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Abstract

Image post-processing is used in clinical-grade ultrasound scanners to improve image quality (e.g., 

reduce speckle noise and enhance contrast). These post-processing techniques vary across 

manufacturers and are generally kept proprietary, which presents a challenge for researchers 

looking to match current clinical-grade workflows. We introduce a deep learning framework, 

MimickNet, that transforms conventional delay-and-summed (DAS) beams into the approximate 

Dynamic Tissue Contrast Enhanced (DTCE™) post-processed images found on Siemens clinical-

grade scanners. Training MimickNet only requires post-processed image samples from a scanner 

of interest without the need for explicit pairing to DAS data. This flexibility allows MimickNet to 

hypothetically approximate any manufacturer’s post-processing without access to the pre-

processed data. MimickNet post-processing achieves a 0.940±0.018 structural similarity index 

measurement (SSIM) compared to clinical-grade post-processing on a 400 cine-loop test set, 

0.937±0.025 SSIM on a prospectively acquired dataset, and 0.928±0.003 SSIM on an out-of-

distribution cardiac cine-loop after gain adjustment. To our knowledge, this is the first work to 

establish deep learning models that closely approximate ultrasound post-processing found in 

current medical practice. MimickNet serves as a clinical post-processing baseline for future works 

in ultrasound image formation to compare against. Additionally, it can be used as a pretrained 

model for fine-tuning towards different post-processing techniques. To this end, we have made the 

MimickNet software, phantom data, and permitted in vivo data open-source at https://github.com/

ouwen/MimickNet.
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I. Introduction and Background

IN the typical clinical B-mode ultrasound imaging paradigm, a transducer probe will 

transmit acoustic energy into tissue, and the back-scattered energy is reconstructed via 

beamforming techniques (e.g., delay-and-sum [1], minimum variance [2], delay-multiply-

and-sum [3]) into a human eye-friendly image. This image attempts to faithfully map spatial 
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changes in tissue’s acoustic impedance, which is a property of its bulk modulus and density. 

Unfortunately, there are many sources of image degradation such as electronic noise, speckle 

from sub-resolution scatterers, reverberation, and de-focusing caused by heterogeneity in 

tissue sound speed [4]. In the literature, these sources of image degradation can be 

suppressed through better focusing [5], [6], spatial compounding [7], harmonic imaging [8], 

[9], [10], and coherence imaging techniques [11], [12], [13].

In addition to beamforming, image post-processing is a significant contributor to image 

quality improvement. Reader studies have shown that medical providers largely prefer post-

processed images over delay-and-sum (DAS) imagery [12], [14]. Unfortunately, commercial 

post-processing algorithms are proprietary, and implementation details are typically kept as a 

black-box to the end-user. Thus, researchers that develop image improvement techniques on 

highly configurable research systems, such as Verasonics (Kirkland, USA) and Cephasonics 

(Santa Clara, USA) scanners, face challenges in presenting their images alongside current 

clinical system scanner baselines. The current status quo for researchers working on novel 

image forming techniques is to compare against DAS images, which are not typically 

viewed by medical providers. Contrast ratio (CR) and Contrast-to-noise (CNR) are 

commonly provided metrics; however, these can be sensitive to arbitrary dynamic range 

alterations, which have motivated the development of new metrics [15], [16], [17].

Researchers looking to translate clinically-relevant image enhancement should ideally 

compare their images against an existing scanner’s full post-processing pipeline. Of course, 

this is difficult. Researchers would either need access to proprietary post-processing code or 

hack into raw channel data from difficult-to-configure commercial scanners for a fair, direct 

pixel-wise comparison. To combat this difficulty, we aim to mimic a significant portion of a 

commercial scanner’s post-processing pipeline by leveraging deep learning methods.

