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ABSTRACT

There is an urgent necessity of effective medication against severe acute respiratory syndrome coronavirus 2 (SARS CoV-2), which is produc-
ing the COVID-19 pandemic across the world. Its main protease (Mpro) represents an attractive pharmacological target due to its involvement
in essential viral functions. The crystal structure of free Mpro shows a large structural resemblance with the main protease of SARS CoV (nowa-
days known as SARS CoV-1). Here, we report that average SARS CoV-2 Mpro is 1900% more sensitive than SARS CoV-1 Mpro in transmitting
tiny structural changes across the whole protein through long-range interactions. The largest sensitivity of Mpro to structural perturbations is
located exactly around the catalytic site Cys-145 and coincides with the binding site of strong inhibitors. These findings, based on a simplified
representation of the protein as a residue network, may help in designing potent inhibitors of SARS CoV-2 Mpro.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0013029

The main protease of the new coronavirus SARS CoV-2 (severe
acute respiratory syndrome coronavirus 2) represents one of the
most important targets for the antiviral pharmacological actions
against COVID-19. This enzyme is essential for the virus due to
its proteolytic processing of polyproteins. Here, we discover that
the main protease of SARS CoV-2 is topologically very similar to
that of the SARS CoV-1. This is not surprising taking into account
that both proteases differ only in 12 amino acids. However, we
remarkably found a topological property of SARS CoV-2 that has
increased more than 1900% in respect to its SARS CoV-1 analog.
This property reflects the capacity of the new protease of transmit-
ting perturbations across its domains using long-range interac-
tions. Also remarkable is the fact that the amino acids displaying
such increased sensitivity to perturbations are around the bind-
ing site of the new protease and close to its catalytic site. We also
show that this sensitivity to perturbations is related to the effects
of powerful protease inhibitors. In fact, the strongest inhibitors
of the SARS CoV-2 main protease are those that produce the least
change of this capacity of transmitting perturbations across the
protein. We think that these findings may help in the design of
new potent anti-SARS CoV-2 inhibitors.

I. INTRODUCTION

Since December 2019, an outbreak of pulmonary disease has
been expanding from the city of Wuhan, Hubei Province, China.1,2

This disease—produced by a new coronavirus named SARS-CoV-
23—has become a pandemic in about three months, affecting more
than 200 countries around the world. SARS-CoV-2 belongs to
the genus Betacoronavirus,4,5 to which the virus that produced the
respiratory epidemic of 2003 (nowadays known as SARS-CoV-
1) also belongs to. The new coronavirus shares about 82% of its
genome with SARS CoV-1. In spite of this similarity and of the
fact that SARS-CoV-1 appeared almost 20 years ago, there are cur-
rently no approved specific drugs against SARS-CoV-2.6–9 In con-
sequence, most of the clinical treatment used against the disease
is symptomatic in combination with some repurposed drugs, such
as the antiviral remdesivir or the antimalarials chloroquine10 and
hydroxychloroquine.11 This situation urges the scientific commu-
nity to search for specific antiviral therapeutics and vaccines against
SARS-CoV-2.

An attractive pharmacological target against the novel coron-
avirus is its viral protease, also known as the main protease (Mpro)
of SARS CoV-2. It is a key enzyme for the virus because it is
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essential for proteolytic processing of polyproteins.12 As remarked
by Zhang et al.,13 “inhibiting the activity of this enzyme would
block viral replication. Since no human proteases with a similar
cleavage specificity are known, inhibitors are unlikely to be toxic.”
The three-dimensional structure of SARS CoV-2 Mpro has been
resolved at different resolutions.13–15 Other structures of SARS CoV-
2 Mpro complexed with inhibitors have also been reported in recent
works.13,16,17

There are some remarkable characteristics of SARS CoV-2 Mpro

in relation to the protease of SARS CoV-1. They share 96% of
the sequence of amino acids; i.e., they differ in the amino acids at
only 12 out of 303 positions in the sequence. Zhang et al.13 have
reported that the superposition of the chain A of two structures
corresponding to the main proteases of SARS CoV-1 and of SARS
CoV-2, namely, 2BX4 and 6Y2E, respectively, shows a root mean
square (r.m.s.) deviation of only 0.53 Å for all Cα positions. The
first question that emerges here is whether such similarities are
also reflected at the topological structural level of the proteins. By
topological we mean here the discrete topology emerging from a
network theoretic representation of a protein. In this representation
of the protein structure, the nodes of the network represent amino
acids, and the edges connecting them indicate that the correspond-
ing residues are at a distance in which they can interact with each
other. Because the Euclidean distance between the amino acids is
used to construct the network, we more correctly should refer to this
framework as topographical more than topological. This network
theoretic representation has been previously used to answer sev-
eral questions related to the protein structure and functioning.18–22

Among the tools in use, the one of node centrality23,24 has played

a fundamental role (see, for instance, Ref. 22). These indices cap-
ture the relative importance—both structural and dynamical—of an
individual amino acid in the protein.

