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Abstract

Background—Psychotic-like experiences (PLEs) during childhood are associated with greater 

risk of developing a psychotic disorder in adulthood, highlighting the importance of identifying 

neural correlates of childhood PLEs. Further, impaired cognitive functions, such as working 

memory and emotion regulation, have also been linked to psychosis risk as well as to disruptions 

in several brain regions. However, impairments in these domains have also been linked to other 

disorders, including depression. Therefore, the aim of the current study is to examine whether 

neural impairments in regions associated with working memory and implicit emotion regulation 

impairments are specific to PLEs versus depression.

Methods—The current study used an emotional N-back task to examine the relationship between 

childhood PLEs and neural activation of regions involved in both working memory and implicit 

emotion regulation, using data from 8,805 9–11-year-olds in the ABCD study 2.0 release. To 

examine specificity, we also analyzed associations with depressive symptoms.

Results—Our results indicated that increased PLEs during middle childhood were associated 

with decreased activation of the DLPFC, striatum, and pallidum during trials requiring working 

memory. In contrast, increased activation of the parahippocampus, caudate, nucleus accumbens, 

and rostral anterior cingulate during face-viewing trials was associated with increased depressive 

symptoms.

Conclusion—These results support the dimensional view of psychosis across the lifespan, 

providing evidence that neural correlates of PLEs, such as decreased activation during working 

memory, are present during middle childhood. Further, these correlates are specific to psychotic-

like symptoms as compared to depressive symptoms.
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Psychotic-like experiences (PLEs), such as subclinical delusional ideation and perceptual 

distortions, are experienced by approximately 5–8% of the general population (1). Research 

shows that PLEs are even more common (13–15%) among children and adolescents (2,3). 

Further, persisting PLEs are associated with an increased risk for developing a psychotic 

disorder (4), as well as other psychological disorders (5), later in life. Importantly, 

individuals with PLEs share multiple risk factors and correlates of clinical psychosis, such as 

cognitive impairments (6–8), particularly in working memory (9,10) and emotion regulation 

(11), as well as increased internalizing symptoms (12,13). Therefore, it has been suggested 

that significant PLEs may indicate a premorbid stage of psychosis risk (14).

Previous studies have demonstrated that both children (15,16) and adolescents (9,10,17,18) 

at risk for psychosis show poorer performance on working memory tasks. In longitudinal 

studies, working memory deficits have been linked to higher delusional ideation at follow-up 

(19), as well as progression to psychosis (20,21). Furthermore, psychosis risk is also 

associated with abnormal activation of several brain regions during working memory tasks 

(22), particularly the dorsolateral prefrontal cortex (DLPFC; (23–26)). However, the pattern 

of DLPFC activation has been inconsistent in both adolescent and adult psychosis-risk 

populations, with some studies reporting increased activation compared to controls (25–27), 

and others reporting decreased activation (23,24). It has been suggested that increased 

DLPFC activation is due to inefficient processing during working memory in psychosis risk 

(27) or may be compensatory for deficits in other regions (21,28,29). Increased 

parahippocampal activity has also been found in both schizophrenia (30,31) and familial risk 

for psychosis (32) during memory tasks.

Despite some variability in results, abnormalities in neural activation during working 

memory are often present in psychosis risk, thus constituting a potential marker for 

psychosis spectrum symptoms. However, there is not strong evidence that these impairments 

are specific to psychosis risk, rather than general psychopathology. Research suggests that 

working memory deficits also occur in other psychiatric disorders, such as depression (33–

35). Similar to psychosis risk, research examining depressive symptoms finds abnormal 

activation in lateral prefrontal regions (36,37), as well as the anterior cingulate cortex (ACC; 

(38)) during working memory. Further, depression has been associated decreased functional 

connectivity between cortical regions of the default mode network and subcortical regions, 

such as the hippocampus, during working memory (39). This, along with the high rate of co-

morbidity between psychosis and depressive disorders (40,41), makes it difficult to 

characterize risk factors specific to psychosis. Thus, the current study aimed to examine 

whether working memory impairments show evidence of specificity to PLEs.

Psychosis risk is also often associated with impairments in emotion regulation and reactivity 

(11,42–44). Similar to working memory impairments, emotion regulation impairments have 

been shown to occur in depressive disorders as well (45–47), although differences are 
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evident between psychosis risk and depression. For example, psychosis risk is associated 

with deficits in recognizing negative emotions, such as fear and sadness (48), while 

depressive symptoms are associated with deficits in happy face recognition (49). Regardless, 

research indicates that both psychotic and depressive disorders are associated with similar 

emotion regulation strategies that are significantly more dysfunctional than non-patient 

controls (50). These impairments are typically associated with abnormal function of cortical 

regions, such as the DLPFC and ACC (51,52), as well as subcortical regions associated with 

emotion and salience processing (i.e., hippocampus, amygdala, striatum, and pallidum 

