (11) . In combination, these factors lead 
to specific challenges in fully capturing the transcriptome of the human 
brain and suggest that improvements to gene annotation may have a 
disproportionate impact on the understanding of neurological diseases.

In this study, we address this issue by leveraging transcriptomic 
data available through the Genotype-Tissue Expression (GTEx) 
Consortium to identify previously unannotated exons of known genes. 
Distinct from existing de novo assembly approaches, such as that 
implemented by Pertea and colleagues leading to the development of 
the CHESS database, our analytic approach was focused on the de-
tection of unannotated exons among known genes rather than 
the assembly of previously unidentified transcripts (12). This con-
servative approach was adopted because of the well-recognized chal-
lenges in accurately calling transcripts from short-read sequencing 
data and because the major aim of this study was to improve the 
annotation of genes already known to contribute to neurological dis-
ease (13, 14). With this in mind, we defined transcription in an 
annotation-agnostic manner using RNA-seq data from 13 regions of 
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the human central nervous system (CNS) and a further 28 nonbrain 
tissues. Specifically, we defined unannotated transcription in a 
tissue-specific manner to allow comparison between tissues. We found 
that this unannotated transcription although widespread is most 
prevalent in human brain. We provide evidence to suggest that the 
exons that we discover are likely to be functionally important on the 
basis of their tissue and cell-type specific expression, the significant 
depletion of genetic variation within humans, and their protein coding 
potential. Last, by combining unannotated transcription with junc-
tion read data, defined as reads that have a gapped alignment to the 
genome, we link these regions to known genes, focusing on those 
associated with Mendelian and complex neurological disorders. 
Overall, we improve the annotation of 13,429 genes, encompassing 
1831 (63%) Online Mendelian Inheritance in Man (OMIM) genes 
and a further 317 genes associated with complex neurodegenera-
tive and neuropsychiatric disease. We release our findings in an online 
platform vizER (www.rytenlab.com/browser/app/vizER), which 
allows individual genes to be queried and visualized for reannota-
tion as well as the download of all exons we discover. We anticipate 
that this resource will facilitate basic and translational research tar-
geted at Mendelian and complex neurogenetic disorders.

RESULTS
Optimizing the tissue-specific, annotation-agnostic 
detection of transcription
Pervasive transcription of the human genome, the presence of pre- 
mRNA even within polyA-selected RNA-seq libraries and variability 

in read depth complicates the identification of exons and transcripts 
using RNA-seq data (15, 16). With this in mind, we used a set of 
exons with the most reliable boundaries [namely, all exons from 
Ensembl v92 that did not overlap with any other exon (4)] to cali-
brate the detection of transcription from 41 GTEx tissues (17). Of 
available annotation databases, Ensembl was selected as it is one of 
the most commonly used and comprehensive annotation providers. 
We used the tool derfinder to perform this analysis (18). However, 
we noted that while derfinder enables the detection of continuous 
blocks of transcribed bases termed expressed regions (ERs) in an 
annotation-agnostic manner, the mean coverage cutoff (MCC) applied 
to determine transcribed bases is difficult to define and variability in 
read depth even across an individual exon can result in false segmen-
tation of blocks of expressed sequence. Therefore, to improve our 
analysis and more accurately define ERs, we applied derfinder, but with 
the inclusion of an additional parameter we term the max region 
gap (MRG), which merges adjacent ERs (see detailed Materials and 
Methods). Next, we sought to identify the optimal values for MCC 
and MRG using our learning set of known, nonoverlapping exons.

This process involved generating 506 transcriptome definitions 
for each tissue using unique pairs of MCCs and MRGs, resulting in 
a total of 20,746 transcriptome definitions across all 41 tissues. For 
each of the 20,746 transcriptome definitions, all ERs that intersected 
nonoverlapping exons were extracted, and the absolute difference 
between the ER definition and the corresponding exon boundaries, 
termed the exon delta, was calculated (Fig. 1A). We summarized the 
exon delta for each transcriptome using two metrics, the median exon 
delta and the number of ERs with exon delta equal to 0. The median 
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Fig. 1. Optimization of the detection of transcription. (A) Transcription in the form ERs was detected in an annotation-agnostic manner across 41 human tissues. The 
MCC is the number of reads supporting each base above which that base would be considered transcribed, and the MRG is the maximum number of bases between ERs 
below which adjacent ERs would be merged. MCC and MRG parameters were optimized for each tissue using the nonoverlapping exons from Ensembl v92 reference 
annotation. (B) Line plot illustrating the selection of the MCC and MRG that minimized the difference between ER and exon definitions (median exon delta). (C) Line plot 
illustrating the selection of the MCC and MRG that maximized the number of ERs that precisely matched exon definitions (exon delta = 0). The cerebellum tissue is plotted 
for (B) and (C), which is representative of the other GTEx tissues. Green and red lines indicate the optimal MCC (2.6) and MRG (70), respectively.
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exon delta represents the overall accuracy of all ER definitions, whereas 
the number of ERs with exon delta equal to 0 indicates the extent to 
which ER definitions precisely match overlapping exon boundaries. 
The MCC and MRG pair that generated the transcriptome with the 
lowest median exon delta and highest number of ERs with exon delta 
equal to 0 was chosen as the most accurate transcriptome definition 
for each tissue. Across all tissues, 50 to 54% of the ERs tested had an 
exon delta = 0, suggesting that we had accurately defined most of ERs. 
Taking the cerebellum as an example and comparing ER definitions 
to those which would have been generated applying the default der-
finder parameters used in the existing literature (MCC: 0.5, MRG: 
None equivalent to 0), we noted a 96–base pair (bp) refinement in ER 
size, equating to 67% of median exon size (Fig. 1, B and C). In summary, 
by using known exons to calibrate the detection of transcription, we 
generated more accurate annotation-agnostic transcriptome defini-
tions for 13 regions of the CNS and a further 28 human tissues.

