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Feature selection strategies for 
drug sensitivity prediction
Krzysztof Koras1, Dilafruz Juraeva2, Julian Kreis2, Johanna Mazur2, Eike Staub   2 & 
Ewa Szczurek   1 ✉

Drug sensitivity prediction constitutes one of the main challenges in personalized medicine. Critically, 
the sensitivity of cancer cells to treatment depends on an unknown subset of a large number of biological 
features. Here, we compare standard, data-driven feature selection approaches to feature selection 
driven by prior knowledge of drug targets, target pathways, and gene expression signatures. We asses 
these methodologies on Genomics of Drug Sensitivity in Cancer (GDSC) dataset, evaluating 2484 
unique models. For 23 drugs, better predictive performance is achieved when the features are selected 
according to prior knowledge of drug targets and pathways. The best correlation of observed and 
predicted response using the test set is achieved for Linifanib (r = 0.75). Extending the drug-dependent 
features with gene expression signatures yields the most predictive models for 60 drugs, with the best 
performing example of Dabrafenib. For many compounds, even a very small subset of drug-related 
features is highly predictive of drug sensitivity. Small feature sets selected using prior knowledge are 
more predictive for drugs targeting specific genes and pathways, while models with wider feature sets 
perform better for drugs affecting general cellular mechanisms. Appropriate feature selection strategies 
facilitate the development of interpretable models that are indicative for therapy design.

The ability to predict a response of a specific cancer type to a therapy is one of the main goals in precision med-
icine. Considering molecular features of cancer cells is crucial for mitigating heterogeneity and for tailoring the 
therapy to specific patients1. The emergence of large scale high-throughput screening studies2–6 have allowed 
researchers to develop computational models for drug response prediction from molecular profiles of human 
cancer cell lines or drug properties7,8. Although the inconsistencies and limitations of cell line data have been 
raised and extensively studied9–12, these resources remain a vital tool for development of such models.

Arguably, the desired quality of computational models of drug response is not only their predictive perfor-
mance, but also interpretability. To evaluate candidate drug efficacy on a specific patient’s tumor, many approaches 
apply black-box algorithms with a set of highly dimensional features as input. In clinical practice, the capability 
of extracting such high-volume data from patient’s material is limited. Thus, there is a growing need of proper 
identification of concise, limited subset of features, or biomarkers, that are most informative of drug response. 
Therefore, strong emphasis should be put on feature selection approaches for drug sensitivity prediction. Despite 
its paramount importance, no systematic assessment of feature selection strategies in the task of drug response 
prediction was so far performed.

The problem of drug response prediction has been approached by a wide spectrum of linear and non-linear 
machine learning algorithms, including regularized linear regression, k-nearest neighbors (KNN), support vector 
machines and random forests13–18. Multitask learning was proposed to improve drug sensitivity prediction by 
pooling information learned for different drugs15,19. Finally, a number of kernel-based multi-view and multi-task 
models were introduced for drug sensitivity20–22. Although these approaches show very good predictive perfor-
mance, they suffer from low interpretability. As a remedy, a multi-task learning approach based on a Bayesian 
model for collaborative filtering was proposed23, which allows for identifying general interactions between fea-
tures of the drugs with features of the cell lines. For example, it gives insights in the form of ”activation of pathway 
Y will confer sensitivity to any drug targeting protein X”. This approach, however, does not directly address the 
crucial need of identifying biomarkers for specific drugs.

For that aim, data-driven, automatic techniques of feature selection were applied17,22,24. Generally, the problem 
of identifying the optimal subset of features is intractable25. Data-driven feature selection thus proceeds either 
as a heuristic search over the space of feature combinations, or is embedded directly in the learning algorithm 
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by imposing sparsity of parameters associated with the features via regularization. Although these methods can 
achieve good predictive performance and deal with the curse of high data dimensionality17, feature importance 
estimates and selection might not always be accurate and stable, especially in vastly high-dimensional data and 
in the presence of correlation between features26. Stability selection was proposed to mitigate this problem when 
regularized regression is applied27, but it still comes without the guarantee to choose the most biologically rele-
vant predictive features.