Deep learning based post-processing using convolutional neural network (CNN) generators 

[18], [19] have become immensely popular in the image restoration problem [20], [21]. One 

popular network architecture used is an encoder-decoder network with skip connections 

commonly referred to as a Unet [22]. In the image restoration problem, the encoder portion 

of Unet takes a noisy image as input and creates feature map stacks which are subsequently 

down-sampled through max pool operations. The decoder portion up-samples features and 

attempts to reconstruct an image of the same size as the input. Usage of skip connections in 

Unet has been shown to better maintain high-frequency information in the original image 

[23]. Other encoder-decoder Unet flavours exist which exploit residual learning [24], [25], 

wavelet transforms [26], and dense blocks [27], [28]. Encoder and decoder network 

parameters are optimized with gradient descent which minimizes a distance function 

between the reconstructed and ground truth image [29].

Adversarial objective functions are a unique class of distance functions that have shown 

success in the related field of image generation [30]. The adversarial objective optimizes two 

networks simultaneously. Given training batch sizes of m with individual examples i, G is a 

network that generates images from noise z(i), and another network, D, discriminates 

between real images x(i) and synthetically generated images G(z(i)). D and G play a min-max 

game since they have competing objective functions shown in Eq. 1 and Eq. 2 where θg are 
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parameters of G and θd are parameters of D. If this min-max game converges, G ultimately 

learns to generate realistic synthetic images that are indistinguishable from the perspective 

of D. In the literature, these networks are referred to as generative adversarial networks 

(GANs) [31], [32]. Conditional GANs (cGANs), which take in a structured input, such as a 

corrupted image instead of noise, have seen success in image restoration and style transfer 

problems [33].

argmin
θg

1
m ∑

i = 1

m
log 1 − Dθd Gθg z(i) , (1)

argmax
θd

1
m ∑

i = 1

m
logDθd x(i) + log 1 − Dθd Gθg z(i) . (2)

In the field of ultrasound, CNNs and cGANs have been applied in many versatile ways to B-

mode imaging. CNNs have been applied to achieve better motion estimation, which in turn 

enables better construction of a high-resolution image from a temporal window of low-

resolution ultrasound frames [34]. CNNs have been shown to improve the quality of in vivo 
single plane-wave images through training only on simulated data [35]. GANs have been 

shown to process images from 3 compounded plane-waves to look similar to an image 

compounded with 10 plane-waves [36]. CNNs have been shown to directly beamform 

images and perform speckle reduction on simulated data as well as in vivo images [37]. In 

recent work, GANs have shown the same beamforming ability on simulated data [38], 

though a comparison to simpler CNN approaches has not yet been performed. GANs have 

shown the ability to generate a multi-focus image from a single-focus image [39]. Finally, 

GANs have approximated the non-local low-rank (NLLR) speckle reduction algorithm [40].

While the results of higher quality images from CNNs and GANs are promising, these 

studies do not compare against current clinical-grade post-processing. These and future 

image formation studies would benefit from a pixel-wise comparison to a clinical-grade 

baseline. Unfortunately, this is not a luxury available in most research environments. To this 

end, we present an easy and robust method to mimic clinical-grade post-processing without 

the need for explicit image registration through cycle-consistent GANs (CycleGAN) [41].

CycleGANs excel at the problem of style transfer where images are mapped from one 

domain to another without necessitating explicitly paired images. CycleGANs consist of two 

key components: forward-reverse domain generators, Ga and Gb, and forward-reverse 

domain discriminators, Da and Db. The generators translate images from one domain to 

another, and the discriminators distinguish between real and synthetically generated images 

in each domain. We show the objective functions for one direction of the cycle in Eq. 3 and 

Eq. 4 where a(i) is an image from domain A, and b(i) is an image from domain B. In Eq. 3 

and Eq. 4, the variables θga and θdb are the parameters for the domain A forward generator 

and domain B discriminator respectively. In Eq. 3, f can represent any distance metric to 

compare two images.
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argmin
θga

f Ga Gb a(i) , a(i) ,
(3)

argmax
θdb

1
m ∑

i = 1

m
logDb b(i) + log 1 − Db Gb a(i) . (4)

As an overview, we investigate approximation of a clinical-grade post-processing algorithm 

under the following schemes:

1. When before-and-after image pairs are available: This scheme is only feasible if 

DAS beams can be accessed immediately before any post-processing. We can 

directly optimize this scheme with respect to a pixel-wise loss. We call this 

training scheme the gray-box constraint.