Unannotated transcription is most commonly observed 
in the CNS
To assess how much of the detected transcription was unannotated, 
ERs were categorized with respect to the genomic features with 
which they overlapped as defined by the Ensembl v92 reference 
annotation (exonic, intronic, and intergenic regions; fig. S1A). Those 
that solely overlapped intronic, or intergenic regions were classified 
as unannotated. We discovered 8.4 to 22 Mb of unannotated tran-

scription across all tissues, consistent with previous reports that annota-
tion remains incomplete (11, 12). Unannotated ERs predominantly 
fell into intragenic regions, suggesting that we were preferentially 
improving the annotation of known genes, rather than identifying 
entirely undiscovered genes (Fig. 2A). Although unannotated tran-
scription was found to be ubiquitous across tissues, the abundance 
varied greatly between tissues (Fig. 2, B, D, and E). To investigate 
this further, we calculated the coefficient of variation for exonic, intronic, 
and intergenic ERs. We found that the levels of unannotated tran-
scription varied 3.4 to 7.7 times more between tissues than the ex-
pression of exonic ERs (coefficient of variation of exonic ERs, 0.066 Mb; 
intronic ERs, 0.222 Mb; intergenic ERs, 0.481 Mb). Furthermore, 
focusing on a subset of unannotated ERs for which we could infer the 
precise boundaries of the putative exon (using intersecting junction 
reads), we found that more than half of these ERs were detected in 
only one tissue and that 86.3% were found in less than five tissues 
(fig. S2A). Even when restricting to ERs derived from only the 13 CNS 
tissues, 34.3% were specific to one CNS region (fig. S2B). This suggests 
that unannotated ERs are largely derived from tissue-specific transcrip-
tion, potentially explaining why they had not already been discovered.

This finding lead us to hypothesize that genes highly expressed 
in brain would be among the most likely to be reannotated because 
of the difficulty of sampling human brain tissue, the cellular hetero-
geneity of this tissue, and the particularly high prevalence of alternative 
splicing (9). As we predicted, the quantity of unannotated transcription 
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Fig. 2. Transcription detected across 41 GTEx tissues categorized by annotation feature. Within each tissue, the length of the ERs Mb overlapping (A) all annotation 
features, (B) purely exons, (C) exons and introns, (D) exons and intergenic regions, (E) purely intergenic regions, and (F) purely introns according to Ensembl v92 was 
computed. Tissues are plotted in descending order based on the respective total size of intronic and intergenic regions. Tissues are color-coded as indicated in the x axis, 
with GTEx brain regions highlighted with bold font. At least 8.4 Mb of previously unannotated transcription was discovered in each tissue, with the greatest quantity 
found within brain tissues (mean across brain tissues, 18.6 Mb; nonbrain, 11.2 Mb; two-sided Wilcoxon rank sum test, P = 2.35 × 10−10.
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found within brain was significantly higher than nonbrain tissues 
(P = 2.35 × 10−10) (Fig.  2,  E  and  F). Ranking the tissues by 
descending Mb of unannotated transcription demonstrated that 
tissues of the CNS constituted 13 of the top 14 tissues. The importance 
of improving annotation in the human brain tissue was most apparent 
when considering purely intergenic ERs and ERs that overlapped 
exons and extended into intergenic regions (Fig. 2, D and E).

This observation raised the question of which factors were most im-
portant in determining whether a gene was reannotated (connected to 
an unannotated ER). We used logistic regression to find genic proper-
ties, such as measures of structural complexity and specificity of ex-
pression to brain, that significantly changed a gene’s likelihood of 
reannotation. We also accounted for factors that might be expected to 
contribute to errors in ER identification, including whether the gene 
overlapped with another known gene making attribution of reads 
more complex. We found that the annotation of longer, brain-specific 
genes with higher transcript complexity were more likely to have evi-
dence for incomplete annotation (table S1). Overlapping genes were 
not significantly more likely to be reannotated (taking into account 
gene length), suggesting that unannotated transcription is not merely 
a product of noise from intersecting genes. Together, these findings 
demonstrate that widespread unannotated transcription is found 
across all human tissues, the quantity of which varies extensively 
between tissues. CNS tissues displayed the greatest quantity of un-
annotated transcription, and accordingly, genes highly expressed in 
the human brain are most likely to be reannotated.