Drug prediction approaches largely differ with respect to the type of features that they model. Among the 
molecular data feature types which characterize the cancer cell lines, gene expression was assessed as the most 
informative, with remaining types such as mutation or copy number data bringing limited predictive power13,14. 
Accordingly, genome-wide gene expression is the most common choice in the case of models utilizing single data 
type7,17,22,23,28. Other studies reported that in some cases gene expression alone might not be sufficient, especially 
in a cancer- or drug-specific setting29,30. Importantly, expanding the feature space related only to cancer cell 
lines’ biology with drug-related properties was shown to improve predictive performance15,21–23,30. The predictive 
drug-specific features may be related to their chemical properties, such as compound structure15,30, their known 
primary targets or pathway activation21,22. Recently, multiple methods based on deep learning have emerged, 
showing promising results in the application to drug sensitivity prediction31. The published neural network archi-
tectures range from common stacks of fully connected layers32 to more sophisticated architectures involving 
residual and convolutional networks33–35. Furthermore, methods employing autoencoders36,37 and variational 
autoencoders38 have been proposed. Due to their complicated, non-linear structure, neural networks may suffer 
from the lack of interpretablity, including difficulties in assessment of feature importance. However, methods 
from the growing field of explainable artificial intelligence can help to mitigate this problem39.

Here, we utilize the knowledge regarding drug targets and their mode of action to select plausible features 
describing the cancer cell lines. This drug-related prior knowledge is thus used to directly limit the initial feature 
space, rather than first expanding it and next using data-driven selection techniques to narrow it down. We argue 
that this approach for feature selection in combination with common regression techniques can provide a sim-
ple and highly interpretable model without losing the predictive performance characteristic for models starting 
from high-dimensional data. In fact, the direct utilization of prior knowledge is the number one strategy recom-
mended for feature selection according to the classics in machine learning25. It was however, never exploited in 
the task of drug response prediction. We assess this methodology in a systematic fashion for a broad spectrum of 
anti-cancer compounds, integrating multiple data types and comparing the results to the baseline models utiliz-
ing genome-wide gene expression data and data-driven feature selection techniques. On top of that, we evaluate 
gene expression signatures as the means of dimensionality reduction of the transcriptomics data and evaluate 
their predictive power in this context. This comprehensive analysis pin-points a set of drugs for which easily 
interpretable, informative, small sets of features can be identified.

Results
Modeling workflow.  In order to comprehensively evaluate different feature selection strategies, we devised 
the following workflow (Fig. 1). We first extracted the sensitivity data for each particular drug and corresponding 
screened cell lines along with their biological features: gene expression, coding variants, copy number variation 
(CNV) and tissue type (see Methods for the details of the analyzed dataset). We then employed each of the feature 
selection approaches, which can be divided into two categories: biologically driven and automatic, data-driven 
selection methods. We considered different biologically driven feature selection strategies, depending on the type 
of prior knowledge used to define them. In the first approach, we narrowed the initial feature set by including 
only the features corresponding to drug’s direct gene targets (shortly only targets, OT feature set). In the second, 
we considered the union of the direct target genes and the drug’s target pathway genes (pathway genes, PG feature 
set). Finally, we additionally extended the only targets features and the pathway genes features with gene expres-
sion signatures, resulting in two more feature sets (OT + S and PG + S). For a baseline model we considered all 
available, 17737 gene expression features, referred to as the genome-wide model (GW). For data-driven feature 
selection we applied two techniques to the baseline gene expression feature set: stability selection (GW SEL EN) 
and random forest feature importance estimation (GW SEL RF). See Methods for more detailed description of 
the feature selection approaches. After the feature selection step, we fed the resulting data into elastic net (EN) or 
random forest (RF) algorithms and evaluated the predictive performance on the test set (Fig. 1). This modeling 
process was performed independently for each drug.

Models with genome-wide features have larger feature sets and more samples than the models 
with biologically-driven features.  The median numbers of input features are 3 and 387 for only targets 
and pathway genes feature sets, respectively (Fig. 2a). The input features are further expanded by including 128 
gene expression signatures. In the case of methods based on automated feature selection, the optimal number of 
features, k, is shown. The median k values are 70 and 1155 for random forests and for stability selection, respec-
tively. All foregoing values constitute a drastic decrease in comparison to the number of 17737 genome-wide 
input features.

The number of samples for each drug also slightly differs for only targets and pathway genes feature sets, since 
for some cell lines the coding variants or CNV information are not available (Fig. 2b). This results in a lower 
number of samples for models with biologically driven features, with the median of 849 for only targets and 818 
for pathway genes feature sets, compared to 876 for genome-wide expression features.

