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Computer models of left ventricular (LV) electro-
mechanics (EM) show promise as a tool for
assessing the impact of increased afterload upon LV
performance. However, the identification of unique
afterload model parameters and the personalization
of EM LV models remains challenging due to
significant clinical input uncertainties. Here, we
personalized a virtual cohort of N = 17 EM LV models
under pressure overload conditions. A global–local
optimizer was developed to uniquely identify
parameters of a three-element Windkessel (Wk3)
afterload model. The sensitivity of Wk3 parameters
to input uncertainty and of the EM LV model to Wk3
parameter uncertainty was analysed. The optimizer
uniquely identified Wk3 parameters, and outputs
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of the personalized EM LV models showed close agreement with clinical data in all cases.
Sensitivity analysis revealed a strong dependence of Wk3 parameters on input uncertainty.
However, this had limited impact on outputs of EM LV models. A unique identification of
Wk3 parameters from clinical data appears feasible, but it is sensitive to input uncertainty,
thus depending on accurate invasive measurements. By contrast, the EM LV model outputs
were less sensitive, with errors of less than 8.14% for input data errors of 10%, which is within
the bounds of clinical data uncertainty.

This article is part of the theme issue ‘Uncertainty quantification in cardiac and
cardiovascular modelling and simulation’.

1. Introduction
Pressure overload as induced by pathologies such as aortic valve stenosis (AS) or coarctation
(CoA) imposes a significant increase in afterload upon the left ventricle (LV), which may impair
myocardial energetics and drive maladaptive remodelling processes, eventually leading to heart
failure (HF). Computer models of LV electro-mechanics (EM) show high promise as a clinical
research tool for quantitatively assessing the impact of increased afterload upon LV function
and, potentially, also for predicting acute and chronic outcomes of interventions such as aortic
valve repair/replacement or the stenting of a CoA. Such advanced diagnostic applications are
critically dependent on the ability of models to accurately represent loading conditions for a given
patient. However, the choice of an appropriate model representing LV afterload and the accurate
identification of unique sets of model parameters are non-trivial.

First of all, there is no consensus on the choice of an afterload model that would best represent
circulatory impedance, which indicates structural uncertainty. A number of models have been
reported in the literature, ranging from simpler lumped zero-dimensional (0D) Windkessel-
type models comprising two, three or four elements [1–12] which account for resistive and
reservoir effects, to more advanced one-dimensional (1D) models derived from the Navier–Stokes
equations [13–17] which also consider pulse wave transmission effects. 1D models are preferred
over 0D models when distributed properties and their impact upon central pressure waveforms
and associated markers such as pulse wave velocity are under investigation. 0D models are thus
unable to account for effects such as pressure wave augmentation which render the estimation of
central aortic pressure governing LV afterload from cuff measurements a challenging endeavour
[18–20]. In general though, as a model of global LV afterload, 0D models have been preferred as
their lower number of parameters is more likely identifiable with data typically available in the
clinic.

Beyond the structural uncertainty linked to the choice of a specific afterload model, key
parameters characterizing circulatory impedance (i.e. LV pressure, plv, central aortic pressure,
p, the pressure drop across the aortic valve, �pav = plv − p, and aortic flow, q) show beat-to-beat
variability and their measurements are afflicted with significant errors, introducing residual and
observational uncertainties, respectively. These uncertainties are exacerbated in clinical scenarios
where the catheterization of patients is avoided. In these cases, invasive pressure recordings are
not available, necessitating the indirect inference of aortic pressure from cuff measurements of
brachial pressures and the calibration of trans-valvular pressure drops from flow measurements
which are, due to a number of simplifying assumptions, inherently inaccurate [21]. Beyond
uncertainties related to the afterload, combined EM LV models are further affected by geometric
uncertainties due to image resolution, segmentation and mesh fitting, condition uncertainties due
to initial and boundary conditions (BCs) as well as complex input uncertainties due to limited
knowledge of complex spatially heterogeneous factors such as the electrical activation sequence
driving contraction, fibre and sheet arrangements, heterogeneity in ion channel expression or
sarcomere dynamics. Finally, also simulator uncertainty due to numerical approximation errors
may play a role, but may be, relative to other more significant uncertainties, of lesser relevance.
Finally, even in the absence of any measurement errors, a unique identification of model
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parameters may not be feasible on mathematical grounds, as more than one choice of model
parameters may yield the same goodness of fit to the measured data. All these factors combined
contribute to the input uncertainty of an EM LV model.