(51,53,54)). It has been suggested that over-activation of subcortical regions linked to 

emotion processing may lead to disruptions in cortical circuits that control the cognitive 

regulation of emotion, particularly in regards to depression (55). While there is a lack of 

literature examining these deficits in 9–10-year-old children, Wolf and colleagues (56) did 

use separate n-back and emotion regulation tasks to examine neural activation in adolescents 

(age 11–22 years) exhibiting psychosis-spectrum symptoms, providing evidence that 

younger at-risk individuals exhibited the same functional abnormalities (i.e. reduced 

activation of executive control circuitry during working memory and increased activation of 

subcortical regions during emotion recognition) that are found in schizophrenia (28). Given 

the gaps in the literature regarding younger populations, the current study also examined 

whether PLEs during middle childhood were related to implicit emotional regulation 

impairments and whether such impairments were specifically related to PLEs versus 

depressive symptoms.

In the current study, we examined the relationship between childhood PLEs and neural 

activation during an emotional n-back task, using data from 9–11-year-olds in the 

Adolescent Brain Cognitive Development (ABCD) study. The emotional n-back task (EN-

back; 57) is a variant of the original Human Connectome Project (HCP) n-back task (58) 

that taps into implicit emotion regulation and reactivity processes, as well as working 

memory, and has been shown to activate a number of regions previously implicated in both 

psychosis risk and depression. Specifically, just like the traditional n-back task, the memory 

component of the EN-back activates core brain regions relevant for working memory, 

including the DLPFC, ACC, hippocampus, and parahippocampus (58–60). However, unlike 

the traditional n-back task, the stimuli include sets of happy, fearful, and neutral faces. The 

processing of these stimuli reliably activates regions involved in implicit emotion regulation 

and reactivity (i.e. DLPFC, amygdala, and striatum (61,62), with the hypothesis that this 

reflects the need to prevent emotional reactivity to the emotional content of faces from 

interfering with working memory). We tested the hypothesis that altered activation of a 
priori brain regions (i.e. DLPFC, hippocampus, parahippocampus, amygdala, striatum, 

pallidum, and ACC) would be associated with increased PLEs during middle childhood. 

Furthermore, given evidence that PLEs and depressive symptoms are both associated with 

impairments in implicit emotion regulation and working memory, we also analyzed relations 

with depressive symptoms to examine specificity.
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Methods

Participants

A sample of 8,805 children who completed the in-scanner EN-back task was obtained from 

ABCD study Data Release 2.0 (see Acknowledgements), a large-scale study tracking 11,874 

children ages 9–11 years from 21 different research sites across the United States. The study 

was approved by a central Institutional Review Board at University of California, San Diego. 

All study participants provided written informed consent prior to participating. Participants 

were removed from analyses either for having task data not pass quality assurance criteria 

(i.e. did not have at least one run that was complete, passed protocol compliance, and was 

preceded by field maps within the last two scans; n=531) or due to missing data (n=205). 

Participants were also removed from analyses for poor overall accuracy (≤.60; n = 569). 

Following recent guidance from ABCD, all participants run on a Philips scanner were 

removed from analyses (n=979). The final sample size was 6,521 individuals (see Table 1 

for demographic characteristics; see Supplement for study-wide exclusion criteria).

Measures

Prodromal Questionnaire-Brief Child Version (PQ-BC)

The PQ-BC is a 21-item self-report questionnaire that demonstrates validity as a measure of 

PLEs in middle childhood (63). Each item references a different PLE (e.g., “Have you felt 

that you are not in control of your own ideas or thoughts?”) and children responded yes or 

no. Total PQ-BC scores consisted of the summed number of “yes” responses. Due to 

significant skewness (skewness = 1.99), PQ-BC total score was logarithmically transformed 

[formula = LG10(X + 1)] prior to running analyses.

Depression Symptoms

A computerized version of the Kiddie-Structured Assessment for Affective Disorders and 

Schizophrenia (KSADS) for DSM-5 (64,65) was used as a child-reported measure of 

depression symptoms. As has been done in previous research using the ABCD baseline 

sample (16), 13 dichotomous (0= absent, 1= present) depression module symptom questions 

(i.e., anhedonia, low mood, poor appetite, etc.) were summed to create a symptom composite 

score ranging from 0 to 13 and showed good internal reliability (α= .83).