The current study is framed in the field of analysis of complex
systems related to real-world problems. These systems cover a wide
range of scales that goes from the molecular to the social and ecolog-
ical ones. Many efforts have been dedicated to the analysis of these
systems at the largest scale, which include, for instance, crowd dis-
asters, crime, terrorism, war, and disease spreading (see Ref. 25 and
references therein). In the case of the COVID-19 pandemic, most
of these efforts have been directed to the analysis of the epidemic
spread.26–30 Here, we zoom into the molecular level by construct-
ing protein residue networks (PRNs) for SARS CoV-2 Mpro and
some of its inhibitors. The PRN of SARS CoV-2 Mpro is illustrated
in Fig. 1. We then analyze the similarities in the topological struc-
ture of SARS CoV-2 Mpro with that of SARS CoV-1 for which we
also construct the corresponding PRN. We then show that both pro-
teases are very similar in relation to a few topological characteristics,
which account for a very close environment around the amino acids.
That is, when the measures used account for the locality of the topo-
logical environment of a residue, the two proteases do not differ in
more than 2%. However, when the measures considered account for
wider environments around the nodes, the difference between the
two proteins can increase up to 10%–20%. These measures quan-
tify how a perturbation at an amino acid is transmitted through the
whole structure to the rest of the residues in the protein. When this
transmission is allowed not only between close pairs of amino acids
but also between very distant ones, the difference between the two
proteases increases up to 1900%. That is, SARS CoV-2 Mpro is 1900%

FIG. 1. Cartoon representation (left) of
the Mpro of SARS CoV-2 (PDB = 6Y2E)
and the corresponding protein residue
network (right).
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more sensitive to the transmission of perturbations between amino
acids through the topological structure of the protein than SARS
CoV-1 Mpro. We discovered that the residues with this largest sensi-
tivity in SARS CoV-2 Mpro are the ones involved in the binding site
of the three inhibitors studied here. That is, the most central amino
acids according to this long-range indices are also the most affected
by the interaction with the inhibitors as they are either in the bind-
ing site or very close to it. Consequently, we have discovered that
the most relevant amino acids from the topological point of view are
also the most relevant ones for the binding of some inhibitors to the
SARS CoV-2 Mpro and should play an important role in the design
of drugs inhibiting this protease.

II. METHODS

A. Construction of the protein residue networks

The protein residue networks (PRNs) (see Ref. 23, Chap. 14 for
details) are built here by using the information reported on the Pro-
tein Data Bank31 for the proteases of SARS CoV-1 and SARS CoV-2
as well as the complexes of the last one with three inhibitors. The
nodes of the network represent the α-carbon of the amino acids.
Then, we consider the cutoff radius rC, which represents an upper
limit for the separation between two residues in contact. The dis-
tance rij between two residues i and j is measured by taking the
distance between Cα atoms of both residues. Then, when the inter-
residue distance is equal or less than rC, both residues are considered
to be interacting and they are connected in the PRN. The adjacency
matrix A of the PRN is then built with elements defined by

Aij =
{

H
(

rC − rij

)

i 6= j,
0 i = j,

(1)

where H (x) is the Heaviside function. Here, we use the typical inter-
action distance between two amino acids, which is equal to 7.0 Å.
We have tested distances below and over this threshold obtain-
ing in general networks, which are either too sparse or too dense,
respectively.

In this work, we consider the structures of the Mpro of SARS
CoV-1 deposited in the PDB with codes: 2H2Z,32 2DUC,33 1UJ1,34

and 2BX4.35 We also study the following structures of SARS CoV-2
with PDB codes: 6M03,14 6M2Q,14 and 6Y2E.13 For the complexes of
Mpro of SARS CoV-2 with inhibitors, we study the structures with
PDB codes: 6M0K,17 6YZE,17 and 6Y2G.13

The length of the proteases is 306 amino acids. However, there
are structures (see Table I) that are only resolved for amino acids
3–300, which gives a length of 298.35 Thus, for the sake of homo-
geneity of the analysis, we consider here the same part of the amino
acid sequence for all the structures analyzed, i.e., from residue 3 to
residue 300. This does not alter the analysis as the two extremes
of the protease are disordered and do not participate in important
interactions.

B. Network measures

1. First category of measures

The first category of measures corresponds to those related to
the most local structure around the nodes, such as those based on

TABLE I. Values of the average subgraph centrality and communicability based on
simple and double factorial for the two graphs illustrated in Fig. 2 and their relative
difference.

Measure Graph (a) Graph (b) ∆rel (%)

〈SC〉 2.4775 2.4843 0.27
〈Gpq〉 0.7773 0.7766 0.09
〈Zpp〉 4.6144 4.4109 4.41
〈Zpq〉 1.0960 1.1226 2.42

the degree of the nodes, i.e., the number of connections that a node
has (see Ref. 23 for details). The degree accounts for the immediate
effect of a node to its closest neighborhood. Among these measures,
we use here the edge density, which is defined as

δ =
2m

n (n − 1)
, (2)

where m is the number of edges and n is the number of nodes. The
edge density is bounded as 0 ≤ δ ≤ 1, where the lower bound is
reached for a network without any edges and the upper bound is
obtained for the complete graph, which is the one in which every
pair of nodes is connected to each other. Because the average degree

is
〈

k
〉

=
2m

n
, the relation with the edge density is clear.

Another measure related to the degree of the nodes is the
degree heterogeneity,36

ρ =
∑

(i,j)∈E

(

k
−1/2
i − k

−1/2
j

)2
, (3)

where the summation is carried out over all pairs of connected nodes
in the network. The degree heterogeneity represents a measure of
how heterogeneous the degrees of the nodes are.37 A regular net-
work, i.e., a network with all nodes of the same degree, will have
ρ = 0, it is followed by networks with normal-like degree distribu-
tions, then networks with more heterogeneous ones, and will end up
with networks in which the probability P

(

k
)

of finding a node of
degree k decays like a distribution of the form P

(

k
)

∼ k−1.
The average Watts–Strogatz clustering coefficient38 is

defined as

〈C〉 =
1

n

n
∑

i=1

2ti

ki

(

ki − 1
) , (4)

where ti is the number of triangles in which the node i takes place.
It accounts for the transitivity around a node, which is bounded as
0 ≤ 〈C〉 ≤ 1, where the lower bound is attained when no nodes par-
ticipate in a triangle and the upper bound is obtained when all the
nodes in the network participate in the maximum possible number
of triangles they can form.