Drug response distributions are different across compounds, tend to have low variance for 
drugs targeting specific genes and pathways and high variance for drugs targeting general cel-
lular mechanisms.  The area under the dose-response curve (AUC; Methods) measures the overall drug 
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efficacy, with lower values corresponding to stronger efficacy. The distribution of this metric varies significantly 
among compounds with different target pathways (Fig. 2c). The median AUC value per target pathway ranges 
from 0.98 for hormone-related drugs to 0.73 for compounds targeting metabolism pathways. The smallest varia-
tion of AUC is observed for drugs targeting the hormone-related pathways. The largest AUC variation is observed 
for the apoptosis regulation pathway. The AUC for drugs targeting general mechanisms, such as DNA replication 
or metabolism, tends to have larger variance, which means their sensitivity is easier to model.

Figure 1.  Flowchart describing the modeling framework for a single compound. Abbreviations: GW – genome-
wide, PG – pathway genes, OT – only targets, EN – elastic net, RF – random forest, SEL – automated feature 
selection, S – gene expression signatures. For every feature space, we performed modeling separately for each 
drug. We randomly split the corresponding data into training and test set, with 0.3 of the data included in the test 
set. We used 3-fold cross-validation on the training data for hyperparameter tuning and evaluated the best model 
on the test set. The whole modeling process was repeated five times with different training/test set data splits.

Figure 2.  Models’ properties and response variable grouped by target pathways. (a) Number of input features 
across compounds in different methods. For genome-wide models, number of features was 17737 for each drug. 
Vertical axis uses log scale. (b) Number of samples across compounds in different methods. Abbreviation SS 
refers to stability selection (Methods). (c) AUC values grouped by target pathway of the drug, raw data from 
GDSC. Target pathways are sorted by interquartile range of the AUC values. Pathways corresponding to more 
general cell mechanisms are marked with red dots. See Fig. 1 for abbreviations.
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The per-drug results show the importance of comparing to a dummy model and that differ-
ent feature selection strategies are best suited for different drugs.  Since root mean squared error 
(RMSE) measures the level of model error, and correlation measures the model agreement with the test set, both 
large (1-RMSE) and high correlation should coherently indicate a high model performance. The negative relation 
between (1 - RMSE) quantity and correlation, however, confirms the fact that raw RMSE is not a good metric for 
performance comparison between compounds (Fig. 3a; Methods). Instead, correlation achieved by the model 
increases with the modeled AUC variance (Fig. 3b).

Both these facts support that relative root mean squared error (RelRMSE; ratio of the RMSE obtained by a 
dummy model to the RMSE obtained by the analyzed model; see Methods) is a better performance measure than 
raw RMSE (Fig. 3c). Indeed, RelRMSE grows with the correlation. Importantly, for some drugs, the best perform-
ing models fail to achieve the baseline RelRMSE score of 1 or are very close to 1 (Fig. 3c). Further inspection of 
these models reveals that they can capture only the mean AUC, since the modeled AUC distribution does not 
have enough variation. In total, there were 19 of such compounds and these were excluded from further analysis.

It is apparent from Fig. 3c, that for most of the drugs, the best suited method is modeling using genome-wide 
features and elastic net. However, this is not the case for compounds with the top corresponding modeling per-
formances, as the two best correlation scores are achieved by models with biologically driven feature space. These 
two compounds are Dabrafenib and Linifanib, both with correlation of 0.75, for models with feature spaces: 
only targets genes with gene expression signatures and only targets genes, respectively. In terms of performance, 
they are followed by Trametinib (correlation 0.71) and Alectinib (correlation 0.70), both scores being achieved 
by genome-wide methods. In general, as we consider more top performances, the frequency of genome-wide 
methods among them increases, although they are not as highly represented when looking at the small group of 
absolute best scores.

The considered set of drugs is diversified in terms of available data (Fig. 3d). The bigger number of sam-
ples leads to better predictive performance, as more training data mitigates the overfitting effect, especially in 
high-dimensional setting. However, there is a significant spread in performance among drugs with similar num-
ber of samples, implicating that available data is not a single factor explaining the differences in performance.

The difference in predictive performance of biologically driven versus genome-wide models is 
small, despite using significantly less input features.  In general, genome-wide feature set combined 
with elastic net (GW EN) emerges as the best model with the median correlation of 0.39 (Fig. 4a). However, mod-
els with biologically driven feature spaces perform very similarly, (excluding only targets (OT) approaches), with 
the best median correlation of 0.37 produced by models employing target pathway genes features combined with 
gene expression signatures and elastic net (PG + S EN). Furthermore, the difference in median performance was 
negligible between genome-wide random forest (GW RF, with 17737 features) and genome-wide random forest 
with automated selection (GW SEL RF, with 70 features on average). This suggests that for many compounds, 
most gene expression features do not have significant power in predicting drug response. The spread in perfor-
mance (defined as the difference between the maximum and the minimum value) reaches over 0.6 for all of the 
methods, suggesting that each drug should be approached individually in terms of modeling.