Emotional N-back Task (EN-back)

The EN-back (66) is a variant of the original HCP n-back task (58) that measures working 

memory, as well as implicit emotion regulation and reactivity. Participants completed two 

runs, each consisting of eight blocks. In each run, four blocks are “2-back” conditions and 

four are “0-back” conditions. For the 2-back condition, participants were instructed to 

respond “match” when the current stimulus was the same as the stimulus shown two trials 

ago. During the 0-back condition, participants responded “match” when the current stimulus 

was the same as the target presented at the beginning of the block. Each block consisted of 

10 trials, with 160 trials total, and began with a 500ms colored fixation to alert the child of a 

switch in task condition, followed by a 2.5s cue that indicates the condition (e.g., “2-back”, 

“target=” and a photo of the target stimulus). The stimulus (i.e. positive face, negative face, 
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neutral face, or place) was presented for 2s and is then followed immediately by a 500ms 

fixation cross. The average overall accuracy on the task was 0.82 (see Table 2 for accuracy 

by condition).

For imaging analyses, we examined three contrasts. The two memory load conditions (2-

back vs 0-back) were contrasted to measure working memory. The happy and fearful faces 

were contrasted with neutral faces (emotion vs neutral) in order to examine responses 

specific to emotionally evocative stimuli as a measure of implicit emotion regulation and 

reactivity (62, 67). In follow-up analyses, we also examined the specificity of emotions by 

contrasting both happy versus neutral and fearful versus neutral faces. While there was no a 

priori reason to do so, for completeness, we also contrasted facial and non-facial stimuli 

(face vs place) to measure response to socially relevant vs non-social stimuli (68).

Imaging Procedure

A pre-processing pipeline was created using the Multi-Modal Processing Stream (MMPS), a 

software package developed by the Center for Multimodal Imaging and Genetics (CMIG). 

All children were run on a 3T scanner (either Siemens or General Electric) with a 32-

channel head coil (see Supplement for additional imaging procedure details). Task-related 

activation strength was then calculated at the individual level using a general linear model 

(GLM) in AFNI’s 3dDeconvolve (69). The hemodynamic response function was modeled as 

a gamma function with temporal derivatives using AFNI. The GLM coefficients and t-
statistics were then sampled onto the FreeSurfer-generated cortical surface. Processed task 

data were mapped to 33 cortical regions of interest (ROIs) for each hemisphere based on the 

Desikan-Killany atlas (70). Subcortical structure (i.e., caudate, putamen, pallidum, 

hippocampus, amygdala, nucleus accumbens) segmentations were based on FreeSurfer 

(aseg) sub-cortical parcellations (71). Based on previous research (22,25,54,56,72), ROIs 

focused on the DLPFC (i.e., rostral and caudal middle frontal gyrus), hippocampus, 

parahippocampus, amygdala, striatum (divided into the caudate, putamen, and nucleus 

accumbens), pallidum, and ACC (both rostral and caudal). The averaged beta weights for 

each contrast (i.e. 2-back vs 0-back, face vs place, emotion vs neutral) for each of these 

ROIs were examined (the average across both trial runs).

Statistical Analyses

One-sample t-tests were used to determine overall activation of ROIs for each contrast and 

hierarchical linear models (HLMs) were used for all other analyses. Due to the inclusion of 

siblings in the ABCD dataset, family unit was clustered as a random intercept, as were the 

21 research sites. Age, sex, financial adversity (an assessment of material hardship or 

deprivation recommended as a measure of socioeconomic status; (73)), average head 

motion, race/ethnicity, and scanner type were included as covariates (see Table 1 for details). 

All analyses were conducted in R lme4 package (74). For behavioral analyses, HLMs 

analyzed associations between PLEs and percentage of correct responses (percent accuracy) 

for each condition (0-back, 2-back, positive, neutral, negative, and place). As a follow up, 

we also performed a repeated measures analyses of behavioral data, in which n-back level 

and stimuli type were within-subject factors, symptoms (i.e., PLEs or depressive symptoms) 

were dimensional factors, and accuracy was the dependent variable, to examine whether 
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there were interactions between condition and symptom measure on accuracy. For activation 

analyses, HLMs analyzed associations between PLEs (or depressive symptoms) with 

average beta weights of each ROI for each contrast (i.e., 2-back vs 0-back, face vs place, 

emotion vs neutral). All analyses were False Discovery Rate corrected (FDR-corrected) for 

multiple comparisons. ROI analyses were conducted as an average of both hemispheres, as 

well as separately for each hemisphere. In order to examine specificity, models separately 

examined associations with PLEs and depressive symptoms (we also conducted follow-up 

analyses for all significant ROIs in which both symptom measures were associated with 

activation in the same model). We also examined whether results remained significant when 

including twin status as a covariate, as well as when excluding outliers (i.e., any 

observations where the standardized residual was >+/− 3 SDs), with all results remaining 

consistent.