Validation of unannotated transcription
We recognize that a proportion of unannotated transcription may 
originate from technical variability or pre-mRNA contamination. 
Therefore, we assessed the reliability of detecting unannotated ERs 
across different versions of Ensembl and within an independent 
dataset. First, we measured how many Kb of the transcription that 
we detected would have been classified as unannotated with respect 
to Ensembl v87 but was now annotated in Ensembl v92 and found 
that across all tissues, an average of 68 Kb (43 to 127 Kb) had 
changed status. This value was 5.3 times (3.2 to 10.1 times) greater 
in every tissue compared to the Kb of ERs overlapping exons in En-
sembl v87 that had become purely intronic or intergenic in Ensembl 
v92 (Fig. 3A). To further assess whether this was greater than what 
would be expected by chance, we compared the total Kb of unanno-
tated ERs entering v92 annotation for each tissue to 10,000 sets of 
random length-matched intronic and intergenic regions. For all 
tissues, the total Kb of both intronic and intergenic ERs that were now 
annotated in Ensembl v92 was significantly higher than the total Kb dis-
tribution of the randomized negative control regions, implying a high 
validation rate of unannotated ERs (fig. S3). Notably, brain regions had 
significantly higher Kb of ERs entering Ensembl v92 annotation from 
Ensembl v87 than nonbrain tissues, even when subtracting the Kb of 
ERs leaving Ensembl v87 (P = 7.6 × 10−9), suggesting that the greater 
abundance of brain- specific unannotated transcription was not purely 
attributed to increased transcriptional noise.

While our analysis of intronic and intergenic ERs across different 
Ensembl versions provided a high level of confidence in the quality 
of ER calling, it was limited to ERs, which had already been incor-
porated into annotation and did not provide an overall indication 
of the rate of validation across all ERs. Therefore, we investigated 
whether our GTEx frontal cortex–derived ERs could also be discov-
ered in an independent frontal cortex dataset reported by Labadorf 

and colleagues (19). As expected, ERs that overlapped with annotat-
ed exons had near- complete validation (≥89%), but importantly, 
62% of intergenic and 70% of intronic ERs, respectively, were also 
detected in the second independent frontal cortex dataset (Fig. 3B). 
While this high validation rate implied that most of all ERs were re-
liably detected, we investigated whether a subset of ERs supported 
with evidence of RNA splicing as well as transcription would have 
even better rates of validation. Evidence of transcription is provided 
by the coverage data derived using derfinder, while junction reads, 
which are reads with a gapped alignment to the genome, provide 
evidence of the splicing out of an intron (fig. S1B). With this in 
mind, we focused our attention on the putative spliced ERs as indi-
cated by the presence of an overlapping junction read. Consistent 
with expectation, we found that ERs with junction read support had 
higher validation rates than ERs lacking this additional feature. This 
increase in validation rate for ERs with junction read support was 
greatest for intergenic and intronic ERs with the validation rate ris-
ing to 87% for intergenic ERs and 88% for intronic ERs (as compared 
to 99% for ERs overlapping exons, Fig. 3B). Even when considering 
this set of highly validated ERs with junction read support, 1.7 to 
3.8 Mb of intronic and 0.5 to 2.2 Mb of intergenic transcription was 
detected across all 41 tissues. Thus, in summary, most of the unan-
notated ERs were reliably detected and validated in an independent 
dataset.

Unannotated ERs are likely to be functionally important 
within humans
Given recent reports suggesting widespread transcriptional noise and 
acknowledging that transcription, even when tissue specific, does not 
necessarily translate to function, we investigated whether unanno-
tated ERs were likely to be of functional significance using measures of 
both conservation and genetic constraint (12, 20). The degree to which 
a base is evolutionarily conserved across species is dependent on its 
functional importance, and accordingly, conservation scores have 
been used to aid exon identification (2). However, this measure is un-
able to capture genomic regions of human-specific importance. Thus, 
we investigated unannotated ERs not only in terms of conservation 
but also genetic constraint. Constraint scores, measured here as a con-
text-dependent tolerance score (CDTS), represent the likelihood that 
a base is mutated within humans (21). By comparing our detected 
unannotated ERs to 10,000 randomized sets of length-matched in-
tronic and intergenic regions, we found that both intronic and inter-
genic ERs were significantly less conserved but more constrained 
than expected by chance (P < 2 × 10−16; Fig. 4A). This would suggest 
that they have an important functional role in humans. Furthermore, 
considering the importance of higher-order cognitive functions in 
differentiating humans from other species, we separately measured the 
constraint of brain-specific unannotated ERs on the basis that these 
ERs may be the most genetically constrained of all unannotated ERs 
identified. We found that brain-specific unannotated ERs were even 
more constrained than other unannotated ERs, supporting the view 
that improvements in gene annotation are likely to have a dispropor-
tionate impact on our understanding of human brain diseases.

Another metric of functional importance is whether a region of 
the genome is translated into protein and notably the vast majority 
of all known Mendelian disease mutations fall within protein-coding 
regions. For this reason, we investigated whether unannotated ERs 
could potentially encode for proteins. Here, we focused on the subset 
of unannotated ERs that had evidence of splicing since the overlapping 
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junction reads can be used to assign the precise boundaries of ERs, 
allowing us to confidently retrieve the DNA sequence and corre-
sponding amino acid sequence for each unannotated ER. A total of 
2961 ERs covering 274 Kb was found to be potentially protein cod-
ing, which represented 57% of the ERs analyzed (Fig. 4B). Among 
this set of ERs with protein coding potential, 758 ERs also fell with-
in the top 20% of most constrained regions of the genome. These 
ERs connect to 694 genes, 30% of which are expressed specifically in 
the CNS (table S2). Overall, we discovered that unannotated ERs 
are likely to be of functional importance in humans. We also iden-
tified a subset of unannotated ERs that have protein coding poten-

tial and are highly depleted for genetic variation in humans. Together, 
this suggested that at least a proportion of unannotated ERs are 
functionally important.