2. When before-and-after image pairs are not available: This training scheme 

equates to acquisitions from one scanner with easily accessible DAS data, and 

acquisitions from another scanner that only provides post-processed images 

ready for clinical use. We can only indirectly optimize in this scheme through the 

cycle-consistency loss in [41]. However, this scheme is more practical to 

implement compared to the gray-box scheme. We call this training scheme the 

black-box constraint. MimickNet refers to the trained model under black-box 

constraints.

3. We assess MimickNet (black-box constrained) on the test set and prospectively 

acquired data. Our training set only includes DAS liver, fetal, and phantom data; 

thus, to further assess generalizability, we also evaluate on out-of-distribution 

cardiac data.

Our results suggest that clinical-grade post-processing can be well approximated using the 

MimickNet framework using data acquired through a clinical scanner’s intended use. Once 

trained, we hypothesize MimickNet can be used as a pretrained model for other post-

processing, or downstream prediction tasks.

II. Methodology

We start with 1500 unique retrospective ultrasound cine-loop acquisitions over 59 subjects 

consisting of a total of 39200 frames from fetal, phantom, and liver targets from studies [12], 

[42], [43], [44]. 78 frames from a cardiac cine-loop acquired in [6] were used for out-of-

distribution evaluation. 67 unique prospective scans are gathered for further evaluation. Each 

study was IRB approved by Duke University, and each study subject provided written 

informed consent prior to enrollment in the study.

Cine-loops are split into a train-validation-test-split of 1000–100-400 cine-loops; however, 

structures across unique cine-loop acquisitions may contain displacement shifted repeats. 

Cine-loop frames are processed by a proprietary post-processing algorithm known as 

Dynamic Tissue Contrast Enhancement (DTCE™), to form before-and-after pairs. DTCE™ 
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is commercially advertised by Siemens (Malvern, USA), to perform speckle reduction, 

contrast enhancement and improve the conspicuity of anatomical structures.

Our dataset is highly heterogeneous which enables training and performance assessment 

over a large input domain. Table I shows the data split at per-frame granularity. Fig. 1 shows 

a sample distribution of what scan parameters differ across the dataset for each uniquely 

acquired cine-loop.

A. Gray-box Training with Paired Images

In the gray-box case where before-and-after paired images are available, our problem can be 

seen as a classic image restoration problem where our input DAS beamformed data is 

“corrupted”, and our clinical-grade post-processed image is the “uncorrupted ground truth”. 

We use the generator found in Fig. 2 replacing LeakyReLU activations with ReLU 

activations, and optimizing for mean-absolute-error (MAE). MAE is the summed pixel-wise 

absolute difference between a ground truth pixel y(i) in image y and estimated pixel x(i) in 

image x. These residuals are averaged by all pixels m.

MAE(x, y) = 1
m ∑

i = 1

m
x(i) − y(i) , (5)

We use an ADAM optimizer [45] with a learning rate λ of 0.002, first moment β1 of 0.9, 

and second moment β2 of 0.99. See Supplemental Materials Code Section for more details.

B. Black-box Training with Unpaired Images

To simulate the more realistic black-box case where paired before-and-after images are 

unavailable, we take whole cine-loops from the training set and split them into two groups. 

The first group removes paired DAS data, and the second group removes paired clinical-

grade post-processed data. This data removal ensures there are never any registered image 

pairs during training, and that other transmit parameters vary in a similar distribution across 

the two groups.

We train a CycleGAN using MAE for our generators’ cycle-consistency loss (Eq. 3) and 

identity loss [33]. We weight the cycle-consistency loss 10 times greater as originally 

defined in [33]. We use the discriminator architecture on the right side of Fig. 2, which 

combines the PatchGAN and LSGAN approaches used in [19], [33] to optimize for least-

squares on patches of linearly activated final outputs. The discriminator is only used to 

facilitate training in the black-box case where no paired images are available, and it is not 

used in the gray-box case since ground truths are available.

We use an ADAM optimizer with a learning rate λ of 0.0002, first moment β1 of 0.5, and 

second moment β2 of 0.99. See Supplemental Materials Code Section for more details.