We use the Newman modularity index Q39 to account for the
modular structure of PRNs. It is defined as39

Q =
nC
∑

k=1





|Ek|
m

−
1

4m2





n
∑

j=1

kj





2

 , (5)
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where |Ek| is the number of edges between nodes in the kth commu-
nity of the network, m is the total number of edges in the network,
and kj is the degree of the node j. These communities were previ-
ously detected by using the Newman eigenvector method.40 That is,
we identify the communities in a network, which are the clusters
of nodes having more densities of connections among them than
with those not in the cluster. Once such communities are identified,
we calculated the modularity of this partition. A modularity close to
zero indicates that the partition found does not differ significantly
from a random clustering of the nodes. A modularity close to one
indicates that this partition is significantly different to a random one.

Another measure related to the degree is the degree assortativ-
ity coefficient,41 which is the Pearson correlation coefficient of the
degree–degree correlation. r > 0 (degree assortativity) indicates a
tendency of high degree nodes to connect to other high degree ones.
r < 0 (degree disassortativity) indicates the tendency of high degree
nodes to be connected to low degree ones.

Other measures in this class assume that “information” is trans-
mitted in the network through the topological shortest paths. The
length of the shortest path is a distance d

(

i, j
)

between the corre-
sponding pairs of nodes i and j, and it is known as the shortest path
distance. The average path length

〈L〉 =
1

n (n − 1)

∑

i<j

d
(

i, j
)

(6)

is typically used as a measure of the “small-worldness” of the
network.38 We also consider the average betweenness centrality42

〈BC〉 =
1

n

∑

i 6=k 6=j

ρikj

ρij

, (7)

where ρikj is the number of shortest paths between the nodes i and
j that cross the node k and ρij is the total number of shortest paths
that go from i to j. It accounts for the importance of a node in pass-
ing information through it to connect other pairs of nodes via the
shortest path only.

2. Second category of measures

The second category of measures is formed by those that
account for the transmission of information not only via the shortest
paths but by using any available route that connects the corre-
sponding pair of nodes. These measures use the concept of a walk
instead of that of a path. A walk of length k in G is a set of nodes
i1, i2, . . . , ik, ik+1 such that for all 1 ≤ l ≤ k, (il, il+1) ∈ E. A closed
walk is a walk for which i1 = ik+1. The number of walks of the length
k between the nodes i and j in a network is given by

(

Ak
)

ij
. The first

of these measures considered here is the eigenvector centrality EC,43

which is the corresponding entry of the eigenvector associated with
the largest eigenvalue of A. The relation of this index with walks is
given by the following. Let Nk(i) be the number of walks of the length
k starting at node i and ending elsewhere. Then, if the network is
not bipartite, which is the case of the current work (see Chap. 5 in
Ref. 23),

ECi = lim
k→∞

Nk(i)
∑n

j=1 Nk(j)
. (8)

That is, the eigenvector centrality of a node is the ratio of the
number of walks of infinite length that start at this node to the whole
number of such walks starting elsewhere. Consequently, the average
eigenvector centrality 〈EC〉 accounts for the spread of information
from the nodes beyond the nearest neighbors and using any infinite-
length walk in the graph.

A type of measures of the second kind are based on counting
all walks of any length but giving more weight to the shorter than to
the longer ones. These measures are based on the following matrix
function:

G :=
∞
∑

k=0

Ak

k!
= exp (A), (9)

where exp (A) is the exponential of the matrix. Then, we consider
the average of the diagonal entries of this matrix, which is known as
the average subgraph centrality,44

〈SC〉 =
1

n

n
∑

p=1

Gpp, (10)

which accounts for the participation of the corresponding node in
all subgraphs of the graphs, giving more weight to the shortest than
to the longer ones. Such subgraphs include, for instance, edges,
triangles, wedges, squares, etc. Another measure is the average of
the non-diagonal entries of exp (A), which is known as the average
communicability of the network,45

〈

Gpq

〉

=
2

n (n − 1)

∑

p<q

Gpq. (11)

It accounts for how much a pair of nodes can communicate to
each other by using all potential routes available in the network but
giving more weight to the shortest than to the longer ones. Finally,
in this category, we include the average communicability angle,46

〈θ〉 =
2

n (n − 1)

∑

p<q

θpq, (12)

where the angle between a pair of nodes is defined as

θpq = cos−1

(

Gpq
√

GppGqq

)

. (13)

The average communicability angle describes how efficiently a
network transmits information between its pairs of nodes by using
all the available routes.

3. Third category of measures

The third category of measures is formed by all-walks indices
that penalize less heavily longer walks connecting pairs of nodes in a
network. That is, although G = exp (A) accounts for all walks con-
necting every pair of nodes, it penalizes very much those walks of
relatively large length and then making more emphasis in shorter
walks around a given node. In order to include longer walks in the
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analysis, we study the following matrix function:47

Z :=
∞
∑

k=0

Ak

k!!
=

1

2

[√
2πerf

(

A
√

2

)

+ 2I

]

exp

(

A2

2

)

, (14)

which penalizes the walks of length k not by k! (simple factorial)
but by k!! (double factorial). The main effect of the use of this dou-
ble factorial penalization instead of the simple factorial is that the
walks of longer length are less penalized than when we use the sim-
ple factorial. For instance, let us consider a pair of residues in a PRN
separated by 10 edges. In the communicability function, the con-
tribution of this interaction will be 1/3 628 800, which is practically
null. However, in the Z function, this contribution is 1/3848, which
is almost 103 stronger than in the previous case.