Considering the significant input uncertainty in EM LV models raises the question as to
which degree these propagate and affect the simulated model outputs. In this study, we sought
to quantitatively relate the influence of input uncertainty upon afterload model parameter
estimation and, in turn, the arising model parameter uncertainty upon output uncertainty of the
combined EM LV model. For this sake N = 17 personalized finite-element (FE) EM LV models
coupled to a three-element Windkessel (Wk3) model representing afterload were built from
clinical data of patients treated for AS (NAS = 10 cases) or CoA (NCoA = 7 cases). An automated
global–local optimization method was developed for identifying parameters of the Wk3 model of
afterload both with and without invasive pressure recordings available in the CoA and AS cases,
respectively. To yield reproducibly unique solutions, clinical data were pre-processed to mitigate
artefacts and achieve consistency across data sources by, for example, synchronizing pressure
and flow traces and adjusting for differences due to altered heart rate, and physiological box
constraints were imposed to limit the search space.

For all cases under study, our optimization approach identified a globally optimal set of
Wk3 parameters under the given physiological constraints. Using a minimum number of inputs,
parameters were found automatically without any operator interventions within less than
1 min. Simulation results obtained with the combined EM LV models showed close agreement,
within the limits of clinical data uncertainty, with all available measurements in all N = 17
cases. Sensitivity analysis revealed a significant dependence of estimated Wk3 parameters on
observational uncertainty. However, predictions of the EM LV models were highly robust with
regard to uncertainty of afterload model parameters. Even when considering large errors in input
data of 10%, model outputs remained within an envelope of less than 8.14% deviation, which is
well within the bounds of clinical data uncertainty.

2. Methods

(a) Patient data
In a prospective clinical study, patients were identified who met the inclusion criteria for the aortic
CoA arm or the aortic valve disease (AVD) arm of the CARDIOPROOF trial (NCT02591940). From
this study, data of NAS = 10 AVD patients suffering from AS and NCoA = 7 CoA patients with
clinical indication for aortic valve treatment and stenting of CoA were selected. AS treatment
indicators included valve area and/or systolic pressure drop across the valve. CoA treatment
indicators included an echocardiographic measured peak systolic pressure gradient across the
stenotic region of greater than 20 mmHg (2.66 kPa) and/or arterial hypertension. The study was
approved by the institutional Research Ethics Committee following the ethical guidelines of
the 1975 Declaration of Helsinki. Written informed consent was obtained from the participants’
guardians.

Details on clinical protocols and acquisition of data used in this study have been reported
in detail elsewhere [22]. Acquired clinical data include anatomical 3D-whole-heart (3DWH)
magnetic resonance imaging (MRI) scans, LV volume traces, Vlv,m(t), as derived from short-axis
(SAX) cine MRI scans, image-based ultrasound (US-echo) estimations of pressure drop across the
valve and/or coarctation at peak flow, �pav,m, and cuff pressure measurements yielding diastolic
and systolic brachial pressures, pdia,cuff and psys,cuff. In addition, in all CoA cases, invasively
recorded pressures in LV, plv,m(t), and aorta, pm(t), were also available.