The standard, genome-wide model achieves the best performance for over half of considered drugs (Fig. 4b). 
However, for many of these cases the correlation difference between the best genome-wide model and the best 
model with biologically driven features is not significantly large, with the median of only 0.034 (Fig. 4c). The 
reverse is also true, with median correlation difference between the best biologically driven model and the worse 

Figure 3.  Predictive performance for all of the analyzed drugs. (a) 1 - RMSE versus correlation per drug, 
obtained by elastic net using genome-wide gene expression data as predictors. For 1-RMSE, higher values 
correspond to better performance. (b) Correlation versus standard deviation of true AUC for all cell lines 
screened for a given drug, correlation obtained by genome-wide elastic net. (c) RelRMSE versus correlation 
obtained by the best model for a given drug. Higher values of RelRMSE correspond to better performance and 
improvement over a dummy model, which predicts average AUC. Each point represents a single drug. For 
each of them, corresponding best performance was determined using correlation as a metric. Colors represent 
models with feature set that obtained the best performance for a given drug. Horizontal line at 1 represents 
the baseline RelRMSE score. Most of these correlations are statistically significant (test based on Student’s 
t-distribution at 0.05 significance level, Fig. S1). (d) Distribution of per-drug predictive performance grouped 
by per-drug number of available samples. Colors represent models with feature set that obtained the best 
performance for a given drug. See Fig. 1 for model abbreviations.
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genome-wide model 0.028. Despite a drastic reduction in feature space, the biologically driven models based 
either on only targets or pathways yield the best modeling performance for 23 drugs, outperforming all other 
models including the genome-wide approach. For further 60 drugs, the best models have feature space expanded 
with expression signatures. Noticeably, there are also 15 cases where data-driven feature selection helps to pro-
duce better performance with much smaller subset of the original feature set (Fig. 4b,d).

Predictive performance using different feature selection strategies depends on drugs’ target 
pathways.  Next, we investigate the general tendencies concerning which feature selection is particularly bet-
ter suited for modeling drugs targeting specific pathways. To this end, we compare the overall performance of 
biologically driven feature selection as one group to the baseline of genome-wide features and the genome-wide 
features with automatic selection as another (Fig. 5a), for different target pathways. Genome-wide models 
achieve better performance in 15 out of 24 pathways in total, however, the difference is statistically significant 
in only four of them (at 0.05 significance level): DNA replication, metabolism, apoptosis regulation pathways 
and a group of pathways referred to as “other”. This indicates that these models capture a broad mechanism 
of action of the corresponding drugs. Conversely, the target pathways for which the models with biologically 
driven features most notably outperform models with genome-wide features include ABL, IGFR and EGFR sig-
naling pathways, although these results are not statistically significant due to small sample sizes. The models 
with biologically-driven features perform better also for the hormone-related pathway, but overall the modeling 
performance is bad in this case and we do not consider this result reliable. In summary, compounds with specific 
signaling target pathways seem to benefit more from the initially restricted feature space. Notably, the median 
number of available sample sizes for drugs targeting specific pathways is similar between the pathways (Fig. S2a) 
and does not affect the modeling performance (Fig. S2b). Although the number of drugs per target pathway does 
differ between the pathways, these differences should not affect the comparison outcome as the comparisons of 
model performance are made within a given pathway.

We next inspect in detail the results for distinct drugs coming from DNA replication and RTK signaling path-
ways, respectively (Fig. 5b,c). Among the drugs targeting the DNA replication pathway, Bleomycin, Methotrexate 
and SN-38 exhibit good modeling ability with the genome-wide features. However, in case of Methotrexate simi-
lar performance is achieved also by methods with biologically driven feature space, contrary to SN-38. Conversely 
to DNA replication pathway, among the drugs targeting the RTK signaling pathway the best result is more often 
produced by biologically driven features, with most noticeable cases of Linifanib and Quizartinib. In contrast, 
Alectinib exhibits good modeling performance exclusively with genome-wide approaches. In general, although 
the above described general tendencies apply, information about drug’s target pathway alone seems to be insuffi-
cient to clearly tell which feature space is the most suitable for predicting its response, with the potential exception 
of the DNA replication pathway.