Incomplete annotation limits our understanding of specific 
cell types and complex diseases
Given that we discovered the greatest abundance of previously unan-
notated transcription among brain tissues, we investigated whether 
this may be affecting our understanding of certain cell types within 
the brain more than others. We tested this by calculating whether 
our set of 2962 reannotated brain-specific genes were significantly 
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Fig. 3. Validation of unannotated transcription. (A) The classification of ERs based on v87 and v92 of Ensembl was compared. Across all tissues, the number of intron 
or intergenic ERs with respect to v87 that were known to be exonic in Ensembl v92 was greater than the number of ERs overlapping exons according to v87 that were 
now unannotated in v92. Tissues are plotted in descending order based on the total Mb of unannotated ERs with respect to Ensembl v87 that were validated (classified 
as exonic in the Ensembl v92). Tissues are color-coded as indicated in the x axis, with GTEx brain regions highlighted with bold font. (B) Bar plot represents the percentage 
of ERs seeding from the GTEx frontal cortex that validated in an independent frontal cortex RNA-seq dataset. ERs defined in the seed tissue were requantified using coverage 
from the validation dataset, after which the optimized MCC was applied to determine validated ERs. Colors represent the different annotation features that the ERs 
overlapped, and the shade indicates whether the ER was supported by junction read(s).
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enriched for cell-type specific genes when compared to the background 
list of 2422 brain- specific genes without reannotations. Of the 13 
brain-specific cell types considered, genes specifically expressed by 
oligodendrocytes had the largest difference in enrichment (reanno-
tated = <2 × 10−16; not reannotated = 0.169), suggesting that incom-
plete annotation was disproportionately limiting our understanding 
of this cell type (Fig. 5A). For example, we found that MBP, which 
encodes for myelin basic protein, was among those genes reannotated 
and with an oligodendrocyte-specific expression profile (fig. S4). We 
detected a 48-bp ER specific to cortex and striatal tissues (anterior 
cingulate cortex, cortex, frontal cortex, nucleus accumbens, and 
putamen), which was connected to two flanking protein-coding exons 
of MBP. The ER itself had protein coding potential and evidence of 
functional importance in humans, as demonstrated by low mammalian 
sequence conservation but depletion of genetic variation within humans 
(phasCons7: 0.06, top 20% CDTS) (Fig. 5B). MBP and oligodendroglial 
dysfunction have been implicated in a number of neurodegenerative 
disorders, including multiple system atrophy, which is characterized 
by myelin loss and degeneration of striatum and cortical region, as 
well as schizophrenia and Parkinson’s disease (22–24).

These observations led us to postulate whether incomplete 
annotation could also be hindering our understanding of complex 
disorders. We assessed whether our list of reannotated genes was en-
riched for genes associated with complex forms of neurodegenerative, 
neuropsychiatric, or other neurological conditions. This analysis was 
performed by using the Systematic Target OPportunity assessment 
by Genetic Association Predictions (STOPGAP) database, which 
provides an extensive catalog of human genetic associations mapped 
to effector gene candidates (see detailed Materials and Methods) (25). 
We found that genes associated with neurodegenerative disorders 
were significantly overrepresented within our reannotated set (P = 
0.004; table S3). In particular, important neurodegenerative disease 
genes such as SNCA, APOE, and CLU were among those reannotated, 
suggesting that despite being extensively studied, the annotation of 
these genes remains incomplete (complete list found in table S4). Thus, 

we demonstrate that incomplete annotation of brain-specific genes 
may be hindering our understanding of specific cell types and complex 
neurodegenerative disorders.