Then, we will consider here the average of the main diagonal,

〈Zii〉 =
1

n

n
∑

i=1

Zii, (15)

which accounts for the participation of the node i in all subgraphs
in the graph but including bigger subgraphs than in SC. In a similar
way, we consider

〈

Zij

〉

=
2

n (n − 1)

∑

p<q

Zij, (16)

which accounts for the global capacity of the network of transmit-
ting information between pairs of nodes and allowing longer-range
transmission than in the case of the communicability. For those
reasons, we propose to call these indices long-range (LR) subgraph
centrality and communicability, respectively.

a. Example. In order to illustrate the sensitivity of the differ-
ent topological measures used here to structural changes in protein
residue networks, we construct the following toy model. One of the
characteristic features of protein residue networks is the presence
of chordless cycles. A chordless cycle is a cycle that contains no
edge, which does not itself belongs to the cycle. These chordless

cycles—also known as holes or induced cycles—represent pockets
in the protein, which may be involved in the binding of ligands
and/or inhibitors. In Fig. 2(a), we illustrate a simple graph hav-
ing two chordless cycles of six nodes each. The graph illustrated in
Fig. 2(b) differs on that in (a) in which it has two holes of five and
seven nodes each.

In Table I, we give the values of the average subgraph cen-
trality and communicability based on the matrix exponential, 〈SC〉
and

〈

Gpq

〉

, respectively, for the two graphs in Fig. 2. As can be seen,
the subgraph centrality of both graphs differs less than 0.5% and
the communicability in less than 0.1%. This is a consequence of
the fact that these indices based on the matrix exponential penalize
very heavily the walks of relatively large length, which means that
they hardly differentiate cycles of length 5, 6, and 7. However, the
two indices based on the double factorial penalization are capable to
distinguish very well between these cycles and produce relative dif-
ferences of almost 5% for

〈

Zpp

〉

and of 2.4% for
〈

Zpq

〉

. As we will see
later on this work, this difference between the indices based on the
simple and double factorial is essential to find important amino acid
contributions to the interactions of SARS CoV-2 main protease with
inhibitors.

III. RESULTS

A. Free protease

The main goal of this section is to analyze a few network theo-
retic measures of the Mpro of SARS CoV-2 and compare them with
those of the protease of SARS CoV-1. The amino acid sequence of
both proteases shares 96% of similarity; i.e., only 12 amino acids are
different in both proteases of a total of 303. These amino acids are
at positions 33, 44, 63, 84, 86, 92, 132, 178, 200, 265, 283, and 284.
In order to compare the topological features of the main proteases of
SARS CoV-1 and of SARS CoV-2, we go a step further here and com-
pare several structures of the Mpro of SARS CoV-1 and SARS CoV-2.
In Table II, we give the PDB codes of six structures of the main pro-
tease of SARS CoV-1 and four of SARS CoV-2 without inhibitors.
In these structures, not only there are no inhibitors, but also there
are no mutations in the structure of the wild proteases. In the case of

(a) (b)

FIG. 2. Example to illustrate the sensi-
tivity of the topological measures to struc-
tural changes in protein residue networks
(see the text for explanations). (a) A graph
with two chordless cycles of 6 nodes. (b)
A graph with a chordless cycle of 5 nodes
and another of 7 nodes.
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TABLE II. Protein Data Bank codes for the structure of the main protease of SARS
CoV-1 and SARS CoV-2 without inhibitors (apo forms).

SARS CoV-1 SARS CoV-2

PDB Res. (Å) Length PDB Res. (Å) Length

2H2Z 1.60 306 6YB7a 1.25 306
2DUC 1.70 306 6M2Q 1.70 305
1Q2Wb 1.86 295 6Y2E 1.75 306
1UJ1 1.90 301 6M03 2.00 306
3VB3c 2.20 301
2BX4 2.79 298

aThe structure 6YB7 is resolved with dimethylsulfoxide as a ligand.
bResidues 45–48 are missing in the crystal structure.
cThe structure 3VB3 is resolved with two ligands;
di(hydroxyethyl)ether and 1,2-ethanediol.

the structure with the PDB code 1Q2W, the residues 45–48 are miss-
ing in the PDB. In 3VB3, we have found that di(hydroxyethyl)ether
(PEG) and 1,2-ethanediol (EDO) are also present in the crystal
structure. In a similar way, the structure 6YB7 contains dimethyl-
sulfoxide (DMS) in the crystal structure. For these reasons, we will
not include these three structures in further analysis.

For the rest of the structures, i.e., four structures of the main
protease of SARS CoV-1 and three structures of the same for
SARS CoV-2, we calculate all the topological measures defined in
Sec. II. We then obtained the mean and standard deviation of
these measures for the two groups of structures and report them in
Table III. We can observe in this table that most of the topologi-
cal characteristics of the first kind of the PRNs of both proteases
are very similar with relative differences not bigger than 2% for all
the properties analyzed. In order to test the significance of the dif-
ferences between the two groups of proteases, we use the p-values
of the Mann–Whitney U-test.48 This statistical measure has been
proposed for the analysis of network measures, in particular, for pro-
tein networks.49,50 According to the p-values (see the last column in
Table III), none of these measures display a significant difference
between the two groups of proteases.

