Table 3.
Benchmarking results: mean training time and standard deviation in seconds for different regression models.
| Dataset | Toolbox | Regression model | |||
|---|---|---|---|---|---|
| Ridge | Kernel Ridge | SVR (linear) | SVR (RBF) | ||
| MEG single-subjects | MVPA-Light | 0.0016 ± 0.00006 | 0.019 ± 0.0001 | – | – |
| LIBSVM | – | – | 0.02 ± 0.001 | 0.0041 ± 0.0002 | |
| MATLAB | 0.0061 ± 0.0002 | – | 0.018 ± 0.037 | 0.023 ± 0.0005 | |
| Scikit Learn | 0.0069 ± 0.0003 | 0.023 ± 0.003 | 0.654 ± 0.0647 | 0.481 ± 0.02 | |
| R | 0.055 ± 0.0027 | – | 1.59 ± 0.094 | 0.43 ± 0.002 | |
| MEG super-subject | MVPA-Light | 0.015 ± 0.001 | 7.38 ± 0.023 | – | – |
| LIBSVM | – | – | 0.653 ± 0.038 | 0.121 ± 0.014 | |
| MATLAB | 0.186 ± 0.007 | – | 6.931 ± 0.237 | 9.9798 ± 0.239 | |
| Scikit Learn | 0.062 ± 0.005 | 14.51 ± 0.21 | 3.213 ± 0.394 | 31.61 ± 1.51 | |
| R | 0.547 ± 0.0079 | – | 465.08 ± 49.83 | 151.66 ± 26.76 | |
| fMRI | MVPA-Light | 0.165 ± 0.0042 | 2.026 ± 0.256 | – | – |
| LIBSVM | – | – | 4.334 ± 1.48 | 2.819 ± 0.0412 | |
| MATLAB | OOM | – | 4.545 ± 0.353 | 4.563 ± 0.284 | |
| Scikit Learn | 0.638 ± 0.022 | 0.476 ± 0.01 | 16.138 ± 3.64 | 9.999 ± 0.59 | |
| R | 7.503 ± 0.593 | – | 37.211 ± 2.056 | 41.037 ± 2.298 | |
For each combination of dataset and model, the fastest model is marked in bold. OOM, out of memory error; (p), primal form; (d), dual form.