Results

Task Performance

As expected, decreased overall accuracy was associated with both increased PLEs (β=−1.27, 

p<.001, R2= .03) and increased depressive symptoms (β=−0.63, p<.001, R2= .01). This 

remained true for all conditions (0-back, 2-back, positive, negative, neutral, and place), 

indicating that both symptom measures were related to working memory accuracy across n-

back level and stimulus type. Follow-up repeated measures analysis showed a main of effect 

of PLEs on accuracy (β=−0.01, p<.001), with no interaction between PLEs and n-back level 

(β=0.0, p=.06) or between PLEs and stimuli type (β=0.0, p=.78). Similarly, there was a main 

effect of depressive symptoms (β=0.00, p<.001), but no interaction between depressive 

symptoms and n-back level (β=0.00, p=.65) or between depressive symptoms and stimuli 

type (β=0.00, p=.36). When both symptom measures predicted accuracy in the same model, 

only PLEs were significantly associated with decreased accuracy (β=−.01, p<.001; note, this 

was the case for overall accuracy as well as across condition and stimuli type).

Functional Brain Activation Results

2-back vs 0-back contrast—Overall, all a priori ROIs were associated with significant 

activation or deactivation on this contrast (ts>|2.67|, ps<.01; see Supplemental Table 1). 

Decreased DLPFC activation was associated with increased PLEs on the 2-back vs. 0-back 

contrast (R2= .02; see Table 1 and Figure 1). Further, decreased activation of both the right 

DLPFC (R2=.02) and left DLPFC (R2=.02) were associated with increased PLEs. Decreased 

striatal activation was also associated with increased PLEs, as decreased average, right, and 

left caudate activation (all R2s=.02), as well as decreased average putamen activation 

(R2=.02) were associated with increased PLEs. Decreased pallidum activation was also 

associated with increased PLEs (R2=.02). However, when examined separately for each 

hemisphere, only the left pallidum was significantly associated with increased PLEs 

(R2=.02). Activity in all ROIs described above remained significantly associated with PLEs 

when including 2-back accuracy in the model (ps≤.04). In contrast to PLEs, there were no 

associations between activation and depressive symptoms for this contrast (ps≥.4). Further, 

when PLEs and depressive symptoms were included in the same model, PLEs remained 

significantly associated with decreased activation for these ROIs (ps≤.01).
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Emotion vs Neutral contrast—Overall, both the left and right amygdala showed 

significant activation for this contrast (ts>3.72, ps<.001; Supplemental Table 2), while the 

DLPFC, caudate, putamen, left nucleus accumbens, and caudal ACC showed significant 

deactivation (ts<−2.85, ps<.03). Contrary to our hypothesis, there was no association 

between activation and either PLEs or depressive symptoms while viewing emotional vs 

neutral faces (Table 4). These results remained consistent when examining happy vs. neutral 

and fearful vs. neutral contrasts.

Face vs Place contrast—Overall, the caudate, putamen, nucleus accumbens, amygdala, 

right rostral ACC, and left pallidum showed significant activation for this contrast (ts>4.99, 

ps≤.01, Supplemental Table 3), while the DLPFC, hippocampus, parahippocampus, and 

caudal ACC showed significant deactivation (ts<−2.71, ps<.02). PLEs were not significantly 

associated with face vs. place activation (see Table 5). In terms of depressive symptoms, and 

in contrast with PLEs, increased average (R2=.02) and left (R2=.02) parahippocampal 

activation was significantly associated with increased depressive symptoms for this contrast. 

Increased average caudate activation was associated with increased depressive symptoms 

(R2=.02), as was average (R2=.01) and right (R2=.01) nucleus accumbens activation for face 

vs. place. Finally, increased average rostral ACC (R2=.01) and left rostral ACC (R2=.01) 

were also associated with increased depressive symptoms on this contrast. Activity in all 

ROIs described above remained significantly associated with depressive symptoms when 

including face accuracy in the model (ps≤.02). Further, when PLEs and depressive 

symptoms were included in the same model, depressive symptoms remained significantly 

associated with increased activation for these ROIs (ps≤.02).

Discussion

The current study is the first to examine the relationship between PLEs and neural activation 

during working memory and implicit emotion regulation during middle childhood. Our 

results indicate that early manifestations of psychosis risk may already show evidence of 

functional differences analogous to what is seen in individuals with psychotic disorders. We 

found evidence that reduced activation in multiple brain regions, such as the DLPFC, striatal 

regions, and pallidum, during working memory were associated with increased childhood 

PLEs. Not only were the same relationships not found with depressive symptoms, but when 

both symptom measures examined activation in the same model, PLEs were still 

significantly associated with activation in these regions, possibly indicating that these 

functional brain activation differences are specifically related to PLEs. Interestingly, 

increased activation in multiple regions, such as the parahippocampus, nucleus accumbens, 

rostral ACC, and pallidum, were associated with increased depressive symptoms when 

viewing faces versus non-facial stimuli. In contrast, there were no significant associations 

with PLEs for this contrast, perhaps indicating a level of specificity to depression. While we 

had no a priori hypothesis regarding this contrast, it raises the possibility of distinct neural 

correlates specific to psychosis risk versus depression.

