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Mathematical models of a cellular action potential
(AP) in cardiac modelling have become increasingly
complex, particularly in gating kinetics, which control
the opening and closing of individual ion channel
currents. As cardiac models advance towards use
in personalized medicine to inform clinical decision-
making, it is critical to understand the uncertainty
hidden in parameter estimates from their calibration
to experimental data. This study applies approximate
Bayesian computation to re-calibrate the gating
kinetics of four ion channels in two existing human
atrial cell models to their original datasets, providing
a measure of uncertainty and indication of potential
issues with selecting a single unique value given
the available experimental data. Two approaches are
investigated to reduce the uncertainty present: re-
calibrating the models to a more complete dataset
and using a less complex formulation with fewer
parameters to constrain. The re-calibrated models
are inserted back into the full cell model to study
the overall effect on the AP. The use of more
complete datasets does not eliminate uncertainty
present in parameter estimates. The less complex
model, particularly for the fast sodium current, gave
a better fit to experimental data alongside lower
parameter uncertainty and improved computational
speed.
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1. Introduction
A central component in simulations of cardiac electrophysiology is a model of an action potential
(AP) for a representative cardiomyocyte. These models describe how the transmembrane
potential, and other physiological properties of a cardiac cell, vary through time due to changing
environmental conditions or applied stimuli. Since the development of the initial, relatively
simple, model of a neuron [1], AP models have grown in scope and complexity as new
experimental data have become available [2].

Uncertainty is an unavoidable aspect of scientific experiments, particularly in the biological
sciences. Further understanding in this area has been designated a priority as cardiac models
advance towards safety-critical applications [3]. Uncertainty is introduced by variability inherent
in the biological system (e.g. differences in AP waveforms between different myocytes), the
stochastic nature of biological processes (e.g. opening and closing of ion channels) and imperfect
recording systems (e.g. noise in voltage patch-clamp experiments) [3]. It is common for AP
models to use equations with a large number of parameters to describe the flow of ions across
the cell membrane. This is a particular challenge for model calibration in which parameters are
tuned to reflect experimental observations, usually by comparing model output to experimental
measurements using a regression method (e.g. least squares). The consequence of the uncertainty
and high number of parameters is that multiple different parameter combinations may produce
the same residual to experimental data; a unique optimum parameter set may not exist.

Traditional fitting techniques, such as simple least-squares regression, implicitly assume that
a single point estimate exists for each parameter in a model [4]. In cardiac modelling, this is
unlikely to be the case for reasons outlined above. Bayesian methods can quantify uncertainties
in parameter estimates by determining a posterior distribution over parameter values given the
available data [5]. These distributions can highlight unidentifiable parameters, those without a
single unique optimum, and make it possible to capture the effect of experimental and biological
variability on model parameters. Unidentifiability may be either structural, caused by an overly
complex model where parameters can be varied simulataneously without a change in model
output, or practical, where insufficient data are available to determine a parameter’s value.
In cardiac cell modelling, it can be difficult to obtain an exact likelihood function necessary
for exact Bayesian inference when summary statistics are used, as is commonplace in studies
of cardiac ion channels. This is further complicated by the high-dimensional parameter space,
nonlinear nature and indirect observation properties of AP models [6]. Instead, one can employ
approximate Bayesian methods, such as approximate Bayesian computation (ABC), which
provide a reasonable estimate to the posterior distributions of parameter values [7].

When developing a model of a new cell type, the most common approach is to ‘inherit’
gating kinetic formulations from existing models and tune channel conductances to data from
multiple sources [8]. However, equations describing gating kinetics of ion channels can be
extremely complex and often contribute the majority of the parameters in AP models. In
contrast to channel conductances, which can be adjusted to measurements of APs, gating kinetics
are typically calibrated to data from voltage patch-clamp experiments. In these experiments,
channels are isolated, by pharmacological means or the use of specific voltage step protocols,
to take measurements of individual current traces. Previous studies [9–11] have been valuable
in developing approaches to investigate parameter identifiability in both generalized Hodgkin–
Huxley models and more detailed widely used channel models. We build on this field of work
to include consideration of the available experimental data across a range of simple and complex
channel models of a human atrial cell.

In this study, we apply an approximate Bayesian method to investigate the uncertainty and
parameter unidentifiability present in channel gating kinetics in a human atrial cardiomyocyte.
Computational experiments are carried out on two human atrial cell models, the Nygren [12]
and Courtemanche [13] models, henceforth referred to as the N and C models, respectively.
These were the first two biophysical models developed to simulate the AP from a human
atrial myocyte and have proved influential in the development of subsequent models and
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whole-heart tissue-scale modelling. The N and C models are detailed cell models, each including
descriptions of 12 ion currents which contribute to the AP in human atrial myocytes. We thus
only focus our study on the four major ion currents which are prominent determinants of their
AP morphology [14,15]: the fast sodium channel (INa), L-type calcium channel (ICaL), transient
outward potassium channel (Ito) and ultra-rapid delayed rectifier potassium channel (IKur).