Incomplete annotation of OMIM genes may limit 
genetic diagnosis
Since reannotation of genes already known to cause Mendelian dis-
ease would have a direct impact on clinical diagnostic pipelines, we 
specifically assessed this gene set. Unannotated ERs were first con-
nected to known genes using junction reads (fig. S1B). Next, we 
filtered for OMIM-morbid genes and found that 63% of this set of 
OMIM-morbid genes were reannotated and 14% were connected to 
a potentially protein-coding ER, suggesting that despite many of these 
genes having been extensively studied, the annotation of many 
OMIM-morbid genes remains incomplete (Fig. 6A). Given that 
OMIM-morbid genes often produce abnormalities specific to a 
given set of organs or systems, we investigated the relevance of un-
annotated transcription to disease by matching the human phenotype 
ontology (HPO) terms obtained from the disease corresponding to 
the OMIM-morbid gene, to the GTEx tissue from which ERs con-
nected to that gene were derived. We discovered that 72% of re-
annotated OMIM-morbid genes had an associated unannotated ER 
originating from a phenotypically relevant tissue (Fig. 6B). This 
phenomenon was exemplified by the OMIM- morbid gene ERLIN1, 
which, when disrupted, is known to cause spastic paraplegia 62 
(SPG62), an autosomal recessive form of spastic paraplegia, which 
has been reported in some families to cause not only lower limb 
spasticity but also cerebellar abnormalities (26). We detected a pre-
viously unannotated, cerebellar-specific ER that was intronic with 
respect to ERLIN1. This ER had the potential to code for a non-
truncated protein and connected through intersecting junction reads 
to two flanking, protein-coding exons of ERLIN1, supporting the 
possibility of this ER being a protein-coding exon. Furthermore, 
this putative exon was highly conserved (phastcons7 score: 1) and 
was among the top 30% most constrained regions in the genome, 
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Fig. 4. Unannotated ERs collectively serve an important function for humans, and a proportion can form potentially protein-coding transcripts. (A) Comparison 
of conservation (phastCons7/phastCons20) and constraint (CDTS) of intronic and intergenic ERs to 10,000 sets of random, length-matched intronic and intergenic re-
gions. Unannotated ERs marked by the red dashed line are less conserved than expected by chance but are more constrained. Brain-specific ERs marked by the green 
dashed lines are among the most constrained. Data for the cerebellum shown and is representative of other GTEx tissues. ***P = <2 × 10–16. (B) The DNA sequence for ERs 
overlapping two junction reads was obtained and converted to amino acid sequence for all three possible frames. ERs (2168; 57%) lacked a stop codon in at least one 
frame and were considered potentially protein coding.
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suggesting that it is functionally important both across mammals 
and within humans (Fig. 6C).

Similarly, we detected a brain-specific, unannotated ER in the 
long intron of the gene SNCA, which encodes -synuclein pro-
tein implicated in the pathogenesis of Mendelian and complex 
Parkinson’s disease. This ER connected to two flanking protein- 
coding exons through junction reads (Fig. 6D) and appeared to 
also have coding potential. While the ER sequence is not conserved 
within mammals (phastcons7 score: 0.09) or primates (phastcons20 
score: 0.21), it is in the top 19% of most constrained regions in the 
genome, suggesting that it is of functional importance in humans. 

We validated the existence of this ER both in silico and experimen-
tally. The expression of this ER was confirmed in silico using an 
independent frontal cortex dataset reported by Labadorf and col-
leagues (19). Using Sanger sequencing, we validated the junctions 
intersecting the ER and the flanking exons in RNA samples origi-
nating from pooled human frontal cortex samples (fig. S5). To gain 
more information about the transcript structure in which the un-
annotated ER was contained, we also performed Sanger sequenc-
ing from the first (ENSE00000970013) and last coding exons 
(ENSE00000970014) of SNCA to the unannotated ER. This implied 
a full transcript structure containing a minimum of 609 bp with the 
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unannotated ER predicted to add an additional 63 amino acids 
(45% of existing transcript size). This example highlights the poten-
tial of incomplete annotation to both hinder genetic diagnosis and 
limit our understanding of a common complex neurological disease. 

Variants located in the unannotated ER linked to SNCA would not 
be captured using whole-exome sequencing and, if identified in 
whole-genome shotgun or through GWAS, would be misassigned 
as noncoding variants.
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HPO terms were matched to disease-relevant GTEx tissues and for 72% of reannotated OMIM genes, the associated unannotated ER was detected in the phenotype-relevant 
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green. Second group of tracks detail the junction reads and ERs overlapping the genomic region derived from the labeled tissue. Blue ERs overlap known exonic regions, 
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DISCUSSION
In this study, we use a pragmatic, conservative approach to iden-
tify unannotated transcription and putative unannotated exons of 
known genes. We find that although unannotated transcription is 
commonly detectable across all human tissues assayed, it is most 
frequently observed in the human brain. We find that the putative 
unannotated exons, which can be confidently assigned to a known 
gene using junction reads, have high replication rates (87% for 
intronic ERs as compared to 99% for annotated exons). Thus, our 
findings suggest the existence of previously unannotated exons that 
can be reliably detected from RNA-seq data and that might be ex-
pected to provide most insight into neurological disorders.

There are several reasons why these unannotated exons may have 
been previously missed from gene annotation and why they are most 
frequently detected in human brain. We believe that a key factor is 
the high cellular heterogeneity of human brain combined with the 
high cellular specificity of some transcripts. Lowly expressed, tissue- 
specific isoforms or those that are only transcribed within a cell type 
of proportionally low abundance may be missed from bulk RNA-seq 
datasets. Accordingly, we find that most of the putative unannotated 
exons that we detect have a restricted expression pattern across tis-
sues and that the highest numbers are derived from human brain. 
Even within human brain, there appeared to be cellular biases influ-
encing a gene’s likelihood of being reannotated. Among reannotated 
genes, we found a significant enrichment of genes with a cell-specific 
expression pattern, and this was most evident for genes specifically 
expressed by oligodendrocytes. We also note that the use of conser-
vation measures in previous gene annotation pipelines may have 
biased exon and transcript discovery. Given that exons that are 
functionally important within humans might be expected to be en-
riched among genes of importance to human brain development, 
again this would predict higher rates of incomplete annotation 
within brain tissue. Consistent with this view, we find that, collec-
tively, our unannotated exons are depleted for mutations within 
humans yet are not well conserved across other species (21). Fur-
thermore, as we predicted, the unannotated exons identified that were 
connected to brain-specific genes showed the most significant 
depletion in mutations. Together, these findings not only explain 
the high yield of previously undiscovered annotation with human 
brain but also imply that it is likely to be disease relevant.