We then continue the analysis by comparing the topological
measures of the second kind. We notice that the eigenvector cen-
trality, which has been found very useful in the previous analysis
of PRN,22 does not display any significant difference between both
proteases according to the Mann–Whitney test. However, there are
differences in the mean subgraph centrality of about 14% and of
the average communicability between pairs of nodes of about 18%.
In both cases, the indices are significantly larger for the protease
of SARS CoV-2 than for that of SARS CoV-1. According to the
p-values, these differences are significant at a 94% level of confi-
dence in the Mann–Whitney U-test. This means that the structural
changes that make the difference between the proteases of SARS
CoV-1 and SARS CoV-2 increase the capacity of the individual
amino acids of feeling a perturbation or thermal oscillation pro-
duced in another amino acid of the protein. As we have previously
explained, these communicability factors penalize very heavily any
perturbation being transmitted between two amino acids separated

TABLE III. Average values of the global topological properties of the Mpro of SARS
CoV-1 (2H2Z, 1UJ1, 2DUC, 2BX4) and SARS CoV-2 (6M03, 6Y2E, 6M2Q). The rel-
ative difference between them, expressed as percentages of the change relative to
SARS CoV-1, and the p-values of the Mann–Whitney U-test are also given. Boldface
denotes the values with the most significant difference relative to SARS CoV-1.

Measure SARS CoV-1 SARS CoV-2 ∆rel (%) U-stat

δ 0.0260 0.0262 −0.71 0.2286
ρ 0.0163 0.0164 −0.98 0.8571
〈L〉 6.37 6.33 0.69 0.2286
Q 0.613 0.610 0.49 1.0000
〈C〉 0.542 0.540 0.31 0.8571
r 0.390 0.398 −1.85 0.8571
〈BC〉 796.29 793.76 0.32 0.6286
〈EC〉 0.003 36 0.003 34 0.50 0.5714
〈SC〉 172.00 196.04 −13.97 0.0571
〈Gpq〉 22.42 26.46 −18.01 0.0571
〈θ〉 82.29 82.01 0.34 0.0571
〈Zpp〉 4.65 × 1017 9.57 × 1018

−1960.15 0.0571
〈Zpq〉 1.44 × 1017 2.91 × 1018

−1921.88 0.0571

by a relatively shortest path distance in the protein. Thus, they can
be considered as indices that account for shorter range interac-
tions than the third kind measures considered here. It should be
noticed that although the communicability angles display very little
relative variation between the two groups of proteases, these differ-
ences are significant at 94% of confidence in the Mann–Whitney
test.

Both LR subgraph centrality and communicability display a
dramatic increment in SARS CoV-2 relative to SARS CoV-1. In this
case, the increase of these indices is more than 1900% for both, the
LR communicability and the LR subgraph centrality. In short, this
means that the protease of SARS CoV-2 has more than 13 times
more capacity of transmitting perturbations between pairs of nodes
than the protease of SARS CoV-1. This is equivalent to say that the
protease of SARS CoV-2 is significantly much more topologically
efficient in transmitting “information” among its amino acids than
the protease of SARS CoV-1. These two topological measures display
significant differences between the two groups of proteases accord-
ing to the statistical p-values obtained from the Mann–Whitney
U-test at 94% of confidence.

We now proceed to the analysis of the local variation of the
subgraph and the LR subgraph centralities for the amino acids of
the two Mpro (see Fig. 3) averaged for all the structures previously
mentioned, i.e., 2H2Z, 1UJ1, 2DUC, and 2BX4 for SARS CoV-1 and
6M03, 6Y2E, and 6M2Q for SARS CoV-2. In the case of the sub-
graph centrality, the largest change is produced for a few amino
acids, which increase their centrality in SARS CoV-2 relative to
SARS CoV-1. These are the cases of residues number 25, 26, 27, 118,
17, and 24. However, there are also other amino acids that drop their
centrality in SARS CoV-2, such residues number 170, 73, 169, 165,
89, and 252 among others [see Fig. 3(b)]. Therefore, the increase of
the subgraph centrality of a few amino acids makes that in total, the
average subgraph centrality increases in SARS CoV-2 in relation to
SARS CoV-1. An important characteristic feature of the differences
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(a) (b) (c)

(d) (e) (f)

FIG. 3. Plot of subgraph centrality (a)–(c) as well as LR subgraph centrality (d)–(f) of the amino acid residues for the Mpro of SARS CoV-1 (a) and (d), SARS CoV-2 (b) and
(e), and the difference between them (c) and (f).

in this centrality between the two proteases is that they are spread
across the three domains of the proteases with a large increment in
the domains I and III. This is a major difference with the LR sub-
graph centrality [see Figs. 3(c) and 3(d)], where the main change is
a dramatic increase in the centrality of the nodes in domains I and
II of the SARS CoV-2 protease relative to SARS CoV-1. The changes
occurring in domain III are imperceptible in relation to those of the
other two domains.32

In order to illustrate the distributions of the most central amino
acids according to both measures in the three-dimensional struc-
tures of the proteases, we selected two structures, 2BX4 for SARS
CoV-1 and 6Y2E for SARS CoV-2 as a representative of the two
groups of structures. Notice that these two structures have been used
by Zhang et al.13 for their comparison of the 3D structures of both
proteases. Both structures are illustrated in Fig. 4. It can be seen that
the largest values of the LR subgraph centrality are concentrated in
a relatively small region of the protein structure, while those of the
subgraph centrality are more spread across the whole structure. We
then inquire about this region of the Mpro in SARS CoV-2, which
shows the largest change in the LR subgraph centrality relative to its
analog of SARS CoV-1.