(b) Model-fitting procedures
Measured pressure and volume data were pre-processed to mitigate data inconsistencies (see
electronic supplementary material, §1(a) for details). Pre-processed data were used then for
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Figure 1. Overview of model workflow for fitting afterload model (upper panel) and combined EM LV model (lower panel). In
a first step, the Wk3 afterload parameters Z, Zv, R and C were identified using measured haemodynamic parameters pop,m, p̂m,
pcl,m,�pav,m and q(t)= −dV/dt as inputs. For AS cases, pop,m and p̂m were estimated from cuffmeasurements, whereas pcl,m
was estimated from empirical reference data. Subsequently, the EM LV model is fitted. First, the biomechanical bulk modulus
CGuc is adjusted to fit the passive behaviour of the LV model to the empirical approximation of the end-diastolic pressure–
volume relation (EDPVR) due to Klotz, using {Ved, plv,ed} as inputs. For AS cases plv,ed was estimated from empirical reference
data. Using the fitted afterload model coupled to the EM LV model through a resistive valve model, the active stress model is
parametrized using fixed-point iterations to adjust the phenomenological active stress model parameters, {τC, Ŝa, Tdur, τR},
using the discrepancy between measured and simulated p–V metrics during isovolumetric contraction and ejection. In the
diagram: EF, ejection fraction; ESV, end-systolic volume; and EDV, end-diastolic volume. (Online version in colour.)

fitting the EM LV model in a two-step procedure, where first the afterload model parameters
were identified from haemodynamic measurements only and, subsequently, parameters of the
integrated EM LV model components representing passive biomechanical behaviour and active
stress generation were identified. An overview of the overall workflow is given in figure 1.

(i) Identification of afterload model parameters

The afterload imposed by the arterial system on the LV is represented by a Wk3 model given as

dp
dt

=
(

1
C

+ Z
RC

)
q + Z

dq
dt

− 1
RC

p, (2.1)
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where q is the flow across the aortic valve in ml ms−1, t is the time in ms, p is the pressure in the
aorta ascendens in kPa, R and C are total arterial resistance and compliance in kPa ms ml−1 and
ml kPa−1, respectively, and Z is the characteristic aortic impedance in kPa ms ml−1 [23].

Rendering the Wk3 model patient-specific requires the identification of parameters Z, R and C
from measurements of p(t) and q(t). For a given set of parameters {Z, R, C}, one can use p as given
and solve (2.1) for q, or vice versa. While the temporal resolution of q(t) as measured by cine MRI is
lower than that of p(t), because q(t) can be measured non-invasively and the temporal resolution,
of the order of some tens of milliseconds, suffices to resolve the dynamics with sufficient accuracy,
we treat q as given and seek to find the set {Z, R, C} that minimizes the difference between
measured pressure, pm, and simulated pressure, p. Furthermore, to make the parametrization
procedure as generally applicable as possible, we refrain from using pm(t) and rely on a set of
characteristic data points extracted from pm(t). As pm(t) requires invasive catheterization, these
data may or may not be available depending on the specific clinical procedures (see §2a). For
instance, in the data of the CARDIOPROOF cohort, invasive pressure measurements were not
available for AS cases. Thus, we use only the opening and closing pressure of the aortic valve,
pop,m and pcl,m, respectively, and peak pressure, p̂m, as pointwise measures to gauge the goodness
of fit. In the absence of a measured time trace pm(t), these values must be estimated from cuff
measurements, a procedure afflicted with significant uncertainties [18] and empirical reference
data (see electronic supplementary material, §2(a)). In all AS cases, LV peak systolic pressure was
estimated as p̂lv,est = psys,cuff + �pav,m, where the peak pressure drop �pav was estimated from
US flow measurements, based on Bernoulli’s principle [21, eqn. 1]. The impedance of the resistive
diode used to couple the Wk3 afterload model to the EM LV model was estimated as

Zv ≈ �pav

q̂
, (2.2)

where Zv represents the additional impedance of the aortic valve due to the presence of AS.
Wk3 model parameters Z, R and C were fitted by minimizing the cost functional