Given this evidence, we expect annotation to be of greatest rele-
vance to complex and Mendelian forms of neurogenetic disease. 
With this in mind, it is noteworthy that 1831 OMIM genes were 
reannotated on the basis of our analysis of which 1111 were associ-
ated with a neurological phenotype. Some 251 of these OMIM genes 
had at least one associated unannotated exon with the potential to 
be protein coding. We highlight the example of SNCA, a gene impli-
cated in Mendelian and complex Parkinson’s disease. We identify a 
previously unannotated, potentially protein coding exon of SNCA, 
which is validated experimentally and located in a region that is 
among the most depleted for mutations among humans but is 
poorly conserved. Furthermore, we find that genes known to cause 
Mendelian and complex neurodegenerative disorders are enriched 
among the set of genes that we reannotate. Thus, our analyses sug-
gest that incomplete annotation is a substantial limiting factor in 
our understanding of both Mendelian and common complex 
neurological diseases.

Last, we release our results through a dedicated web resource, vizER 
(http://rytenlab.com/browser/app/vizER), which enables individual 

genes to be queried for incomplete annotation as well as the down-
load of all the definitions of putative exons discovered in this study. 
We believe that vizER will be an important resource for clinical 
scientists in the diagnosis of Mendelian disorders, neuroscientists 
studying individual gene structures and functions, and, together 
with the emergence of larger long-read sequencing datasets, will 
accelerate transcript discovery particularly in human brain.

MATERIALS AND METHODS
OMIM data
Phenotype relationships and clinical synopses of all OMIM genes 
were downloaded using API through https://api.omim.org/ on 
29 May 2018 (27). OMIM genes were filtered to exclude provisional, 
nondisease, and susceptibility phenotypes retaining 2898 unique 
genes that were confidently associated to 4034 Mendelian diseases. 
Phenotypic abnormality groups were linked to corresponding af-
fected GTEx tissues through manual inspection of the HPO terms 
within each group by a medical specialist (17).

GTEx data
RNA-seq data in base-level coverage format for 7595 samples orig-
inating from 41 different GTEx tissues was downloaded using the R 
package recount version 1.4.6 (28). Cell lines, sex-specific tissues, 
and tissues with 10 samples or below were removed. Samples with 
large chromosomal deletions and duplications or large copy number 
variation previously associated with disease were filtered out 
(smafrze = “USE ME”). Coverage for all remaining samples was 
normalized to a target library size of 40 million 100-bp reads using 
the area under coverage value provided by recount2. For each 
tissue, base-level coverage was averaged across all samples to calcu-
late the mean base-level coverage. GTEx junction read data, defined 
as reads with a noncontiguous gapped alignment to the genome, 
were downloaded using the recount2 resource and filtered to include 
only junction reads detected in at least 5% of samples for a given tis-
sue and those that had available donor and acceptor splice sequences.

Optimizing the detection of transcription
Transcription was detected across 41 GTEx tissues using the pack-
age derfinder version 1.14.0 (18). The MCC, defined as the number 
of reads supporting each base above which bases were considered to 
be transcribed, and MRG, defined as the maximum number of bases 
between ERs below which adjacent ERs will be merged, were opti-
mized. Optimization was performed using 156,674 nonoverlapping 
exons (defined by Ensembl v92) as the gold standard (4). Exon bio-
types of all Ensembl v92 exons were compared to this set of non-
overlapping exons to ensure that we were not preferentially optimizing 
for one particular biotype (fig. S6). Nonoverlapping exons were se-
lected as these definitions would be least likely to be influenced by 
ambiguous reads. For each tissue, we generated ERs using MCCs 
increasing from 1 to 10  in steps of 0.2 (46 cutoffs) and max gaps 
increasing from 0 to 100 in steps of 10 (11 MRGs) to produce a total 
of 506 unique transcriptomes. For each set of ERs, we found all ERs 
that intersected with nonoverlapping exons and then calculated the 
exon delta by summing the absolute difference between the start/
stop positions of each ER and the overlapping exon (Fig. 1A). Situa-
tions in which a single ER overlapped with multiple exons were re-
moved to avoid assigning the ER to an incorrect exon when calculating 
downstream optimization metrics. For each tissue, we selected the 

http://rytenlab.com/browser/app/vizER
https://api.omim.org/
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MCC and MRG, which minimized the difference between ER and 
“gold standard” exon definitions (median exon delta) and maximized 
the number of ERs that precisely matched the boundaries of exons 
(number of ERs with an exon delta equal to 0). All ERs that were <3 bp 
in width were removed as these were below the minimum size of a 
microexon (29).