The first remarkable observation of the amino acids with the
largest change in the LR subgraph centrality is that they are all
closely located to each other in the three-dimensional space. For
instance, the 22 amino acids displaying the largest change in this
centrality form a connected subgraph of the PRN as illustrated in
Fig. 5. This subgraph of 22 nodes has 48 connections among these
amino acids, which produces an edge density of 0.21, almost 10
times bigger than the total density of the protease. The second
remarkable feature of this subgraph is that it contains one of the
two catalytic amino acids of the Mpro of SARS CoV-2, which is Cys-
145. That is, the region with the largest increase in the LR subgraph
centrality of the protease of SARS CoV-2 relative to SARS CoV-1 is
the one enclosing the catalytic binding site of the amino acid Cys-
145. It is also remarkable that this region with a large increment
in the LR subgraph centrality contains some amino acids that are
located in the binding site of the Mpro to α-ketoamide inhibitors as
well as other kinds of inhibitors, as we will analyze further in this
work. This is the case of the residues 144–147, and other amino
acids in this binding site such as residues 162 and 163 which also
display a large increment in the LR subgraph centrality. The last
remarkable observation is that domain III displays a small change in
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(a) (b)

(c) (d)

FIG. 4. Illustration of the subgraph (a)
and (c) and LR subgraph (b) and (d) cen-
tralities of the amino acid residues of the
chain A of SARS CoV-1 Mpro of (top) and
of SARS CoV-2 (bottom). The size of the
nodes is proportional to the correspond-
ing centrality normalized to its largest
value in the protease analyzed. The col-
ors also correspond to the same values
in the jet color code, with red for higher
values and blue for smaller values.

relation to the changes of domains I and II in this topological param-
eter. However, as we will see in the next paragraphs, this domain
(residues 198–303), which is formed by five helices and is involved
in the dimerization of the Mpro, also increases significantly the LR
communicability in relation to SARS CoV-1.

A better picture of the changes in the different regions of the
Mpro of SARS CoV-2 relative to SARS CoV-1 can be obtained again
by analyzing the differences between the communicabilities and LR-
communicabilities averaged for the four structures of SARS CoV-1
and three structures of SARS CoV-2 before considered. For this,
we obtain an average communicability (resp. LR communicability)
matrix for the structures of SARS CoV-1 and another for the struc-
tures of SARS CoV-2. Then, we obtain the difference between these
two matrices. In Fig. 6, we illustrate the difference in the matrices for
both kinds of communicabilities. In the first case, it can be observed

that the communicability between all pairs of residues in domain I
(residues 10–99) mainly increases in SARS CoV-2 relative to SARS
CoV-1, with an increase of 12.8% relative to SARS CoV-1. However,
in domain II (residues 100–182), there is mainly a drop of the com-
municability between the residues in the domain, which decrease
2.02%, but there is an increase of 19.6% in the trade-off between
domains I and II and an increase of 39.2% in the trade-off between
domains I and III. The domain III shows a mixed behavior with
some pairs of residues increasing and other decreasing their com-
municability, but the main result is an increase of 5.58% relative to
SARS CoV-1. The communicability between domains II and III in
the SARS CoV-2 structures increases in 23.9% relative to the same
in SARS CoV-1.

We finally analyze the changes in the LR communicability
between the different domains of the SARS CoV-2 protease. Here,
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FIG. 5. Illustration of the 22 amino acids that display the largest difference in the
LR subgraph centrality in a representative Mpro of SARS CoV-2 (6Y2E) in relation
to one of SARS CoV-1 (2BX4). The radius of the nodes is proportional to the
difference in the LR subgraph centrality between the two proteases. The catalytic
site Cys-145 is pointed to with an arrow. The size of the nodes is proportional to the
corresponding centrality normalized to its largest value in the protease analyzed.
The colors also correspond to the same values in the jet color code, with red for
higher values and blue for smaller values.

the changes are dramatic, and in all cases, the LR communicabil-
ity in the SARS CoV-2 protease is higher than that in SARS CoV-1.
For instance, the average communicability between pairs of nodes
in domain I is 1997% higher in SARS CoV-2 than in SARS CoV-1.
This percentage of increment is 1814% in domain II and 2651% in
domain III. The inter-domain communicability also increases very
significantly with an increment of 1896% (domains I and II), 2350%
(domains (I–III), and 2237% (domains II and III). In closing, the

TABLE IV. Relative differences in percentage of global topological properties of the
Mpro of SARS CoV-2 complexed to an inhibitor in relation to the free one. The prop-
erties for the wild (apo form) protease correspond to the average of the 3 structures
considered here (see Table III).

Measure Wild 6M0K 6LZE 6Y2G

δ 0.0262 0.0262 0.0262 0.0255
ρ 0.0164 0.0167 0.0164 0.0178
〈L〉 6.33 6.386 6.383 6.35
〈C〉 0.54 0.54 0.54 0.54
r 0.398 0.394 0.375 0.37
〈BC〉 793.76 799.86 799.39 795.92
〈EC〉 0.003 34 0.003 35 0.003 36 0.0033
〈SC〉 196.04 187.85 180.42 156.09
〈Gpq〉 26.46 25.07 23.40 20.09
〈θ〉 82.01 82.12 82.24 82.45
〈Zii〉 9.57 × 1018 1.99 × 1018 4.79 × 1017 1.28 × 1017

〈Zij〉 2.91 × 1018 5.93 × 1017 1.54 × 1017 4.06 × 1016

IC50 (µM) 0.04 ± 0.002 0.053 ± 0.005 0.67 ± 0.18

structural changes between the main proteases of SARS CoV-1 and
SARS CoV-2 produced a dramatic impact in the LR communica-
bility between residues in the protease of SARS CoV-2 with a huge
improvement in the long-range communication between residues
practically in all domains of the protease.