We first re-calibrate parameters in each channel model to experimental datasets used
in the original publications to investigate the existing level of uncertainty and parameter
unidentifiability. To explore whether these issues can be alleviated from inclusion of more
data, which would suggest practical unidentifiability, a ‘unified’ dataset is formed and the
models re-calibrated to these data. To investigate whether these models suffer from structural
unidentifiability, a model of reduced complexity [16] is calibrated to the same unified dataset,
and parameter posterior distributions and the overall goodness-of-fit of the model compared to
the re-calibrated N and C models. These re-calibrated channel models are then inserted into the
full N and C cell models to study the effect of the re-calibration on AP morphology. We conclude
by discussing the relative advantages and drawbacks of these approaches and limitations of the
study.

2. Methods

(a) Action potential models
The AP models studied in this work follow the commonly used Hodgkin–Huxley gating form [1].
The changing transmembrane voltage is calculated from the solution of several coupled ordinary
differential equations describing individual ion currents. Each current is of the common form

Ii = gi
∏

j

γ
kj

j f (Vm) and
dγj(t)

dt
= αγj (Vm; λ)

[
1 − γj

] − βγj (Vm; λ)γj, (2.1)

where gi is the maximum channel conductance which scales the current amplitude (S/F); γj are
gates of the channel determined by voltage-dependent forward and backward transition rates
between open and closed states, α and β, characterized by gating parameters λ; kj is an exponent
term that may be applied to represent multiple identical gates in parallel; and f is some voltage-
dependent forcing function (most commonly the difference between Vm and the ion Nernst
potential). The gating equation may equivalently be transformed into a form explicitly specifying
steady-state values, γ∞ and time constants, τγ

dγ (t)
dt

= γ∞(Vm) − γ

τγ (Vm)
, τγ (Vm) = [

αγ (Vm; λ) + βγ (Vm; λ)
]−1 ,

γ∞(Vm) = αγ (Vm; λ)τγ if activating gate,

γ∞(Vm) = βγ (Vm; λ)τγ if inactivating gate, (2.2)

(where we omit the indexing subscript for clarity). There are no standard formulations for
the voltage-dependent transition rates αγ (Vm; λ) and βγ (Vm; λ), and each model implements a
different set of equations [12,13]. For INa, and for the C model also ICaL, the structure of these
equations was inherited directly from the parent model (of a rabbit atrial cell [17] and guinea pig
ventricular cell [18] for the N and C model, respectively), while Ito, IKur and, for the N model, ICaL
were introduced as new formulations in each model. The equations are included in electronic
supplementary material, S4. In this work, we are interested in the ability of the gating kinetics to
reflect the experimental data, and the identifiability of parameters λ with respect to these data.

The standardized formulation, henceforth referred to as the S model, is used as a relatively
simple baseline to compare to the more complex formulations in the N and C models. In this
formulation, the transition rates between open and closed states have a structure based on free
energy arguments [19,20], which have been shown as sufficient to capture the kinetics of a rapid
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delayed rectifier potassium current [16]. The transition rates are given by

α(Vm) = λ1 exp(λ2Vm) and β(Vm) = λ3 exp(−λ4Vm), (2.3)

where the parameters requiring calibration are λ1, . . . , λ4 for each gate in the channel model. For
INa and ICaL, which have two components of inactivation, we add another inactivation gate in
parallel for the S model, which is related directly to the existing inactivation gate by a scale
parameter on its magnitude, e.g. τγ 2 = aτγ 1, where a is the scale parameter. Only the activation
gate of the S model for INa has a power of 3 applied to remain consistent with both N and C
models.

(b) Datasets and calibration
Parameters underlying gating kinetics are calibrated to experimental data from voltage patch-
clamp experiments conducted on isolated cardiomyocytes. Though more complex protocols may
be better able to explore the entire range of kinetics exhibited by different ion channels [16],
the majority of available data were generated through the use of ‘traditional’ voltage stepping
protocols. In these experiments, the transmembrane potential is held fixed and subsequently
clamped to a series of voltage steps while the current across the membrane is recorded. Specific
features of the recorded current can then be calculated and summarized across different cells or
experiments.