J (p) = ω0

2

(
p̂m − p̂

)2 + ω1

2

(
pop,m − ped

)2 + ω2

2

(
pcl,m − pcl

)2 . (2.3)

Therein, the difference between measured and simulated pressures pm and p was evaluated in
terms of peak pressure, p̂m and p̂, valve opening versus end-diastolic pressure, pop,m and ped,
and valve closing pressure, pcl,m and pcl (see figure 1, upper left panel). Values of ωi result from
weighting factors γi, which were chosen so that each term of the cost functional contributes to
the same extent to the overall cost divided by the respective squared mean values obtained from
cohort data (see electronic supplementary material, §1(c)).

The minimization was performed subject to the Wk3 model (2.1) with p(0) = pop,m and
measured qm. Five additional inequalities were prescribed:

1 ≤ Z, 1 ≤ C ≤ R, b0 ≤ RC
Tdias

≤ b1, b2 ≤ pcl

MAP
, b3 ≤ pcl, (2.4)

where the parameters bi ensure that quantities derived from p such as mean arterial pressure
(MAP) or pcl do not exceed their physiological ranges; and Tdias denotes duration of diastole
(figure 1). The inequalities were included by penalty methods using suitably scaled max-
functions. Exact values for bi and a detailed description of the optimization method used can
be found in the electronic supplementary material, §1(c) and §1(e), respectively.

(ii) Parametrization of the combined EM LV model

FE meshes of LV anatomy and aortic root were generated using established workflows described
elsewhere [24,25]. Parametrization of the LV model followed closely a previously used protocol
[26], but with an improved representation of mechanical BCs which better reflect the in vivo
situation. Briefly, at the rim of the clipped aorta and over the epicardial surface, spring BCs
were applied, which penalized displacement, either in any direction, at the aorta, or only along
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Table 1. Fitted model parameters and goodness of fit for EM simulations of cases 10-AS and 02-CoA for the initial input
parameters.

fitted parameters goodness of fit

Ŝa Tdur τC τR �EDV �ESV �EF �p̂

case ID CGuc (kPa) (ms) (ms) (ms) (ml) (ml) (%) (kPa)

10-AS 0.4 95 495 70 70 0.40 10.39 5.07 0.25
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

02-CoA 0.8 57 575 105 90 0.08 0.40 0.16 0.32
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a direction normal to the epicardial surface in end-diastolic configuration. These normal spring
BCs, implemented similarly to [27], mimic the effect of the pericardium which restricts changes
of the outer shape of the heart. To match long-axis shortening of the LV during ejection between
model and image-based kinematics, the spring constant was scaled gradually, changing from
zero at the base to one at the apex. Moreover, to avoid a non-physiological rotation of the LV
[28,29] due to the absence of the right ventricle in the model, additional spring BCs were applied
at the right ventricular surface of the septum (see electronic supplementary material, §1(d)iii).
Following [30], passive biomechanical parameters of the Guccione model [31] were determined
by fitting the LV model to an empirical Klotz relation [32] (see electronic supplementary material,
§2(c)ii). The unloaded EM LV model was inflated to plv,ed and electrically activated to initiate
mechanical contraction using a phenomenological length-dependent contractile model of active
stress generation [33,34], and coupled to the patient-specific fitted afterload model using a valve
represented as a resistive diode of resistance Zv. The coupled EM LV model was solved to
compute LV pressure plv, aortic pressure p and LV volume Vlv during isovolumetric contraction
and ejection phase. Differences between computed and measured pressure and flow-based
metrics were minimized by iterative adjustment of active stress model parameters using a
fixed-point iteration (see electronic supplementary material, §2(c)iii).