The results also indicated that decreased overall accuracy on the task was related to both 

increased PLEs and increased depressive symptoms. These relationships were expected 

given the current literature suggesting that working memory and emotion regulation 
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impairments are risk factors for both psychosis and depression (9,11,35). However, when 

both symptom measures examined accuracy in the same model, only PLEs were associated 

with lower accuracy, regardless of condition or stimuli type. These results align with 

previous research that found individuals with emerging psychotic symptoms showed poorer 

working memory performance than individuals with depressive symptoms (75), indicating 

that early impairments in working memory may be more strongly associated with psychosis-

spectrum symptoms than depression. This finding is also consistent with our imaging 

results, in which decreased activation of multiple regions during working memory was 

associated with increased PLEs, but not depressive symptoms.

As predicted, decreased activation of the DLPFC during working memory was associated 

with increased PLEs. These results were expected given the DLPFC’s role in working 

memory processes (76), and align with previous research linking both structural (77–79) and 

functional (23–26) DLPFC abnormalities with psychosis risk. Importantly, the same 

relationship was not found with depressive symptoms, which aligns with the aforementioned 

n-back accuracy findings. While the pattern of DLPFC activation has been inconsistent in 

psychosis-risk populations (with some studies reporting increased activation compared to 

controls (25–27), and others reported decreased activation (23,24)), this study is the first to 

examine the association between activation and PLEs during middle childhood and, 

therefore, reports the earliest finding of such an association. This indicates that early 

impairments in key regions, such as the DLPFC, may already be detectable at this stage of 

development. Thus, we provide novel evidence that reduced activation of the DLPFC during 

middle childhood may constitute a potential neural correlate of early psychosis spectrum 

symptoms.

We also found that reduced activation of striatal regions (i.e., caudate, putamen) during 

working memory was associated with increased PLEs. The striatum is the primary input 

region of the basal ganglia (80), and is heavily connected with prefrontal regions, as well as 

other subcortical regions, such as the pallidum, forming a cortico-basal ganglia circuit (81). 

This circuitry is thought to control entry of new information into long-term memory (82) and 

has been consistently implicated in psychosis (54,83,84). Importantly, the results also 

revealed that decreased pallidum activation during working memory was associated with 

increased PLEs. Not only has previous research implicated functional abnormalities of both 

the striatum (54) and the pallidum (54) in psychosis risk, but our results indicate that 

multiple regions involved in this circuit show reduced activation during working memory. 

Further, research has shown that decreased striatal (85) and pallidal (86,87) functional 

connectivity is associated with impaired cognitive function in psychosis risk, as well as first-

episode schizophrenia. Here we provide novel evidence that reduced activation of both the 

striatum and the pallidum during working memory is associated with childhood PLEs.

We also found that when simply viewing faces (as opposed to non-social “place” stimuli), 

symptoms of depression were associated with increased activation of several regions, such as 

the parahippocampus, caudate, nucleus accumbens, and rostral ACC. In contrast, increased 

PLEs were not significantly associated with activation during face processing. Further, when 

both symptoms measures examined activation in the same model, depression was still 

significantly associated with each region. Nonetheless, a caveat must be noted, in that we did 
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not have an a priori hypothesis regarding this contrast. In addition, while the literature has 

previously shown that abnormal activation in these regions (i.e. parahippocampus, striatum, 

and ACC) is associated with viewing emotional faces in depression (88), there is limited 

research regarding the specificity of such relationships to activity in response to faces, as 

opposed to non-facial stimuli. However, these results are consistent with emotion 

recognition deficits that are commonly seen in depression (89) and, therefore, should 

continue to be examined in future research.

The study has several limitations. First, the study data were collected using different MRI 

scanners and motion detection protocols (e.g., FIRMM motion correction software) across 

the different ABCD sites. We attempted to account for this by including scanner type as a 

covariate and ABCD site as a nested factor in the statistical analyses. Also, the sample 

consisted of a non-clinical sample of 9–11-year-old children and, therefore, the PLEs 

reported were typically mild in severity. While PLEs in middle childhood may encompass 

some developmentally appropriate transient experiences (63), there is evidence that some 

individuals experiencing PLEs in middle childhood will go on to develop psychosis 

spectrum disorders (1,4). Another limitation is that the emotional faces in the current task 

only consist of happy and fearful expressions. It would be beneficial to replicate the study 

using a wider range of emotional faces (e.g., angry, sad). In addition, the current study 

utilized pre-defined ROIs for a priori brain regions in our hypotheses. While a whole-brain 

or voxel-wise analyses would provide much more comprehensive results, due to 

computational challenges of such analyses in datasets of this size, the current ABCD data 

does not allow for such an approach. However, future ABCD releases hope to include voxel-

wise results and, therefore, should be utilized in future research. Importantly, both working 

memory and implicit emotion regulation impairments are present across a wide range of 

childhood disorders and future research should examine other aspects of psychopathology as 

well. Lastly, the current study’s data are cross-sectional. It is important that future research 

examines longitudinal data in order to better characterize the relationship between neural 

correlates of PLEs and progression to psychosis.