Data from voltage patch-clamp experiments in human atrial myocytes for INa [21,22], ICaL
[23–25], Ito [26–28] and IKur [27,28] were digitized (including any error measurement). A virtual
voltage-clamp protocol was created to replicate in silico each of the in vitro experiments. A full
description of data sources and voltage-clamp protocols are included in electronic supplementary
material, S1. The N model did not include calibration data for any time constants in INa, for
activation time constants in Ito and for deactivation of IKur. The C model did not calibrate to
voltage-dependent recovery data in ICaL and IKur. Neither model included an activation time
constant measurement available for ICaL.

We use ABC to calibrate each channel model to the experimental data. ABC replaces an
exact likelihood function by sampling parameter values from a chosen prior distribution and
simulating the model under the specific voltage-clamp protocol. These simulated data are
processed into summary statistics which can be compared to experimental data using a distance
function. The prior distribution for each parameter is set to a uniform distribution. For the N and
C models, the width of the prior is set based on the published value of the parameter and its
position in the model structure. The width was increased if it was noted that during calibration
the distribution was being restricted by the upper or lower prior limit. For the S model, the prior
ranges were set as previously [16,29].

The summary statistics are calculated from the output of a function that makes specific
measurements, for example peak current or decay rate from fitting an exponential equation,
of the current trace in response to the voltage-clamp protocol replicated from the experimental
publication. The summary statistic functions are assumed invariant to the magnitude of current,
and thus channel conductance is not included as a calibration parameter. A low distance value
generated by the distance function indicates that a particular sample from the parameter space is
more likely to be from the ‘true’ distribution. This behaviour is captured algorithmically by using
a threshold value which is used to decide whether to accept or reject a specific sample. Sunnåker
et al. [7] provide a more detailed overview of ABC.

An advantage of ABC is prior knowledge of the experimental data can be embedded in the
distance function during calibration. Data from voltage-clamp experiments include error bars to
account for the different results from experimental repeats due to observational noise and other
sources of experimental uncertainty [3]. We are more certain of the value of data points with low
variance (small error bars) from the experimental datasets. To account for this, we use a weighted
least-squares distance function with weights proportional to the inverse of the standard deviation
at experimental data points. A regularization parameter is included to avoid divide-by-zero errors
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and set to 0.05. To avoid bias to individual experiments with more data points, this weighting is
also proportional to the number of data points in an experiment. Further details are included in
electronic supplementary material, S2.

(c) Implementation
Voltage-clamp experiments were simulated using the myokit Python library [30]. The ABC
sampling process uses the pyABC Python library [31] to implement the Toni ABC sampler based
on sequential Monte Carlo [32]. In this sampler, the ABC process above is repeated through a
number of iterations with reducing threshold value. Further details are included in electronic
supplementary material, S2. We created the ionchannelABC Python library for applying ABC in
this context which integrates pyABC and myokit for voltage patch-clamp ABC calibration (see
Data accessibility).

When comparing the relative computational speed to solve different channel models, we apply
a voltage pulse train protocol of 100 pulses (using channel-dependent voltage steps indicated in
the text). We record the time taken for a simulation from each of the 100 samples from the posterior
parameter distributions to account for variability.

To simulate the effect on the AP of re-calibrated channels, each new parametrization was
inserted into either the entire N or C model. Channels were tested one at a time, and parameters in
other channels left at their published values. One hundred samples were taken from the unified
posterior distribution and a pulse train protocol applied to generate AP samples from the full
model. The pulse train consisted of 1 ms current stimuli at a rate of 1 Hz and with amplitude
40 pA/pF. The AP elicited during the 100th pulse was recorded for analysis.

S channel models were then used in place of the published formulae to study the effect of a
reduction in complexity on the overall AP. In all cases, the conductance of the channel was set by
matching the peak current magnitude from each sample to the peak from the published channel
model (peak current was assumed to occur at 60 mV for Ito and IKur models). This experiment
could not be conducted for INa as both the N and C modellers positively shifted the steady-state
curves according to macro measurements of the AP (such as velocity of the upstroke), and in the
previous section, this channel was calibrated to the original experimental data. As in this study,
voltage-clamp protocols were replicated exactly as described in the experimental publications; it
is not clear how these would be adapted to fit the artificially shifted data, or how to manually
shift the steady-state curves.

All figures display experimental measurements as mean ± standard deviation reported in
the experimental publication. The calibrated model is displayed by taking 100 samples from the
posterior distribution of parameters and plotting the output from simulations as median ± 89%
high density posterior intervals (HDPI) [33].