C. Training Details

Before training, we preprocess detected DAS data frames by log compression and clipping 

to an 80dB noise floor. Processed frames are shuffled and randomly cropped to 512×512 
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axial by lateral beams with a padded reflection if the dimensions are too small. Constraining 

dimensions enables batch training, which leads to faster and more stable training 

convergence. During inference time, images can be any size as long as they are divisible by 

16 due to required padding in our CNN architecture. We use a TensorFlow [46] backend to 

train models built with the Keras [47] interface.

D. Performance Evaluation, Sampling, and Breakdown

We evaluate the full test set of unpadded MimickNet post-processed beams before scan 

conversion against clinical-grade post-processed beams using structural similarity index 

measurement (SSIM) which ranges from 0 to 1. SSIM was first proposed in [48] as a metric 

more representative of human perceived similarity. SSIM is defined in Eq. 6 and is the 

product between two images’ luminance l, contrast c, and structure s (Eq. 7–9).

SSIM(X, Y ) = l(X, Y ) * c(X, Y ) * s(X, Y ), (6)

l(X, Y ) = 2μXμY + c1
μX

2 + μY
2 + c1

, (7)

c(X, Y ) = 2σXσY + c2
σX

2 + σY
2 + c2

, (8)

s(X, Y ) = σXY + c3
σXσY + c3

. (9)

Similarity is calculated between X and Y which are two 11×11 kernels from their respective 

images. These kernels slide across the two images, and the output values are averaged to get 

the SSIM between two images. Variables μX, σX
2  and μY, σY

2  are the mean and variance of 

each kernel patch, respectively. Variables c1, c2, and c3 are the constants (k1L)2, (k2L)2, and 

c2/2 respectively. L is the dynamic range of the two images, k1 is 0.01, and k2 is 0.03. All 

SSIM constants are the default values originally formulated in [48].

We plot the kernel density estimate of SSIM compared to clinical-grade ground truth per 

individual frame across our entire test set and prospectively acquired dataset. We show the 

SSIM distribution of DAS frames, gray-box model frames, MimickNet frames, and 

MimickNet prospective frames.

We investigate the individual components of SSIM, luminance l, contrast c, and structure s, 

to better understand which component is most degrading to our approximation. Since the 

equations for contrast Eq. 8 and structure Eq. 9 are highly related in examining variance 

between and within patches, we can algebraically simplify these two equations into a single 

equation we call contrast-structure cs (Eq. 10).
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cs(X, Y ) = 2σXY + c2
σX

2 + σY
2 + c2

. (10)

We acquire prospective data solely for evaluation shown in Table I and Fig. 1. Lastly, we 

display sample images from the worst to best SSIM metric.

III. Results

A. Overview

The distribution of SSIM across retrospective and prospective test sets is shown in Fig. 3. 

Mean and standard deviation of these distributions are reported in Table II. Prospectively 

acquired images of the hepatic portal vein and kidney are in Fig. 4. We show images from 

the worst (0.74) to best (0.95) SSIM along with their breakdowns in luminance and contrast-

structure in Fig. 5. Notice the artificially-enhanced bright edges apparent in the Clinical-

grade and Gray-box post-processing on the hepatic portal vein in (Fig. 4, left), and chin of 

the lateral view fetal phantom (Fig. 5, 3rd row). MimickNet’s post-processing does not 

introduce artificial structures not present in the DAS data.

B. SSIM Performance Distribution

SSIM from gray-box and MimickNet (black-box) training schemes are shown in Table II. 

The gray-box performs slightly better and serves as an upper bound of what our generator 

can achieve when direct pixel-wise optimization is possible. We also provide the SSIM on 

DAS images as a baseline. We see that the majority of image improvement is captured by 

the contrast-structure component of SSIM.

In Fig. 3, we show kernel density estimates (KDE) of SSIM for individual frames across our 

test set and prospectively acquired dataset. In statistics, KDE is a non-parametric method to 

estimate the probability density function (PDF) of a random variable. In the best case 

scenario, the entire PDF would exist at 1.00. DAS is far from the ideal while MimickNet is 

well centered around 0.94. The gray-box upper bound performs slightly closer to the ideal 

than black-box. The PDF of SSIM performance between prospective data and black-box 

data highly overlap, thus MimickNet’s performance on retrospective testing data generalize 

to our prospective data.

