Skip to main content
. 2020 Jun 4;14:289. doi: 10.3389/fnins.2020.00289

Table 3.

Benchmarking results: mean training time and standard deviation in seconds for different regression models.

Dataset Toolbox Regression model
Ridge Kernel Ridge SVR (linear) SVR (RBF)
MEG single-subjects MVPA-Light 0.0016 ± 0.00006 0.019 ± 0.0001
LIBSVM 0.02 ± 0.001 0.0041 ± 0.0002
MATLAB 0.0061 ± 0.0002 0.018 ± 0.037 0.023 ± 0.0005
Scikit Learn 0.0069 ± 0.0003 0.023 ± 0.003 0.654 ± 0.0647 0.481 ± 0.02
R 0.055 ± 0.0027 1.59 ± 0.094 0.43 ± 0.002
MEG super-subject MVPA-Light 0.015 ± 0.001 7.38 ± 0.023
LIBSVM 0.653 ± 0.038 0.121 ± 0.014
MATLAB 0.186 ± 0.007 6.931 ± 0.237 9.9798 ± 0.239
Scikit Learn 0.062 ± 0.005 14.51 ± 0.21 3.213 ± 0.394 31.61 ± 1.51
R 0.547 ± 0.0079 465.08 ± 49.83 151.66 ± 26.76
fMRI MVPA-Light 0.165 ± 0.0042 2.026 ± 0.256
LIBSVM 4.334 ± 1.48 2.819 ± 0.0412
MATLAB OOM 4.545 ± 0.353 4.563 ± 0.284
Scikit Learn 0.638 ± 0.022 0.476 ± 0.01 16.138 ± 3.64 9.999 ± 0.59
R 7.503 ± 0.593 37.211 ± 2.056 41.037 ± 2.298

For each combination of dataset and model, the fastest model is marked in bold. OOM, out of memory error; (p), primal form; (d), dual form.