Figure 4.  Frequencies of all applied methods among best models per drug. (a) Correlation of AUC predictions 
with the true AUC values in the test set across compounds in methods with different feature spaces. Results are 
shown for 175 drugs which were common across all applied models. (b) Model frequencies for compounds for 
which all methods were applied. (c) Differences in correlation between best model per drug overall and best 
model from the other class. Two cases are shown – genome-wide and biologically driven feature sets. (d) Model 
frequencies among best models for compounds where models with biologically driven could not have been 
applied. See Fig. 1 for abbreviations.
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Gene expression and mutations constitute the most predictive feature types.  In order to assess, 
which feature types are most informative of drug response, we consider such models with biologically driven 
feature space, which use all five available data types (Fig. 6). To make results more robust, we consider only top 50 
drugs in terms of corresponding modeling performance achieved by the biologically driven feature sets, resulting 
in worst considered model’s correlation of 0.47. Next, we extract top k most predictive features in each model and 
record the frequencies of particular data classes among them. Results confirm the fact that gene expression is the 
most predictive feature type, although mutation (coding variant) and tissue type are also important, especially for 
drugs designed to target specific cancer type with a particular mutation. In contrast, copy number variants seem 
not to incorporate much useful information. The relative effect of gene expression data increases with number of 
considered most predictive features, but this is expected given that this category is the most frequent of all availa-
ble data types overall. Finally, the high frequency of gene expression signatures among the top predictive features 
implies that the signatures can act as good representatives of genome-wide information.

Figure 5.  Predictive performance in relation to compounds’ target pathway. (a) Correlation with the test set 
grouped by pathways. Methods were classified into two groups – one that uses genome-wide feature space, 
and one with biologically driven feature space. Numbers displayed represent p-values for the one-sided 
Mann-Whitney-Wilcoxon test. Lack of number means no statistical significance at 0.05 significance level. (b) 
Predictive performance for drugs with DNA replication target pathway. (c) Predictive performance for drugs 
with RTK signaling pathway. See Fig. 1 for model abbreviations.

Figure 6.  Frequencies of considered feature types among top k most predictive features. Feature importance 
coefficients were extracted from top 50 drugs in terms of modeling performance using methods with 
biologically driven feature space.
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Feature selection enables interpretation of the mode of action and pin-pointing biomarkers 
for the best modeled drugs.  We further focus the analysis on ten drugs of most interest (Fig. 7), based 
on two simple criteria: top modeling performance achieved by all of the feature selection methods, or distinctly 
better performance achieved by one of the methods’ class (genome-wide or biologically driven) in comparison 
to another. In five of those compounds the best result is produced by models with the genome-wide features, 
whereas another five are better modeled with biologically driven features.

From all analyzed drugs, Dabrafenib emerges as the compound which is the easiest to model. The highest 
correlation of 0.75 is achieved by the model combining only targets features with gene expression signatures 
and random forest (OT + S RF), and performance of other approaches is only slightly worse (Fig. 7). This good 
modeling ability with the OT + S RF features could be explained by two factors. First, the AUC distribution cor-
responding to Dabrafenib is well-diversified, with relatively many cell lines sensitive to treatment (Fig. 8a), which 
leads to better modeling performance (compare Fig. 3b). Second, the relative effects of the selected features are in 
excellent concordance with the Dabrafenib’s pharmaceutical properties. The most predictive feature – mutation 
in BRAF oncogene (Fig. 8a) – and the second most predictive feature – the BRAF gene expression signature – well 
agree with the design of Dabrafenib as the BRAF inhibitor. Interestingly, the feature corresponding to BRAF gene 
expression alone ranks lower, 28 among 136 features for the best OT + S RF model and as low as 15817 among 
17737 features for the GW EN model in terms of predictive power. Finally, in concordance with Dabrafenib’s 
intended use in treatment of BRAF mutation-positive melanomas and lung cancers40,41, the skin tissue feature is 
the third most predictive one for the best OT + S RF model.

In the case of Linifanib, the best result (0.75 correlation) is accomplished by using only 7 features related to the 
drug’s targets (only targets and random forest, OT RF model), which significantly outperforms the genome-wide 
models (Fig. 7). Linifanib is an inhibitor of FMS-like tyrosine kinase 3 (FLT3) and vascular endothelial growth 
factor receptor (VEGF) tyrosine kinases, and is involved in clinical trials concerning non-small cell lung can-
cer (NSCLC), breast, liver, and colorectal cancer as well as leukemia42–44. Contrary to the Dabrafenib’s example, 
Linifanib is one of the rare examples where good modeling results are achievable despite low standard deviation 
of the AUC distribution (Fig. 8b). The high correlation achieved by the OT RF model mainly comes from its abil-
ity to accurately predict lowered AUC for three outlying, sensitive cell lines. The most decisive predictive feature 
in this model is the expression of FLT3 gene, which exhibits high over expression in these cell lines, with much 
higher mean expression of 11.53 than the mean of 3.30 for all cell lines in the training set. The expression of FLT3 
ranks lower (11th) among features of the genome-wide model.