Other metrics are available at frame level granularity in the Supplemental Materials Metrics 

Section. Additionally, in the gray-box case, we varied loss function and filter depth 

hyperparameters. However, these hyperparameter changes did not result noticeable 

improvements. These results are available in the Supplemental Material Tables I and II.

C. Runtime Performance

In Table III, the runtime was examined for MimickNet on different hardware, input sizes, 

and their intended use case during benchmarking. MimickNet contains 52993 trainable 

parameters and uses 0.105 MFLOPS. MimickNet has not undergone any inference 

optimization such as quantization or floating point 16 optimization.
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D. Out of Dataset Distribution Performance

We applied MimickNet post-processing to a 78 frame cardiac cine-loop to assess 

MimickNet’s generalizability. MimickNet is never trained on cardiac data. MimickNet 

achieves a 0.928±0.003 after gain correction despite only training on phantom, fetal, and 

liver targets. Table IV shows SSIM with and without gain correction (GC). In Fig. 6 we 

show images with gain correction which highlights the importance of contrast-structure.

MimickNet and DTCE™ were developed with DAS beamformed images as input. To further 

assess MimickNet’s generalization, we applied MimickNet on data beamformed by 

REFoCUS without additional training. Cardiac data was acquired with a P4–2v Verasonics 

Probe with 2.25MHz center frequency spanning 75.3 degrees. REFoCUS is a recent novel 

beamforming method that allows for transmit-receive focusing everywhere under linear 

system assumptions resulting in better image resolution [6].

We see that both MimickNet and DTCE™ generalize to REFoCUS beamformed data, 

despite point spread function differences between DAS training data and REFoCUS. We 

qualitatively see that contrast improvements in the heart chamber, and resolution 

improvements in the mitral valve due to REFoCUS are preserved after MimickNet and 

DTCE™ post-processing in Fig. 6. We envision MimickNet can be used to improve the 

image quality of other novel beamforming methods by providing a comparable post-

processing algorithm to what is used in clinical practice.

IV. Discussion

A. MimickNet Generalizes Well

MimickNet is successful at approximating a clinical-grade post-processing algorithm, 

DTCE™, which is commercially advertised by Siemens to simultaneously perform speckle 

reduction, contrast enhancement and improve the conspicuity of anatomical structures. 

Quantitatively, MimickNet takes DAS beams as an input with initial SSIM of 0.557±0.105 

and post-processes them to achieve an SSIM of 0.940±0.018 against clinical-grade 

processed ground truth in our test dataset. SSIM ranges from 0 to 1, and was formulated to 

be reflective of human perceived similarity. Qualitatively, we show images with low to high 

SSIM in Fig. 5. Our sampling extends the full range of SSIM from 0.74 (worst case) to 0.97 

(best case). Even for post-processed images with the worst SSIM performance, it is difficult 

to discern differences without looking closely at the Absolute Difference image between 

MimickNet and Clinical images. We acquire prospective data solely for evaluation in Fig. 4, 

and see similar qualitative and quantitative (0.937±0.002) results to our test set.

We apply MimickNet to out-of-distribution data to further assess generalization. MimickNet 

was never trained on cardiac data, but it achieves a 0.928±0.003 SSIM on cardiac data after 

gain correction which is similar to in-distribution performance. MimickNet was also only 
trained on DAS beamformed data. We were curious if differently beamformed data would 

result in reasonable output. We choose to post-process REFoCUS data, a recently developed 

beamforming method, and achieve 0.937±0.002 SSIM after gain correction which is also 

similar to in-distribution data performance.
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Our results on test data and prospectively acquired data show that MimickNet generalizes to 

in-distribution anatomical data. Additionally, while MimickNet can be used to fine-tune 

towards new anatomical structures or beamforming methods, our out-of-distribution cardiac 

image results show SSIM similar to in-distribution performance even without fine-tuning.