Calculating the transcriptome size per annotation feature
ERs were classified with respect to the annotation feature (exon, intron, 
intergenic) with which they overlapped. A minimum of 1-bp overlap 
was required for an ER to be categorized as belonging to a given 
annotation feature. ERs overlapping multiple annotation features 
were labeled with a combination of each. This generated six distinct 
categories: “exon,” “exon, intron,” “exon, intergenic,” “exon, intergenic, 
intron,” “intergenic,” and “intron” (fig. S1A). ERs classified as exon, 
intergenic, intron were removed from all downstream analysis as 
these formed only 0.54% of all ERs and were presumed to be technical 
artifacts generated from regions of dense, overlapping gene expres-
sion. For each tissue, the length of all ERs within each annotation 
feature was summed generating the total Mb of ERs per annotation 
feature. Normalized variance of exonic, intronic, and intergenic ERs 
was calculated by dividing the SD of the total Mb of ERs across tissues 
by the mean total Mb of ERs for each annotation feature. To compare 
between brain and nonbrain tissues, the total Mb of intronic and 
intergenic ERs were first summed together to generate an overall 
measure of unannotated transcription abundance across brain and 
nonbrain tissues and then a two-sided Wilcoxon rank sum test 
was applied.

Annotating ERs with junction read data
Intronic and intergenic ERs were connected to known genes using 
reads, which we term junction reads, with a gapped alignment to 
the genome, presumed to be reads spanning exon-exon junctions 
(fig. 2B). These exon-exon junctions are defined as noncontiguous 
reads that fall on the boundary between two exons of the same mRNA 
molecule; therefore, when aligned to the genome, these reads have a 
break in the middle indicating the splicing out of an intron. Junction 
read data were categorized into three groups: annotated junction 
reads, with both ends falling within known exons; partially annotated 
junction reads, with only one end falling within a known exon; and 
unannotated junction reads, with both ends within intron or inter-
genic regions. In this way, intron and intergenic ERs that over-
lapped with partially annotated junction reads were connected to 
known genes.

Validation of detected transcription
Transcription was validated across different versions of Ensembl and 
within an independent dataset. ERs that overlapped purely intronic 
or intergenic regions according to Ensembl v87, but fell within exons 
according to v92, were counted as unannotated transcription that 
was validated in later versions of Ensembl. Furthermore, ERs over-
lapping exonic regions in Ensembl v87 now classified as intronic or 
intergenic in v92 were measured to control for expected corrections 
in gene definitions. To assess whether the total Kb of validated 
unannotated ERs entering v92 annotation was greater than what 
would be expected by chance, we generated 10,000 random sets of 
length-matched regions for each tissue that were intronic or inter-
genic with respect to Ensembl. Using a one sample Wilcoxon test, 
we compared the total Kb of intronic and intergenic ERs entering 

annotation to the total Kb distribution of the randomized intronic 
and intergenic regions, respectively.

Validation within an independent dataset was performed using 
RNA-seq coverage data from 49 control frontal cortex (BA9) samples 
originally reported by Labadorf and colleagues and available via the 
recount R package version 1.4.6 (19, 28). ERs derived from the GTEx 
frontal cortex (BA9) data were requantified using this independent 
frontal cortex dataset, and those that had a mean coverage of at least 
1.4 (the optimized MCC for the GTEx frontal cortex data) were 
counted as unannotated transcription that was validated.

Analyzing the conservation and constraint of unannotated ERs
Conservation scores in the form of phastCons7 and phastCons20 were 
downloaded from UCSC (30). Constraint scores generated from the 
genome-wide alignment of 7794 unrelated human genomes were down-
loaded as CDTS (21). The raw conservation and constraint scores 
were in bins of 1 and 10 bp, respectively; therefore, when annotating 
the corresponding positions of ERs, we aggregated each score as a 
mean across the entire genomic region of interest. To account for 
missing CDTS values, we calculated the coverage of each ER by di-
viding the number of bases annotated by the CDTS by the total 
length of the ER. For all downstream analysis, we filtered out ERs 
for which CDTS coverage was less than 80%.

To assess whether our unannotated ERs were more constrained 
or conserved than by expected by chance, we compared the phast-
Cons7, phastCons20, and CDTS of unannotated ERs to 10,000 
randomized length-matched sets of intronic and intergenic ERs for 
each tissue. For each of the 10,000 iterations, we first selected a ran-
dom intronic or intergenic region that was larger than the respective 
ER and then selected a random segment along the randomized re-
gion that matched the length of the corresponding ER. The random-
ized regions were annotated with constraint scores and CDTS using 
the aforementioned method. The mean CDTS and phastCons scores 
of the unannotated ERs (split by annotation feature) were compared 
to the corresponding distribution of CDTS and phastCons scores 
of the randomized regions using a one sample, two-tailed t test. For 
easier interpretation when plotting, CDTS scores have been converted 
to their opposite sign; therefore, for both phastCons and CDTS, the 
higher the value, the greater the magnitude of conservation or con-
straint as shown in Fig. 4A.

Checking ER protein coding potential
Intronic and intergenic ERs that were intersected by two junction 
reads were extracted. The junction reads were used to determine the 
precise boundaries of the ER. The R package Biostrings version 2.46.0 
was used to extract the DNA sequence corresponding to the ER ge-
netic coordinates from the genome build hg38 (31). Since the trans-
lation frame was ambiguous without knowledge of the other exons 
that are part of the transcript that included the unannotated ER, we 
converted the DNA sequence to amino acid sequence for all three 
possible frames starting from the first, second, or third base. Any 
ER that had at least one frame that did not include a stop codon 
was considered to be potentially protein coding.