Similarly to Linifanib, Quizartinib is also characterized by low variation in the treatment response (Fig. 8c), 
and is also an FLT3 inhibitor. Quizartinib is tested in clinical trials for acute myeloid leukemia (AML)45. The 
best biologically-driven model (pathway genes and random forest, PG RF) uses features related to genes pres-
ent in drug’s target pathway (218 features), and the most important feature is expression of FLT3. The accurate 
prediction done by PG RF model for the single outlying, responsive sample (Fig. 8c) probably arises from the 
over-expression of FLT3 in that cell line (11.20 value for that feature in this sample versus the mean of 3.26 for 
all training samples). Although expression of FLT3 also appears as the fourth most important feature in the 
genome-wide model, it is unable to correctly predict AUC for the responsive cell line, since the relative impact of 
FLT3 is much smaller. Overall, these three examples well show that feature selection can facilitate derivation of 
interpretable insights.

Figure 7.  Results for specific compounds exhibiting good ability to model with one or all of the methods. 
Displayed numbers represent number of features which was used by the best performing model for a particular 
drug. Top horizontal axis shows compounds’ target pathways along with the model which achieved the best 
modeling result. See Fig. 1 for model abbreviations.
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Discussion
This work, to our knowledge, is the first comprehensive analysis of feature selection strategies for drug sensitivity 
prediction. Previous systematic assessments13,14 compared different modeling techniques and data types describ-
ing the cell lines, but did not comprehensively evaluate feature selection approaches. Similarly, although numer-
ous modeling methods were developed specifically for the task of drug sensitivity prediction7,8, they were solely 
optimized for predictive power and not interpretability. If feature selection was applied at all, it was not driven by 
pre-existing biological knowledge, but performed using standard and often not robust selection techniques such 
as regularization22.

Such comprehensive feature selection assessment is needed for several reasons. First of all, both feature selec-
tion driven by pre-existing biological knowledge and data driven selection have their advantages and disadvan-
tages. Intuitively, selecting the features using a priori knowledge of the drug mode of action as a guideline should 
improve modeling. On the other hand, it is also restricting the available information for the model, and if the 
prior knowledge is wrong, may result in missing important dependencies. Given the vast number of features 
compared to the number of samples, the models with genome-wide data as features or ones with automated fea-
ture selection are badly ill-posed and prone to over-fitting. On the other hand, they are given the advantage of a 
larger number of samples (resulting in higher power) and access to more information, compared to the models 
with biologically driven features (Fig. 2). Second, as there is no obvious recipe for choosing the feature set for a 
particular drug, the in-depth comparative analysis of different feature selection strategies may suggest indications 
for the recommended type of features for drugs depending on their mode of action or knowledge of their target 

Figure 8.  Predicted versus actual AUC values and most predictive features for (a) Dabrafenib, (b) Linifanib 
and (c) Quizartinib. Top panels show predicted versus actual AUC values when both biologically driven and 
genome-wide models were trained and tested on the same sets of samples. The biologically driven models 
correspond to best suited feature set for each drug: OT + S RF for Dabrafenib, OT RF for Linifanib and PG RF 
for Quizartinib. Middle and bottom panels present top 5 most informative features when fitting the model with 
genome-wide data (middle) and biologically driven feature space (bottom).
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pathway. Finally, if the best performing feature set is small, each particular feature can be inspected and further 
evaluated as a potential biomarker for the drug.

Here, different feature selection strategies driven by prior knowledge were compared to using genome-wide 
feature sets and the data-driven, automatic feature selection techniques across all analyzed drugs. We identified 
the best suited feature set for each drug and investigated them in the context of drugs’ target pathways. Finally, 
we evaluated the predictive power of different feature types and inspected example drug-specific models in more 
detail. The entire assessment workflow aimed at the identification of such strategies that could deliver highly pre-
dictive, but also highly interpretable models, bringing insights about specific drugs that are informative for their 
application in precision medicine.