B. MimickNet Use Case

MimickNet’s envisioned use case is to transfer a post-processing pipeline approximation 

from a clinical-grade scanner to a target scanner (e.g. research-grade or cheaper portable 

scanner). To achieve this transfer, known scan parameters (e.g. focus, transmit frequency, 

and voltage) from both scanners should be similarly distributed. From MimckNet’s 

perspective, any differences in parameter distributions are considered “post-processing” to 

approximate. Sweeping a selected distribution of parameters, a researcher can acquire post-

processed images on the clinical-grade scanner, and beamformed-only images on the target 

scanner. These two collections of unregistered images can be used as input to train or fine-

tune MimickNet under a black-box training scheme.

If before-and-after post-processing pairs are available, the researcher can simply use a gray-

box training scheme. However, this option may not always be easily accessible. In the worst 

case, gray-box training requires a researcher to hack into a scanner system to siphon DAS 

data immediately before post-processing. The black-box scheme equates to acquiring images 

from ultrasound scanners via their intended use, no hacking required. This ease in data 

collection costs a slight trade-off of 0.025 SSIM performance.

We envision MimickNet can be used to help close the clinical translation gap by producing a 

clinically comparable image baseline familiar to medical providers. This can be used to 

better highlight the benefits of novel beamforming methods like REFoCUS, or highlight the 

similarities of images formed on differing hardware that is potentially cheaper or more 

portable.

C. MimickNet Observed Differences

Closer qualitative inspection of minor differences suggest MimickNet maintains original 

DAS contrast better than Clinical post-processing. We choose to represent SSIM over other 

metrics available in the Supplemental Materials Metric Section because it provides an 

interpretable breakdown of where we fail to match the ground truth image. However, SSIM 

has limitations like any other metric, and minor structural differences are not well 

represented. Thus, we take time to qualitatively discuss minor, but present, image 

differences. Future work in the form of clinical reader studies are needed to formally 

examine the clinical significance of differences between DTCE™ and MimickNet.

We find it interesting that clinical-grade post-processing produces such artificially-enhanced 

bright edges found in the hepatic portal vein (Fig. 4, left), and chin of the lateral fetal 

phantom view (Fig. 5, 3rd row) when they are not present in the original DAS image. While 

it is out of the scope for this paper to discuss which image is clinically better, we note that 

MimickNet better preserves the original relative contrast found in the physics-based DAS 

image than clinical-grade post-processing.
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One of the theoretical mechanisms MimickNet leverages to prevent information removal is 

its unique cycle-consistency loss. While on one hand, the discriminator loss encourages 

MimickNet images to look indistinguishable from a clinical-grade post-processed image, the 

cycle-consistency loss penalizes irreversible transformations. MimickNet’s choice of 

maintaining instead of brightening certain edges found in Fig. 4, and Fig. 5 may be to keep 

information such that it can return to the original DAS intensity. We see that the gray-box 

images, which are not under cycle-consistency loss pressure, are able to brighten 

corresponding edges.

The cycle-consistency loss enforces the interesting property that for any forward 

transformation, such as post-processing a physics-based DAS image, there must exist a 

reverse transformation that minimizes information loss. Future work should investigate 

leveraging the cycle-consistency loss as a conditional input parameter that modulates the 

amount of desired post-processing at inference time. A related mechanism has been 

proposed by [49] to modulate the diversity of GAN generated images. Conceptually, this 

parameter would modulate the bias a neural network is allowed to move an image away from 

underlying physics. Although, creating this mechanism is challenged by the cycle-

consistency loss being closely tied with model convergence. We may require some method 

to disentangle convergence from modulation. An example of the modulation parameter’s use 

case can be seen in the 4th row of Fig. 5. Clinical-post-processing removes the bright 

reflectors in the left-most phantom lesion, but both black-box and gray-box do not mimic 

this removal. Whether it is a clinically good idea to remove such strong physical signal is 

beyond the scope of this paper, but it would be desirable to have the flexibility to modulate 

the amount of removal while maintaining a reduced speckle background.