(c) Sensitivity analysis
Considering the significant observational and residual uncertainty of the input data, sensitivity
analysis was performed to investigate the robustness of the implemented model fitting following
a two-step procedure. First, the effect of uncertainties of input data comprising opening and
closing pressure of the aortic valve, pop,m and pcl,m, as well as aortic peak pressure, p̂m, upon
the fitting of the afterload model was quantified, that is, {Z, R, C} = f (pop,m, p̂m, pcl,m). Secondly,
the impact of afterload model uncertainty upon the combined EM LV model was studied, that is,
{SV, SW, tp̂} = f (Z ± �Z, R ± �R, C ± �C), where SV, SW and tp̂ are stroke volume, stroke work
and time occurrence of aortic peak pressure, respectively. Other measured input data such as LV
volume Vlv,m(t) and the derived aortic flow q(t) are also afflicted with uncertainties, but these
remained unconsidered in the sensitivity analysis. EM model parameters (table 1) were fitted
once for the initial input parameters and were subsequently held constant for the cases with input
parameter perturbation.

Sensitivity analysis was performed using two distinct approaches, by independent variation
(IV) and by combined variation (CV) of parameters. In the IV case vectors of size N = 100 were
created for each input pop,m, p̂m and pcl,m by even sampling a range of ±10% around the measured
value. The Wk3 model-fitting algorithm was executed then varying only one input parameter at
a time while keeping all others fixed. The impact upon EM LV was studied by using all possible
N = 6 combinations of the extreme Wk3 parameters found and quantifying the deviation in model
predictions {�SV, �SW, �tp̂} relative to the reference EM simulations where the mean parameters
were used. Eight further simulations with combined input parameter variations were studied and
added (see electronic supplementary material, §2(d)).
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periodic. End-diastolic (ED, transparent) and end systolic (ES, solid blue) configurations of the LV are also shown. (Online version
in colour.)

Alternatively, Saltelli’s extension of the Sobol sequence was used to generate N = 5000 samples
of the input parameter space using the same range of ±10% around the measured value. An
independent multivariate normal distribution was assumed with mean values pop,m, p̂m, pcl,m
and variance σ 2 = 0.2 kPa2. For all N = 5000 input parameter sets, Wk3 model parameters were
fitted and their probability densities determined. Using the open Python library SALib V. 1.3.8
[35], first-order Sobol indices [36] for each output parameter were then computed for each input
parameter, which reflect the contribution of each input parameter to the output variance.

(d) Numerical solution
Spatio-temporal discretization of all PDEs and the solution of the arising systems of equations
relied upon the Cardiac Arrhythmia Research Package (CARP) [37]. Numerical details on FE
discretization as well as numerical solution of electrophysiology [38–40] and electro-mechanics
[41] equations have been described in detail previously. Both electrophysiology and mechanics
solver components have been validated in N-version benchmark studies [42,43]. Global and
local optimization algorithms were implemented in Python V. 2.7.15 using NumPy V. 1.16.5 and
SciPy V. 1.2.2.

3. Results

(a) Fitting of afterload and EM LV model
For all AS and CoA cases under study, Wk3 model parameters {Z, R, C} were identified by
solving the optimization problem given in equations (2.3) and (2.4), using pop,m, p̂m, pcl,m and
q(t), as derived from measurements in a pre-processing procedure (see electronic supplementary
material, §1(a)), as inputs. The goodness of fit is shown for two representative cases, one AS
(10-AS) and one CoA (02-CoA) case, in figure 2a. Afterload fitting results are summarized in
table 2.
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Table 2. Results of Wk3 fitting procedure for two representative cases 10-AS and 02-CoA.

pop pcl p̂ Z R C RC

case ID (kPa) (kPa) (kPa) (kPa ms ml−1) (kPa ms ml−1) (ml kPa−1) (ms)

10-AS 10.00 15.45 17.87 9.26 97.46 8.42 820.60
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

02-CoA 6.54 8.52 13.34 12.75 80.40 38.66 3108.14
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 3. Maximum± relative deviation ofWk3 parameters over all cases as a function of errors in the input data (for pathology
specific results see electronic supplementarymaterial, table S5),pop,m, p̂m andpop,cl, and their relative importance forWk3fitting
accuracy as measured by first-order Sobol indices {SZ, SR, SC} for each output Z, R and C in the cases 10-AS and 02-CoA.