Gene properties influencing reannotation
All Ensembl v92 genes were marked with a 1 or a 0 depending on 
whether we detected a reannotation for that gene in the form of an 
ER connected to the gene using a junction read, with 1 representing 
a detected reannotation event. Details of gene length, biotype, and 



Zhang et al., Sci. Adv. 2020; 6 : eaay8299     10 June 2020

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

11 of 12

transcript count and whether the gene overlapped another gene were 
retrieved from the Ensembl v92 database. Brain specificity was as-
signed using the Finucane dataset and selecting the top 10% of brain- 
specific genes when compared to nonbrain tissues (32). Mean gene 
transcripts per million (TPM) was calculated by downloading tissue- 
specific TPM values from the GTEx portal and summarized by 
calculating the mean across all tissues. The list of OMIM genes 
(May 2018) was used to assign whether a gene was known to cause 
disease or not. We used a logistic regression to test whether different 
gene properties significantly influenced the variability of reannota-
tion (formula = reannotated ~ brain-specific + mean TPM + over-
lapping gene + transcript count + gene biotype + gene length).

Sanger sequencing of unannotated junctions
Commercially purchased (Takara) frontal cortex and cerebellum 
RNA samples, isolated from individuals of European descent, were 
used for validation of unannotated junctions detected in SNCA and 
ERLIN1, respectively. Tissues were chosen to match the tissue in 
which the reannotation for each gene was detected. Reverse tran-
scription was performed using 1 g of RNA from each tissue and 
then converted to complementary DNA (cDNA) using the High- 
Capacity cDNA Reverse Transcription Kit with RNase Inhibitor 
(Applied Biosystems) and random primers as per manufacturer’s 
instructions. Primers were designed to span predicted exon-exon 
junctions using Primer- BLAST (National Center for Biotechnology 
Information) and ordered from Sigma-Aldrich (table S5). Polymerase 
chain reaction (PCR) was performed using FastStart PCR Master 
(Roche) and enzymatic cleanup of PCR products was performed 
using Exonuclease I (Thermo Fisher Scientific) and FastAP Thermo-
sensitive Alkaline Phosphatase (Thermo Fisher Scientific). Sanger 
sequencing was performed using the BigDye Terminator Kit 
(Applied Biosystems), and sequences were viewed and exported 
using CodonCode Aligner (version 8.0.2). Sequences were blatted 
against the human genome (hg38) and alignment visually inspected 
for confirmation of validation.

Expression-weighted cell-type enrichment: Evaluating 
enrichment of theta-correlated genes
Expression-weighted cell-type enrichment (EWCE) was used to de-
termine whether brain-specific genes (both reannotated and not 
reannotated) have higher expression within particular cell types than 
expected by chance (33). As our input, we used (i) neuronal and 
glial clusters of the CNS identified in the Linnarsson single-cell 
RNA-seq dataset (amounting to a subset of 114 of the original 265 clusters 
identified) and (ii) lists of genes split by whether or not they were 
reannotated, and if reannotated, by their overlap with Ensembl v92 
annotation features (see table S6 for the full list of CNS neuronal 
clusters and genes used) (34). For each gene in the Linnarsson dataset, 
we estimated its cell-type specificity (the proportion of a gene’s total 
expression in one cell type compared to all cell types) using the 
“generate.celltype.data” function of the EWCE package. EWCE with 
the target list was run with 100,000 bootstrap replicates, which were 
sampled from a background list of genes that excluded all genes 
without a 1:1 mouse:human ortholog. We additionally controlled 
for transcript length and GC-content biases by selecting bootstrap 
lists with comparable properties to the target list. We performed the 
analysis with major cell-type classes (e.g., “astrocyte,” “microglia,” etc.). 
Data are displayed as SDs from the mean, and any values <0, which 
reflect a depletion of expression, are displayed as 0. P values were corrected 

for multiple testing using the Benjamini-Hochberg [false discovery 
rate (FDR)] method over all cell types and gene lists displayed.

Enrichment of reannotated genes for neurological 
disorder–associated genes
The STOPGAP database detailing all genes associated with 4684 GWASs 
was downloaded. To select which genes were associated to a GWAS, 
the “best gene” as determined by STOPGAP using functional evi-
dence was used (25). The medical subject heading for each disease 
was used to further subgroup GWASs into four categories; neuro-
degenerative, neuropsychiatric, other neurological conditions, and 
the remaining as other (table S7). For each of the subgroups, we 
generated a contingency table, counting the number of genes that 
were reannotated or not in relation to whether they fell into that par-
ticular subgroup. For genes that were overlapping between GWASs, 
we classified a gene to be part of a subgroup if it was associated with 
at least one GWAS contained in that subgroup. A Fisher’s exact test 
was used to examine whether our reannotated gene list was signifi-
cantly enriched for genes from any of the subgroups. FDR was used 
to correct for multiple testing.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/24/eaay8299/DC1

View/request a protocol for this paper from Bio-protocol.
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