Both Jang et al.14 and the DREAM challenge13 assessments indicated that adding the features representing 
mutation and copy number status on top of genome-wide expression features did not improve the overall per-
formance of modeling drug sensitivity13,14. This is likely due to the fact that gene expression is sometimes already 
reflecting genomic changes or tissue type. In contrast, our analysis shows that additional features correspond-
ing to mutations are often significant predictors when they are evaluated as part of smaller feature set and are 
not vastly outnumbered by the gene expression features (for example, in the cases of Dabrafenib, PLX-4720, 
Nutlin-3a, SB590885 and Pelitinib).

Our results bring important conclusions about feature selection strategies for drug sensitivity prediction. In 
general, the baseline genome-wide set of features or data-driven feature selection yields higher median predictive 
performance than biologically driven features. There are, however, multiple individual drugs, for which the fea-
ture selection driven by biological knowledge gives the best results, including models for the drugs with the top 
two performance scores. Moreover, feature selection driven by prior knowledge drastically reduces the number 
of features. At the same time, if the drop of performance in comparison with genome-wide models occurs, it is 
often only slight.

In addition, the presented analysis illuminates the mechanisms behind the sensitivity of different cancer cell 
lines to different types of drugs, suggesting which types of features should be used to model different classes of 
drugs. Drugs that are generally toxic or target general cellular mechanisms such as DNA replication or metab-
olism affect a relatively large proportion of cancer cell lines and thus have a wide response distribution. These 
compounds tend to be better modeled using genome-wide features, indicating that their effect on the cancer 
cells depends on a large spectrum of different cellular features. Conversely, for drugs targeting specific pathways, 
sensitivity distribution tends to be narrow, with most cells not responding at all and only a few interesting outliers 
of sensitive cells. For these compounds, high-level drug properties such as direct targets or target pathways allow 
to build highly predictive models with small numbers of interpretable features, such as Dabrafenib, Linifanib 
or Quizartinib. In particular, highly predictive models with an extremely low number of input features can be 
obtained, as in the cases of Linifanib, Afatinib, and GNF-2. Overall, this analysis shows the importance of using 
adequate feature selection strategies for each individual drug.

Methods
Analyzed dataset.  The analyzed dataset was acquired from the Genomics of Drug Sensitivity in Cancer 
(GDSC)3 database. A total of 251 compounds were included in the analysis. Each was assigned one of 24 classes 
of target pathways, defined by the GDSC.

The total set of samples consisted of 983 cancer cell lines originated from 13 tissue sites. The available data 
types for describing the cell lines included: gene expression (17737 features), coding variants (310 features), copy 
number variants (CNV, 425 features) and tissue type (13 features). Coding variants and copy number variants 
were represented as binary calls determining the presence or absence of a variant in a given gene or segment, 
respectively. We have dummy encoded the tissue types resulting in 13 distinct binary features for every cell line. 
All biological input data were acquired directly from the GDSC resource.

GDSC provides two types of metrics representing the drug efficacy: half maximal inhibitory concentration 
(IC50) and area under the dose-response curve (AUC). Since in our analysis we did not observe significant differ-
ences in predictive performance when using one metric in favor of the other, we picked AUC as our single target 
variable.

Predictive algorithms.  We employed two common machine learning algorithms in order to predict the 
AUC values: elastic net linear regression and random forest regression. We implemented both methods using 
Python3 scikit-learn 0.19.2 library46. See Supplementary Methods for descriptions of the algorithms and imple-
mentation details.

Feature selection.  With a total of 18485 biological features that can be used to describe the cancer cell 
lines, the analyzed dataset is very high-dimensional. In contrast, the number of samples is in the order of hun-
dreds, which poses the danger of overfitting. This might especially be the case when considering all available 
genome-wide information regardless of the drug being modeled. Here, we investigate different feature selection 
methods to mitigate this problem. These approaches can be divided into two groups: biologically driven and 
automatic, data-driven selection methods.

Biologically driven feature selection.  Features based only on drug targets and tissue type, shortly only targets 
(OT).  In the most restricted feature space, we included only predictors corresponding to the direct targets of the 
drugs, as well as tissue type. Drug targets information was derived directly from GDSC. As an additional resource, 
we used DrugBank47 database, assigning targets for 88 matched compounds. For each drug target, we included 
features representing the target gene’s expression, coding variant and copy number variation. In the case of copy 
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number data, a given genetic feature was incorporated if the corresponding segment included at least one of the 
drug target genes. We only considered drugs with explicit gene targets annotation in GDSC or DrugBank and for 
which at least one feature in addition to the tissue type was available in the data. These conditions were met for 
184 compounds. Applying two regression algorithms for each drug resulted in 368 separate models.