The current study helps characterize the relationship between neural activation and PLEs in 

middle childhood. The results demonstrate that PLEs in middle childhood are associated 

with decreased activation in multiple brain regions during working memory, which have 

previously been implicated in psychosis spectrum symptoms. The current study not only 

provides novel evidence that neural correlates of working memory, including decreased 

DLPFC, striatum, and pallidum activation, during an emotional n-back task are associated 

with PLEs, but also that these correlates may be specific PLEs as compared to depression. 

However, we also found that increased activation in several other regions, such as the 

parahippocampus, nucleus accumbens, and rostral ACC, while viewing faces was specific to 

depressive symptoms rather than PLEs. While the effect sizes of these relationships are 

small (βs ≤ |.04|), this is to be expected for nonclinical symptoms assessed before the onset 

of significant functional impairment in a large population sample. Thus, although our 

findings indicate that abnormal activation during working memory may be detectable in 

nonclinical PLEs, the results should be reviewed in the context of small effect sizes. Further 

research is needed to determine whether early alterations in working memory related brain 

activation are early manifestations of psychosis risk. If so, these findings would align with a 
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neurodevelopmental model of psychosis in which developmental abnormalities during 

critical periods are possibly contributing mechanisms or markers for psychotic disorders.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Association between PQ-BC scores and activity in a priori ROIs during 2-Back Vs 0-
Back contrast.
The image depicts t-statistics from all models examining associations between a priori ROIs 

and PLEs, whether or not they passed FDR correction. Color bar depicts t-statistic range. 

Warm colors indicate increased activation, cool colors indicate decreased activation relative 

to baseline.
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Figure 2. Association between depression scores and activity in a priori ROIs during Face Vs 
Place contrast.
The image depicts t-statistics from all models examining associations between a priori ROIs 

and depressive symptoms, whether or not they passed FDR correction. Color bar depicts t-
statistic range. Warm colors indicate increased activation, cool colors indicate decreased 

activation relative to baseline.
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Table 1.

Demographic Characteristics for Sample (n=6521)

Variable Mean (SD; Range) or N(%)

Age (Months) 119.49 (7.54; 107–132)

Sex, female 3200 (49.1)

Ethnicity

 Caucasian 3695 (56.7)

 African American 766 (11.7)

 Hispanic 1262 (19.4)

 Asian 138 (2.1)

 Other 660 (10.1)

Financial Adversity 0.4 (1.02; 0–7)

Average Motion (mm) 0.3 (0.28; 0.02–3.11)

Scanner Type

 Siemens 4971 (76.2)

 GE 1550 (23.8)

PQ-BC Score 2.29 (3.28; 0–20)

 Log-transformed PQ-BC Score −0.17 (0.36; −0.52–0.81)

Depressive Symptoms 0.23 (1.03; 0–13)

Note. GE=General Electric; PQ-BC=Prodromal Questionnaire- Brief Child Version. Age is measured in months. Sex is a dichotomous variable 
scored as either male or female. Ethnicity was scored as either Caucasian, African American, Hispanic, Asian, or Other (e.g., biracial). Financial 
adversity is measured on a scale from 0 to 7. Average motion is calculated as average framewise displacement in mm. Scanner type consisted of 2 
manufacturers (Siemens and GE). PQ-BC score is on a scale from 0 to 21. Depressive Symptom score is on a scale from 0 to 13.
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Table 2.

Task Performance (Percent Accuracy)

Task Condition Mean (SD; range)

Total Accuracy .82 (.09; .61–.99)

Working Memory Conditions

 2-Back .78 (1.0; .33–1.0)

 0-Back .86 (.10; .43–1.0)

Emotional Face Conditions

 Happy .83 (.10; .33–1.0)

 Fearful .83 (.10; .43–1.0)

 Neutral .84 (.10; .35–1.0)

Place .70 (.11; .30–1.0)
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Table 3.