case 10-AS case 02-CoA

input Z�±,max R�±,max C�±,max

varied dev. (%) (%) (%) SZ SR SC SZ SR SC

pop,m ±10% +14.01/−28.53 +7.67/−5.67 +29.97/−23.99 0.000 0.278 0.305 0.060 0.636 0.299
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

p̂m ±10% +79.82/−87.01 +0.18/−0.88 +4.39/−0.52 0.566 0.010 0.003 0.845 0.000 0.000
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

pcl,m ±10% +59.67/−85.35 +6.51/−6.51 +44.48/−29.37 0.417 0.695 0.659 0.089 0.358 0.669
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

To ascertain that the minimum found is global within the physiologically plausible corridor
imposed by the box constraints given in (2.4), the fitting procedure was repeated, using 100
randomly chosen initial guesses. In all cases, exactly the same minimizers were found, suggesting
that the identified minima are indeed global and, thus, Wk3 parameters can be uniquely identified
under the given constraints.

For all cases, anatomical models were built from images (electronic supplementary material,
figure S4). Using the identified afterload model parameters, passive biomechanical and active
stress parameters were identified in the combined EM LV model. Goodness of fit is illustrated in
figure 2b, whereas identified parameters are given in table 1. For a complete list of fitted afterload
and EM LV model parameters of all cases studied, we refer to electronic supplementary material,
tables S3 and S4, respectively.

(b) Sensitivity analysis
Sensitivity was analysed in a two-step procedure, where the sensitivity of the afterload model
parameters to measurement errors was quantified first and then, subsequently, the sensitivity of
biomechanical and haemodynamic model outputs of the EM LV model to afterload parameter
uncertainties was studied.

Sensitivity of fitting {Z, R, C} to uncertainty in input data {pop,m, p̂m, pcl,m} was analysed for
all N = 17 cases by independently varying the input variables within a ±10% range. Relative
sensitivities averaged over all cases are summarized in table 3.

Sensitivities of individual Wk3 parameters varied markedly. Overall, R was affected the least,
with R�±,max < 10%, i.e. a sensitivity < 1 attenuated errors in input data. By contrast, C�±,max and
Z�±,max both showed higher sensitivity, with relative errors �10%, that is, sensitivities of �1 led
to a significant amplification of input data errors.

In addition, for the cases 10-AS and 02-CoA, the combined variation of input parameters
based on a Sobol sampling was carried out. Qualitatively, the probability densities shown in
figure 3 suggest a continuous mapping between input and output parameters, that is, small
bounded measurement errors in the input data translate into small bounded errors in the output.
Quantitatively, the higher Sobol indices indicate that errors in measuring the corresponding
pressure input parameters carry more weight with regard to the variance of the output Wk3
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Figure 3. Input parameters {pop,m, p̂m, pcl,m} and associated Wk3 parameters {Z, R, C} for cases 10-AS and 02-CoA.
Distributions suggest a continuous mapping. An independent multivariate normal distribution with variance σ 2 = 0.2 kPa2

was used to colour the samples. (Online version in colour.)

parameters than those pressure measurements with a lower Sobol index (see table 3, rightmost
columns).

In a second study, the sensitivity of the EM LV model biomechanical and haemodynamic
outputs, leaving all EM LV model parameters unaltered as fitted, was probed by perturbing
Wk3 parameters within the range of values as induced by ±10% input data errors. Owing to
the significant computational costs involved, the analysis was carried out only for the cases
10-AS and 02-CoA. The physiological envelope of Wk3 parameter uncertainty is illustrated in
figure 4. Quantitative metrics are summarized in table 4. Results from eight further simulations
with combined input parameter variations can be found in electronic supplementary material,
table S6.