Set of features based on drug targets, tissue type, and target pathways, shortly pathway genes (PG).  In this 
approach, we included features related to genes that belonged to the same signaling pathway as the set of target 
genes. Pathways information was derived from Reactome48,49 database (version 66 accessed on October 2018). 
For each compound, first its target set was derived, followed by finding all pathways which included at least one 
of the given targets. The total set of considered genes was then computed as the union of all members of the found 
pathways. Lastly, corresponding gene expressions, coding variants, copy number variants and tissue types were 
extracted to create the final feature set. The drug targets and pathway information was available for 186 drugs, 
producing 372 models.

Sets of features resulting from addition of gene expression signatures, shortly OT + S or PG + S.  Gene expression 
signatures can explain the activation level of complex biological phenomena in the investigated cell lines. Here, 
we refer to a gene signature as a set of genes related to a certain known biological phenomenon that can be 
deduced from cancer gene expression data (Supplementary Table S1). For each signature S with i genes, we calcu-
lated two scores. The first characterizes the coherent expression and the second estimates the activation level of S. 
Given a gene expression matrix for S in n samples ( ×X i n), the previously described coherence score (CS)50, is 
calculated as the mean pairwise Pearson correlation between all columns of X. Therefore, a strong negative or 
positive correlation between all genes in S is indicated by CS values close to −1 and 1, respectively. The activity of 
S (i.e. the signature score) for each sample is calculated by first z-scoring the gene expression values across sam-
ples, followed by averaging the resulting z-scores across genes. Here, we calculated the signature scores using the 
cancer cell line expression data provided by GDSC. We set the threshold for a significantly coherent activation of 
S to ≥ .SCS( ) 0 1, resulting in 128 signature features. The OT + S set contains features based on target genes, sig-
nature scores and tissue type. The PG + S set contains target genes, pathway genes, signature scores and tissue 
type. Applying two regression algorithms for each drug resulted in 740 separate models.

Set of features based on genome-wide gene expression, shortly genome-wide (GW).  Finally, we constructed a 
feature set based exclusively on the expression of 17737 genes as features. We evaluated this feature set for 251 
drugs in total, resulting in 502 different models.

Data-driven feature selection, shortly GW SEL.  In addition to feature pre-selection based on drug properties and 
biological relevance, we also evaluated automated feature selection algorithms in application to genome-wide 
expression data. We used two techniques, based on linear and non-linear methods. First, stability selection, 
which uses lasso regression on multiple bootstrap samples in order to choose robust features27. Such selected 
features were next passed as input for elastic net models (further referred to as GW SEL EN). For the second 
technique, feature importance estimates derived directly from random forest were used. These features were then 
used for random forest regression models (GW SEL RF). For more detailed description of both techniques, see 
Supplementary Methods.

Model evaluation.  During cross-validation tuning, we used Mean Squared Error (MSE) as a scoring metric 
for best hyperparameters search. Although MSE is suitable for evaluation of different models within one com-
pound, it is not reliable when comparing results across diverse drugs because of differences in corresponding 
AUC distributions. Furthermore, when a given target variable distribution has little variation, one can achieve a 
reasonably low MSE just by predicting the mean of a target variable. In order to avoid this problem and identify 
the models which performed well, we used Relative Root Mean Squared Error (RelRMSE), which is normalized in 
such a way that the score of 1 corresponds to a dummy model which always predicts the mean of target variable 
in the training data. RelRMSE is defined as the fraction of the dummy model’s RMSE on the test data and the 
analyzed model’s RMSE on the test data:

=RelRMSE
RMSE
RMSE

,
(1)

dummy

model

i.e. better performance corresponds to bigger RelRMSE metric, with a baseline score of 1.
The use of RelRMSE allowed us to distinguish drugs for which predictive algorithms could not outperform the 

dummy model, meaning that for those compounds no actual learning occurred.
In order to make further assessments and comparisons between compounds, we used Pearson correlation 

coefficient with the response AUC in the test set as a performance metric. As stated in a previous section, the 
recorded results for each method were averaged over five modeling procedures that were performed with different 
data splits.

Data availability
The data analysed in this study were acquired from the Genomics of Drug Sensitivity in Cancer repository: 
https://www.cancerrxgene.org/ (2018) and the Reactome repository: https://reactome.org/ (2018). Code used to 
conduct the analysis is available at https://github.com/kkoras/feature-selection-in-cancer-drug-response.
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