Model Estimates for 2-Back vs 0-Back Contrast

PLEs Depression

β SE t FDR-corrected p β SE t FDR-corrected p

DLPFC −0.014 0.012 −1.156 .01 −0.014 0.012 −1.156 .54

 Right DLPFC −0.019 0.012 −1.502 .047 −0.019 0.012 −1.502 .68

 Left DLPFC −0.009 0.012 −0.696 .02 −0.009 0.012 −0.696 .88

Hippocampus 0.016 0.012 1.275 .63 0.016 0.012 1.275 .54

 Right Hippocampus 0.001 0.012 0.089 .96 0.001 0.012 0.089 .97

 Left Hippocampus 0.029 0.012 2.324 .30 0.029 0.012 2.324 .40

Parahippocampus 0.016 0.012 1.286 .70 0.016 0.012 1.286 .54

 Right Parahippocampus 0.015 0.012 1.205 .85 0.015 0.012 1.205 .68

 Left Parahippocampus 0.013 0.012 1.023 .95 0.013 0.012 1.023 .68

Caudate −0.010 0.012 −0.823 .01 −0.010 0.012 −0.823 .67

 Right Caudate −0.017 0.012 −1.392 .03 −0.017 0.012 −1.392 .68

 Left Caudate −0.002 0.012 −0.192 .02 −0.002 0.012 −0.192 .94

Putamen 0.007 0.012 0.530 .03 0.007 0.012 0.530 .75

 Right Putamen 0.003 0.012 0.217 .05 0.003 0.012 0.217 .94

 Left Putamen 0.005 0.012 0.447 .05 0.005 0.012 0.447 .94

Nucleus Accumbens 0.002 0.012 0.138 .34 0.002 0.012 0.138 .92

 Right Nucleus Accumbens 0.009 0.012 0.741 .96 0.009 0.012 0.741 .88

 Left Nucleus Accumbens −0.006 0.012 −0.502 .05 −0.006 0.012 −0.502 .94

Amygdala 0.016 0.012 1.278 .70 0.016 0.012 1.278 .54

 Right Amygdala 0.014 0.012 1.107 .56 0.014 0.012 1.107 .68

 Left Amygdala 0.014 0.012 1.168 .96 0.014 0.012 1.168 .68

Caudal ACC −0.014 0.012 −1.104 .03 −0.014 0.012 −1.104 .54

 Right Caudal ACC −0.018 0.012 −1.491 .04 −0.018 0.012 −1.491 .68

 Left Caudal ACC −0.008 0.012 −0.631 .07 −0.008 0.012 −0.631 .88

Rostral ACC −0.001 0.012 −0.107 .39 −0.001 0.012 −0.107 .92

 Right Rostral ACC −0.003 0.012 −0.249 .32 −0.003 0.012 −0.249 .94

 Left Rostral ACC 0.000 0.012 0.034 .56 0.000 0.012 0.034 .97

Pallidum 0.009 0.012 0.722 .03 0.009 0.012 0.722 .67

 Right Pallidum 0.010 0.046 0.217 .05 0.010 0.046 0.217 .94

 Left Pallidum 0.050 0.047 1.066 .047 0.050 0.047 1.066 .68

Note. β=standardized regression coefficient; t=t-test statistic; SE= standard error; p=p-value; PLEs=psychotic-like experiences; FDR=False 
Discovery Rate; DLPFC=dorsolateral prefrontal cortex; ACC=anterior cingulate cortex.

Significant model estimates are in bold.
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Table 4.