B. SARS CoV-2 protease bounded to inhibitors

We turn now our attention to the analysis of the Mpro of
SARS CoV-2 complexed with some inhibitors. The selection of these
inhibitors has been based on (i) the existence of the crystallographic
structure of the complex inhibitor-Mpro, (ii) the existence of reports
about the inhibitory concentration IC50 of the inhibitor, and (iii)
the fact that the inhibitors display a great potency against the main
protease of SARS CoV-2. Then, we have selected three complexes
that correspond to PDB codes 6M0K, 6LZE, and 6Y2G. The first
two compounds were recently reported by Dai et al.17 and the third
is an α-ketoamide inhibitor reported by Zhang et al.13 The first

(a) (b)

FIG. 6. Difference between communica-
bilities (a) and the LR communicability (b)
between pairs of amino acids in the aver-
aged structures of Mpro of SARS CoV-2 in
relation to that of SARS CoV-1.
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two inhibitors display IC50 < 0.1µM and the third shows IC50 ≈
0.67 ± 0.18.

In Table IV, we resume the results of the calculation of aver-
age topological properties of the Mpro structure bounded to these

(a)

(b)

(c)

FIG. 7. Illustration of the 22 amino acids with the largest values of the LR sub-
graph centrality in 6M0K (a), 6LZE (b), and 6Y2G (c). The residues are connected
if they are at nomore than 7.0 Å. The color bar and the radius of the nodes indicate
the values of Zii .

inhibitors. In these calculations, we consider only the residues 3–300
of the protease as explained in Sec. II to make these results compara-
ble with the ones obtained in Sec. III A. It can be seen that here again,
the topological measures of the first class display little variation for
the three complexed proteases relative to the free one.

We then move to the analysis of the measures of the second
and third type. As can be seen in Table IV, there are significant
changes, of more than 20%, in the subgraph centrality and the com-
municability of the complexed proteases in relation to the average
of the wild proteases previously analyzed. However, here again,
the most dramatic change in these topological properties occurs
in the values of the LR subgraph centrality and communicability,
with relative changes of more than 98%. We should notice that
the smallest change in these parameters occurs for the structure
6M0K, which corresponds to the strongest inhibitor, followed by
6LZE, which is the intermediate one, and finally 6Y2G, which is the
weakest of the three. That is, the strongest inhibitor produces the
smallest changes in the (LR) subgraph centrality and (LR) commu-
nicability in relation to the wild protease. In contrast, the weakest
inhibitor changes most of these communicability parameters rel-
ative to the unbounded protease. These results appear to indicate
that the potency of these inhibitors could be related to the fact of
not affecting very much the strong inter-residue communicability
of amino acids in the Mpro of SARS CoV-2.

TABLE V. List of amino acids with the largest values of LR subgraph centrality in the
average free protease (average of 6M03, 6Y2E, 6M2Q) and with the same parameter
for the protease bounded to inhibitors (6M0K, 6LZE, and 6Y2G). The amino acids in
the bounded protease that are not in the top rank of the free one are marked in bold.

Rank Average 6M0K 6LZE 6Y2G

1 N28 N28 N28 N28
2 G29 G29 G29 G29
3 L27 L27 L27 Q19
4 V18 V18 Q19 V18
5 Q19 Q19 V18 L27
6 V20 V20 V20 V20
7 G146 G120 G146 G146
8 G120 G146 S144 C38
9 L30 L30 C38 M17
10 C38 C38 N119 S144
11 M17 M17 C117 W31
12 N119 S144 G120 G120
13 S144 N119 Y118 S147
14 Y118 Y118 M17 L30
15 C117 C117 S147 Y37
16 W31 W31 W31 C117
17 V36 V36 V36 V36
18 Y37 Y37 L30 V68
19 S147 S147 Y37 N119
20 T26 C145 T21 C145
21 C145 V68 C145 T21
22 T21 T21 T26 Q69
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With the goal of disentangling the information contained in the
changes produced at the LR subgraph centrality of the bounded pro-
tease, we study it in more detail here. For this, we consider the amino
acids displaying the largest values of this topological parameter for
the three structures. In Fig. 7, we illustrate the region formed by the
top 22 amino acids according to their values of the Zij index, i.e.,
LR subgraph centrality. The first interesting observation is that for
the three structures considered, these amino acids form a connected
subgraph in the main protease. That is, these amino acids display-
ing the highest LR subgraph centrality are not randomly distributed
around the domains of the protease, but they are located in a specific
location of the space. It is also remarkable that this subgraph is con-
nected, which means that there is no single amino acid separated
at more than 7 Å from the rest of residues forming the subgraph.
Another remarkable characteristic of these subgraphs of the most
central residues according to LR subgraph centrality is that they are
exactly around the binding site of the main protease. As can be seen
in Fig. 7, these subgraphs of residues are very close to the inhibitors
and form a cluster of amino acids around the catalytic site, which is
C145.