D. MimickNet Mobile Runtime

MimickNet can be run in real-time and shows promise for mobile device use. It runs in real-

time at 142 FPS on a P100 (Nvidia, Santa Clara, USA), has been used to process DAS 

beams from a Verasonics C5–2v in real-time at 65 FPS, and has been shown to run on a 

Mate 10 (Huawei, Shenzhen, China) mobile phone at 8 FPS. This runtime is relevant since 

more ultrasound systems are being developed for mobile phone viewing [50]. Future work 

will investigate inverted residuals and linear bottlenecks [51] to increase computational 

speed on mobile devices.

E. Future Works

MimickNet is meant to be a simplistic architecture useful for downstream fine-tuning to new 

tasks, and future work can explore better modeling architectures. The architecture we used 

for our generator is meant to be simplistic to best showcase initial feasibility. One immediate 

improvement that comes to mind is to explicitly model the scan conversion process so beam 

geometries are disentangled from the training scheme. This can be accomplished through 

spatial transformer networks (STNs) which resample images from a predefined or learned 

transformation matrix [52]. Learning the transformation matrix may enable better beam 

interpolation beyond bilinear or bicubic approaches. Another improvement would be to 

explicitly model depth dependent de-focusing. This could be accomplished by appending 

coordinate features following the same scheme as used in [53]. Our results with ultrasound 
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data suggest it should also be possible to approximate medical image post-processing under 

black-box constraints in CT and MR images as similar encoder-decoder architectures have 

been used to denoise CT [54], and MR [55] in the direct optimization, gray-box case.

Future work will look into increasing the capacity of MimickNet to perform multiple types 

of specialized post-processing. It will also be valuable to assess how much data is required 

to successfully train under black-box constraints, as well as how much data domains can 

diverge before training fails to converge. We provide pretrained model weights of 

MimickNet for researchers to fine-tune towards other clinical post-processing algorithms.

V. Conclusion

This work’s main contribution is in decreasing the clinical translation barrier for future 

image enhancement research. MimickNet closely approximates DTCE™, a particular 

clinical-grade post-processing algorithm, in the black-box case without before-and-after 

post-processed image pairs. Beamformed data previously only largely understood by 

research domain experts can be translated to clinical-grade images widely familiar to 

medical providers. MimickNet can run in real-time, works for out-of-distribution cardiac 

data, and thus shows promise for practical production use. We also present MimickNet as a 

flexible image matching tool that can provide fair comparisons of novel image formation 

techniques to a clinical baseline mimic. We specifically demonstrate MimickNet’s 

application in comparing DAS and REFoCUS beamforming methods, and we showed that 

resolution improvements from REFoCUS are carried over into the MimickNet post-

processed image. We provide the pretrained model weights of MimickNet to make it easy 

for researchers to fine-tune towards other clinical post-processing algorithms in future 

research endeavours. The MimickNet software, phantom data, and permitted in vivo data are 

open-source at https://github.com/ouwen/MimickNet.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Overview of our highly heterogeneous dataset and distribution across different acquisition 

parameters. Phantom data, permitted in vivo data, and acquisition parameter metadata at a 

per-frame granularity are available in the Supplemental Materials Metadata Section.

Huang et al. Page 15

IEEE Trans Med Imaging. Author manuscript; available in PMC 2020 June 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
Above is a diagram of the generator and discriminator structure for MimickNet in one 

translation direction of our black-box training scheme. The reverse direction uses an 

identical mirrored structure. Under the gray-box training constraint, only the generator is 

used since pixel-wise ground truth is available. The gray-box and black-box training 

schemes use the same generator architecture except LeakyReLU activations are ReLU in the 

gray-box scheme.
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Fig. 3. 
The KDE distribution of SSIM (top), luminance (middle), and contrast-structure (bottom) 

across all cine-loop frames in our test dataset. All metrics are available in the Supplemental 

Materials Metrics Section at a frame level granularity. Metrics compare images produced 

under the following conditions to clinical ground truth: “MimickNet (Blackbox)” refers to 

black-box optimization on the retrospective test set. “Prospective MimickNet” refers to 

black-box optimization on the prospective test set. “Graybox” refers to gray-box 

optimization on the retrospective test set. “DAS” refers to delay-and-sum beamformed data 

from the retrospective test set. Prospective DAS refers to delay-and-sum beamformed data 

on the prospective test set.
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Fig. 4. 
Prospectively acquired harmonic in vivo images on the hepatic portal vein (left) and kidney 