Despite the marked variability in Wk3 parameters as induced by the 10% errors in input data
(table 1), outputs of the EM LV model were affected rather moderately; only errors in p̂m led to
more notable changes.

4. Discussion
In this study, we describe a workflow for building EM LV models and their patient-specific
parametrization. A series of pre-processing steps was implemented to mitigate artefacts
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Table 4. Relative deviation of results of EM simulations from initial fit for the cases 10-AS and 02-CoA using six different
Windkessel parameter sets as input, while keeping EMmodel parameters constant.

case 10-AS case 02-CoA

deviation SV SW tp̂ SV SW tp̂
(ml) (J) (ms) (ml) (J) (ms)

0% 110.77 2.58 345 115.31 1.44 280

input �SV �SW �tp̂ �SV �SW �tp̂
varied (%) (%) (%) (%) (%) (%)

pop,m −10% 0.09 −0.93 −0.29 1.27 −0.35 −0.36
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

pop,m +10% 0.02 0.93 0.29 −1.18 0.14 0.00
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

p̂m −10% 8.14 6.00 6.67 6.52 3.62 −3.21
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

p̂m +10% −5.76 −4.92 −2.61 −6.60 −4.74 2.50
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

pcl,m −10% 1.99 2.36 −4.06 1.51 1.74 0.00
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

pcl,m +10% 0.40 −1.08 4.93 −2.04 −2.44 0.00
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

introduced by input data uncertainty and to improve consistency between data acquired non-
simultaneously under markedly different conditions. A particular focus was on identifying
Wk3 afterload parameters from haemodynamic measurements. The parametrization workflow
was evaluated under two clinical scenarios in the presence (in the CoA cases) and absence
(in AS cases) of invasive pressure measurements, as the ability to parametrize EM LV models
strictly non-invasively was deemed a key advantage in view of future clinical applications.
Thus, the Wk3 parameter identification procedures were implemented to accommodate both
scenarios, using only the point estimates of {pop,m, p̂m, pcl,m} as input, but no pressure traces.
As the optimization problem to be solved is non-convex, local optimization methods may get
trapped in non-competitive local minima. Therefore, a novel combined global–local optimizer
was developed. Using physiologically motivated box constraints, this optimizer finds global
minima and, thus, facilitates the unique identification of Wk3 parameters. The method has
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proven robustness as testing 100 randomly chosen initial guesses yielded exactly the same
parameter sets.

Sensitivity analysis was employed to quantify the dependence of estimated Wk3 parameters
on input data uncertainty, revealing that Z is affected most notably. These errors in afterload
model parameters also had an impact on the output of the EM LV model, but to a much
lesser extent. Even when using the most extreme Wk3 parameters, the output of the EM
LV model was only marginally altered, with variations well below the clinical observational
uncertainty.

(a) Fitting of global EM LV model
The global EM LV model was parametrized by fitting first the individual components
independently. The constitutive biomechanical model was fitted to a Klotz relation, using ped
and Ved as input, the Wk3 parameters were fitted using q, pop,m, p̂m, pcl,m as inputs, and, finally,
in the AS cases, the resistance Zv was derived from estimates of the trans-valvular pressure
gradient.

In a final step the global model was parametrized by identifying parameters of the active
contractile model using the same input data as previously for fitting the Wk3 model. All
assembled EM LV models fitted the data with sufficiently high accuracy, clearly within the range
of input data uncertainty of the clinical measurements. In a few cases, the goodness of fit achieved
in terms of SV was less accurate, with deviations �SV > 5%. Reasons were multifactorial. In the
case of very high ejection fractions of >70%, discrepancies are likely to be due to limitations of
the P1 and P0 FE types used. These are computationally efficient, but showed locking phenomena
under the large deformations at such high ejection fraction (EF). Furthermore, the fixed-point
iteration used treated each active stress model parameter independently and, owing to the costs
of fitting the global EM LV system, the iteration was not repeated until a convergence criterion
was met; rather, only one iteration step was executed.