In Table V, we resume the results of the top ranked amino acids
according to the LR subgraph centrality for the free SARS CoV-2
Mpro taken as the average of the three apo structures previously con-
sidered and the three complexes with inhibitors studied here. As can
be seen, the top 22 amino acids in the average free SARS CoV-2 Mpro

contain more than 90% of the residues, which appear involved in
the interactions with the three inhibitors studied here. In the case
of 6LZE, they coincide in 100%, and in 6M0K, the coincidence is
of 95%.

IV. DISCUSSION AND CONCLUSIONS

We present an analysis of some of the most relevant topological
properties of the main protease of the SARS CoV-2. Our approach
is based on the representation of the three-dimensional structure of
the protein as a residue network in which Cα of every amino acid
is represented by a node of the network and two nodes are con-
nected if the corresponding Cα is at no more than 7.0 Å. We find
here that the difference between most of the topological properties
of the PRNs representing both proteases differs less than 5%. If we
exclude from the analysis the LR measures, then 70% of the topologi-
cal measures shows only a small variation between the two proteases
taking as the average of the properties of several structures repre-
senting each of the two proteases. In this situation, it is certainly
remarkable that there are topological measures that change in more
than 1900% from one protease to the other. These are the cases of the
LR subgraph centrality of the amino acids and of the LR commu-
nicability between pairs of them. The increase of these parameters
in more than 1900% for SARS CoV-2 Mpro relative to SARS CoV-
1 Mpro means that the structural changes that differentiate both
proteases have created a huge increment in the efficiency of SARS
CoV-2 Mpro in transmitting perturbations of any kind between the
amino acids of the protein using all the available routes of connec-
tion and allowing for long-distance transmission. To make clearer
what this sensitivity means, we are going to use a simple example.
Let us consider a tiny perturbation on the structure of the proteases
that prevent the interaction between the amino acids P9 and G11,

which have been selected at random. In SARS CoV-1 Mpro (tak-
ing 2BX4 as an example), these amino acids are at 5.69 Å and in
SARS CoV-2 Mpro (taking 6Y2E as an example), they are 6.48 Å
apart. Thus, in both cases, they are connected in the correspond-
ing PRN. Let us consider that the perturbation removes this edge
from the PRN of both proteases. The relative decrement of the aver-
age path length in SARS CoV-2 Mpro relative to SARS CoV-1 Mpro

is almost imperceptible, i.e., 5.7%. In the case of the subgraph cen-
trality, it is of the same order, i.e., 3.4%. This means that according
to these parameters, SARS CoV-2 Mpro is as sensitive as SARS CoV-
1 Mpro to perceive a structural change in its structure produced by
a given perturbation. However, when we consider the LR subgraph
centrality, this relative change is 316.8%. That is, according to this
topological parameter that takes into account long-range interac-
tions, SARS CoV-2 Mpro is more than three times more sensitive to
a tiny structural change than SARS CoV-1 Mpro. This remarkable
finding indicates that the changes produced in SARS CoV-1 Mpro

make the resulting SARS CoV-2 Mpro much more efficient in trans-
mitting “information” through the protein skeleton using short and
long-range routes.

The second remarkable finding of the current work is that the
largest changes in the LR subgraph centrality occurring in SARS
CoV-2 Mpro relative to SARS CoV-1 Mpro do not spread equally
across the whole structure of the protease. Instead, they are con-
centrated around a geometrical region, which includes most of the
amino acids involved in the binding site of the protease to inhibitors
or close to it. One of the amino acids that has increased more dra-
matically its sensitivity to long-range transmission of information
in SARS CoV-2 Mpro is Cys-145, which is one of the two catalytic
sites of the protease, and the one involved in interactions with
the inhibitors, such as the ones analyzed here. We have analyzed
here three different inhibitors of SARS CoV-2 Mpro displaying very
potent inhibitory capacity over the protease. In the three cases, we
have observed a significant variation in the LR subgraph centrality of
the amino acids, which were previously observed to have increased
their LR sensitivity in the free protease. Therefore, these amino acids
correspond to those involved in the binding of these three inhibitors,
showing that their increased topological role in the SARS CoV-2
Mpro also may play an important functional role in it.

The analysis of PRN is easier than the study of the whole pro-
tein structure. In this sense, the PRN represents a simplified model
of the three-dimensional structure of the protein. Typically, such
simplification in the complexity of the representation of systems
conveys a loss in the structural information, which is represented
by the global system. In this case, however, we have shown that the
use of a network representation of the proteins reveals some hid-
den patterns in their structure that were escaping to the analysis by
using the global structure. To detect such important structural fac-
tors, it is necessary to account for long-range interactions among
the amino acids of the proteases, which are the ones revealing
their most important characteristics in terms of their sensitivity
to tiny structural changes produced by local or global perturba-
tions to the system. Such LR interactions revealed here the main
differences between the proteases of SARS CoV-1 and SARS CoV-
2, as well as the most important amino acids for the interaction
with inhibitors, which may produce therapeutic candidates against
COVID-19.
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SUPPLEMENTARY MATERIAL

The x, y, and z coordinates of the Cα of all amino acids in the
proteins studied in this work are provided in the supplementary
material. We also provide the adjacency lists of the protein residue
networks constructed by using a threshold radius of 7 Å. In all cases,
the lists contain information for residues numbered from 3 to 300 as
explained in the paper.

DATA AVAILABILITY

We provide supplementary data containing the Cartesian coor-
dinates of the α-carbons of the residues in the proteins analyzed here
as well as the adjacency lists for all these protein residue networks.
Any other data can be requested by email to the author.
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