(right) self-acquired by Dr. Mark Palmeri. Images were acquired on a Verasonics C5–2v 

probe with a 4.7 MHz center frequency spanning 49.75 degrees. All images are shown on a 

dynamic range of 80dB. The Absolute Difference between MimickNet and Clinical images 

are shown on the same 80dB scale as other images. Images were acquired for evaluation 

only and not used in any training capacity. Notice the difference between Clinical and 
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MimickNet images near the hepatic portal edges. These artificially-enhanced bright edges 

are not apparent in the original DAS image (images are best viewed electronically).

Huang et al. Page 19

IEEE Trans Med Imaging. Author manuscript; available in PMC 2020 June 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. 
The mean SSIM over our test distribution of images was 0.940±0.018, but we display the 

worst-case SSIM outliers (top) to the expected case SSIM (bottom). We also display the 

contrast-structure (CS) and luminance (L) components of SSIM. All images are shown on a 

dynamic range of 80dB. The Absolute Difference between MimickNet and Clinical images 

are shown on the same 80dB scale as other images. Graybox refers to the gray-box training 

constraint when direct optimization is possible while MimickNet is the black-box case when 

only indirect optimization is possible. Notice the artificially-enhanced bright edges apparent 
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in the Clinical and Graybox post-processing on the chin of the lateral view fetal phantom in 

(3rd row). Also notice the bright reflector present in the phantom (4th row) in all except the 

Clinical image.
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Fig. 6. 
MimickNet applied to out of distribution cardiac data on DAS and REFoCUS ultrasound 

beamformed images. Gain correction is performed. MimickNet is never trained on cardiac 

data and is only trained on fetal, liver, and phantom data. All images are shown on a 

dynamic range of 80dB. The Absolute Difference between MimickNet and Clinical images 

are shown on the same 80dB scale as other images. Note the contrast improvements in the 

heart chamber, and resolution improvements in the mitral valve due to REFoCUS are 
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preserved after MimickNet and DTCE™ post-processing. The full cine-loop is provided in 

the Supplemental Materials Media Section.
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TABLE I

Dataset Overview by unique scan and individual frames for train-test distribution and prospectively acquired 

data.

Type Unique Scans Frames Train Val Test

Train-Test 1500 39200 25986 2393 10821

Prospective 67 2810 2810

IEEE Trans Med Imaging. Author manuscript; available in PMC 2020 June 11.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Huang et al. Page 25

TABLE II

Summary metrics on different evaluation schemes. Mean ± Standard Deviation of post-processed test set 

images compared to clinical ground truth are reported. “Pro” refers to prospective test set.

Scheme SSIM Contrast-Structure Luminance

MimickNet 0.940±0.018 0.951±0.013 0.989±0.013

(Pro) MimickNet 0.937±0.025 0.953±0.008 0.982±0.023

Graybox 0.965±0.013 0.973±0.008 0.993±0.010

DAS Baseline 0.557±0.105 0.598±0.102 0.924±0.056

(Pro) DAS 0.465±0.077 0.533±0.065 0.852±0.074
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TABLE III

Runtime Performance of MimickNet on Different Hardware, Input Sizes, and Intended Use Case.

Hardware Input Size Use case FPS (Hz)

Nvidia P100 512×512 Training Pipeline 142

Nvidia Titan V 1808×208 Verasonics C5-2v 65

Huawei Mate 10 288×240 Cardiac 8
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TABLE IV

Out of Distribution Cardiac Data metrics with and without gain correction (GC). Mean ± Standard Deviation 

of post-processed test set images compared to clinical ground truth are reported.

MimickNet Input SSIM Luminance Contrast Structure

DAS Data 0.746±0.009 0.746±0.009 0.944±0.002

DAS (GC) 0.928±0.003 0.982±0.002 0.944±0.002

REFoCUS Data 0.749±0.016 0.794±0.016 0.943±0.002

REFoCUS (GC) 0.937±0.002 0.992±0.001 0.943±0.002
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