(b) Influence of uncertainties on Wk3 parameter estimation
Wk3 parameters were affected by input uncertainty to varying degrees. R representing the total
arterial resistance was affected the least, with sensitivities <1 to all input parameters. This is
plausible as R ≈ MAP/CO holds and both MAP and cardiac output (CO) are only very moderately
affected by smaller changes of {pop,m, p̂m, pcl,m} due to their integral nature. Similarly, since the
compliance C of the arterial system governs the time constant τ = RC of the exponential decay in
aortic pressure during diastole, a stronger dependence on pop,m and pcl,m and a weak dependence
on p̂m occurring during systole is expected. Finally, Z showed the highest sensitivity to input
uncertainty. As any effects due to Z appear during systole only, its estimation depends therefore
mostly on p̂m and pcl,m. As shown in table 3 and electronic supplementary material, table S5,
the sensitivity of Z to these inputs was very high. A more detailed investigation showed that
the influence of pcl,m on Z correlates to the ratio (pcl,m − pop,m)/(p̂m − pop,m). The higher the ratio
of the original input pressures, the more influence pcl,m had on Z; see electronic supplementary
material, figure S5.

In view of our observations, a strictly non-invasive parametrization approach appears
challenging to achieve if highly accurate estimation of Wk3 parameters is sought. While pop,m,
in general, can be estimated reliably from cuff measurements, this is not the case for p̂m and
pcl,m. Non-invasive estimation methods exist to backpropagate brachial pressures to central aortic
pressure using transfer functions [18–20], but—owing to the large inter-individual variability and
disease dependence of pressure wave augmentation—methods tend to produce errors of up to
40%, which are even beyond the range of ±10% probed in this study. However, in the CoA cases
studied, even for pop,m, discrepancies of up to 56% were observed between invasive measurement
and cuff estimation.
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(c) Influence of uncertainties on EM LV model output
While input data uncertainty had a major impact in fitting the Wk3 parameters, where a change
of ±10% led to a variability in estimated parameters of up to +79% and −87%, respectively,
these were not propagated forward to the haemodynamic output parameters used for measuring
the goodness of fit of the global EM LV model. As shown in table 4 and illustrated in figure 4,
the sensitivity to misfit in Wk3 parameters due to pop,m and pcl,m was � 1. Misfit due to p̂m

was slightly more significant, but also always < 1. Although the variation of pcl,m has an equal
influence on Z as p̂m in the Wk3 model, at least for the AS cases, this influence is not observed in
the EM simulation results, where only p̂m had a major impact. To find a detailed explanation for
this behaviour is a complex endeavour, as EM model outputs are influenced by multiple model
parameters related to active stress, passive material properties as well as model geometry. Misfit
obtained for the eight additional perturbed cases with combined input variability also remained
less than 1 (see electronic supplementary material, table S5). As such, the haemodynamic output
of the EM LV model is highly robust to the fitting errors the Wk3 parameters may be afflicted
with, at least in the range ±10% probed.

5. Conclusion
This study reports on the development of an integrated workflow comprising anatomical
modelling, clinical data pre-processing and parameter fitting, that is sufficiently automated
to build a larger virtual cohort of 17 EM LV models. A global–local optimization method for
identifying the parameters of a Wk3 model of afterload has been developed which is able to
robustly and uniquely identify sets of Wk3 parameters. Results of Wk3 fitting demonstrated
a significant dependence of parameters on input data uncertainty, suggesting that an accurate
parametrization of a Wk3 afterload model may not be feasible in the absence of invasive
pressure measurements. However, the haemodynamic output of the combined EM LV model
remained virtually unaffected, indicating that organ-scale models may be able to replicate global
haemodynamic behaviour of the LV fairly accurately, even when using non-invasively estimated
pressure data that are afflicted with higher uncertainties.
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