Model Estimates for Emotion vs Neutral contrast

PLEs Depression

β SE t FDR-corrected p β SE t FDR-corrected p

DLPFC 0.003 0.004 0.809 .81 −0.017 0.012 −1.350 .46

 Right DLPFC 0.005 0.004 1.087 .88 −0.015 0.012 −1.248 .63

 Left DLPFC 0.002 0.004 0.439 .88 −0.017 0.012 −1.353 .63

Hippocampus −0.005 0.004 −1.189 .81 −0.002 0.012 −0.137 .89

 Right Hippocampus −0.002 0.004 −0.500 .88 −0.001 0.012 −0.091 .93

 Left Hippocampus −0.007 0.004 −1.706 .88 −0.002 0.012 −0.159 .92

Parahippocampus −0.001 0.004 −0.235 .81 0.011 0.012 0.897 .46

 Right Parahippocampus 0.002 0.004 0.442 .88 0.012 0.012 0.949 .68

 Left Parahippocampus −0.004 0.004 −0.861 .88 0.007 0.012 0.580 .77

Caudate 0.002 0.004 0.437 .81 −0.005 0.012 −0.427 .74

 Right Caudate 0.002 0.004 0.426 .88 −0.004 0.012 −0.320 .83

 Left Caudate 0.002 0.004 0.416 .88 −0.006 0.012 −0.506 .77

Putamen −0.001 0.004 −0.280 .81 −0.012 0.012 −0.968 .46

 Right Putamen −0.001 0.004 −0.318 .88 −0.010 0.012 −0.793 .71

 Left Putamen −0.001 0.004 −0.217 .92 −0.013 0.012 −1.069 .63

Nucleus Accumbens −0.005 0.004 −1.098 .81 −0.020 0.012 −1.592 .46

 Right Nucleus Accumbens −0.006 0.004 −1.494 .88 −0.028 0.012 −2.261 .48

 Left Nucleus Accumbens −0.002 0.004 −0.436 .88 −0.007 0.012 −0.534 .77

Amygdala −0.002 0.004 −0.435 .81 0.013 0.012 1.063 .46

 Right Amygdala −0.001 0.004 −0.131 .88 0.015 0.012 1.235 .63

 Left Amygdala −0.003 0.004 −0.653 .88 0.007 0.012 0.577 .77

Caudal ACC 0.004 0.004 0.945 .81 −0.012 0.012 −0.995 .46

 Right Caudal ACC 0.005 0.004 1.071 .88 −0.010 0.012 −0.812 .71

 Left Caudal ACC 0.003 0.004 0.752 .88 −0.014 0.012 −1.100 .63

Rostral ACC 0.001 0.004 0.317 .81 −0.018 0.012 −1.481 .46

 Right Rostral ACC 0.003 0.004 0.589 .88 −0.013 0.012 −1.085 .63

 Left Rostral ACC 0.000 0.004 0.026 .92 −0.022 0.012 −1.769 .58

Pallidum 0.003 0.004 0.698 .81 −0.015 0.012 −1.199 .46

 Right Pallidum 0.004 0.004 0.874 .88 −0.005 0.012 −0.411 .80

 Left Pallidum 0.002 0.004 0.349 .88 −0.021 0.012 −1.714 .58

Note. β=standardized regression coefficient; t=t-test statistic; SE= standard error; p=p-value; PLEs=psychotic-like experiences; FDR=False 
Discovery Rate; DLPFC=dorsolateral prefrontal cortex; ACC=anterior cingulate cortex.

Significant model estimates are in bold.
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Table 5.

Model Estimates for Face vs Place contrast

PLEs Depression

β SE t FDR-corrected p β SE t FDR-corrected p

DLPFC −0.001 0.004 −0.240 .95 0.016 0.012 1.334 .23

 Right DLPFC 0.001 0.004 0.124 .97 0.011 0.012 0.910 .45

 Left DLPFC −0.003 0.004 −0.601 .97 0.021 0.012 1.689 .14

Hippocampus 0.000 0.004 0.085 .95 0.013 0.012 1.058 .32

 Right Hippocampus 0.001 0.004 0.195 .97 0.002 0.012 0.195 .87

 Left Hippocampus 0.000 0.004 −0.044 .97 −0.002 0.012 −0.159 .87

Parahippocampus 0.002 0.004 0.389 .95 0.038 0.013 3.012 .02

 Right Parahippocampus 0.000 0.004 0.039 .97 0.027 0.013 2.132 .07

 Left Parahippocampus 0.003 0.004 0.675 .97 0.041 0.013 3.256 .02

Caudate 0.000 0.004 0.068 .95 0.030 0.012 2.470 .04

 Right Caudate 0.000 0.004 −0.059 .97 0.032 0.012 2.590 .05

 Left Caudate 0.001 0.004 0.194 .97 0.027 0.012 2.209 .07

Putamen 0.001 0.004 0.319 .95 0.022 0.012 1.759 .11

 Right Putamen 0.001 0.004 0.309 .97 0.016 0.012 1.275 .27

 Left Putamen 0.001 0.004 0.303 .97 0.026 0.012 2.115 .07

Nucleus Accumbens −0.002 0.004 −0.471 .95 0.036 0.012 2.918 .02

 Right Nucleus Accumbens −0.001 0.004 −0.132 .97 0.038 0.012 3.091 .02

 Left Nucleus Accumbens −0.003 0.004 −0.746 .97 0.025 0.012 2.035 .08

Amygdala 0.002 0.004 0.544 .95 0.000 0.012 −0.025 .98

 Right Amygdala 0.003 0.004 0.701 .97 0.004 0.012 0.328 .83

 Left Amygdala 0.001 0.004 0.189 .97 −0.005 0.012 −0.432 .78

Caudal ACC −0.002 0.004 −0.537 .95 0.025 0.012 2.068 .07

 Right Caudal ACC 0.000 0.004 0.070 .97 0.019 0.012 1.538 .18

 Left Caudal ACC −0.005 0.004 −1.106 .97 0.030 0.012 2.438 .06

Rostral ACC 0.001 0.004 0.148 .95 0.028 0.012 2.297 .04

 Right Rostral ACC 0.001 0.004 0.129 .97 0.022 0.012 1.772 .13

 Left Rostral ACC 0.001 0.004 0.156 .97 0.032 0.012 2.629 .05

Pallidum 0.005 0.004 1.201 .95 0.022 0.012 1.787 .13

 Right Pallidum 0.007 0.004 1.643 .97 0.027 0.012 2.225 .07

 Left Pallidum 0.001 0.004 0.303 .97 0.026 0.012 2.126 .07

Note. β=standardized regression coefficient; t=t-test statistic; SE= standard error; p=p-value; PLEs=psychotic-like experiences; FDR=False 
Discovery Rate; DLPFC=dorsolateral prefrontal cortex; ACC=anterior cingulate cortex.

Significant model estimates are in bold.
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