3. Results

(a) Existing gating parameter uncertainties
We first sought to study uncertainty and unidentifiability present in gating parameters of the
existing models using the datasets originally cited for calibration [12,13]. Only INa and Ito

channels of the C model are calibrated to the full range of data available (electronic supplementary
material, table S1). It would be expected that a higher level of uncertainty is present in kinetics of
the channel within voltage ranges that have not been explicitly tested. A high level of uncertainty
in the parameter value is indicative of potential structural or practical unidentifiability.

For example, the INa channel in the N model was only directly compared to steady-state
experimental data [21]. Figure 1a,b shows representative posterior distributions and kernel
density estimates (KDEs) of those distributions following ABC calibration for this channel.
Parameters underlying steady-state components of the channel (figure 1a) exhibited narrow
posterior distributions indicating they were well constrained by the data. By contrast, parameters
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Figure 1. (a,b) Examples of parameter posterior distributions from the N model of INa after calibration to the original dataset
which only included steady-state data. Scatter plots show the population of posterior ABC particles with weights indicated
by opacity. One-dimensional KDEs of each parameter posterior distribution are displayed along the corresponding axes. The
original parameter values fromthemodel are indicatedasdots anddashed lines. (c)Normalized current traces of posteriormodel
response to inset voltage protocol displayed asmedian linewith shading indicating 89%HDPI from 100 samples fromparameter
posterior distributions. The high variability in decay rate is the result of no time constant data included in the dataset used for
calibration. (d) Summary statistics generated from results in (c). (e) RSD values of all parameter posteriors with representative
parameters from (a) and (b) highlighted. (Online version in colour.)

underlying time constants had relatively wide posterior distributions implying they are poorly
constrained (figure 1b) and suggesting there is a higher level of uncertainty surrounding their
value in the model (see electronic supplementary material, S4.1 for equations). The effect of the
poorly constrained time constant parameters can be seen in figure 1c, which shows the response
of the calibrated N model of INa to the voltage-clamp protocols. The decay rate of the current is
highly variable, consistent with the observation of poorly constrained time constant parameters.
Figure 1d shows how this uncertainty is ‘hidden’ by the steady-state summary statistics function
used to process the traces in experiments. Note that the non-physiological error bars of the
experimental data are a result of plotting as mean ± s.d.

Relative standard deviation (RSD; defined as σ/|μ|) is a scale-invariant measure of the width
of the parameter posterior distributions and used to provide a comparison of the parameter
uncertainty between models. Higher RSD values can indicate that a particular parameter is
unidentifiable with respect to the model structure or available data. Figure 1e shows the RSD
values for all parameter posterior distributions in the calibrated N model, and highlights
the values for distributions shown in figure 1a,b. The parameters with narrower posterior
distributions have RSD values orders of magnitude lower than those with wide posteriors (note
the log scale on the y-axis). In this case, the four parameters with an RSD less than 10−1 can be
interpreted as governing the shift and steepness of the steady-state activation and inactivation
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curves in figure 1d, and it is thus not surprising that these were more identifiable than parameters
involved in rise and decay rates of the current.

(b) Re-calibrating to a unified dataset
Having observed a range of poorly and well-constrained parameters when calibrating to the
original datasets, we next sought to investigate the effect of re-calibrating each model to a different
‘unified’ dataset. This dataset is assembled from a union of the original experimental data sources.

Figure 2a shows the RSD of parameter posteriors for all channels studied in the N and C
models when calibrated to the original and unified datasets. In all models, a wide range of RSD
values is observed for the original datasets which confirms each model has a combination of
parameters which are well defined and parameters which are potentially unidentifiable with
respect to the given data. In the N model, no significant differences in the parameter posterior
RSDs were observed between original and unified dataset calibrations for INa and Ito using a
Wilcoxon signed-rank test. In both INa and ICaL, the minimum RSD increased after calibrating to
the unified dataset. In ICaL and Ito, we also noted an increase in the maximum RSD. No significant
differences were observed for the C model. Note that a Wilcoxon signed-rank test was not carried
out for ICaL (for the N model) or IKur as this statistical test requires discarding differences between
pairs of zero and the resulting sample size was too small for a normal approximation. This is a
result of only re-calibrating parameters of one gate to unified data in these models as the unified
data for the other gate was the same as the original dataset (thus the RSD values of parameters in
the other gate remains constant between the original and unified dataset).

Regions of high uncertainty in gating functions generally corresponded to behaviour or
voltage ranges not tested by the experimental voltage-clamp protocols. Adding the additional
data in the unified dataset generally reduced the variability in these regions, though often at
the expense of other aspects of the model. For example, the N model of INa, showed high
uncertainty in the posterior estimates for time constant functions with the original dataset, which
was reduced on calibration to the unified dataset. However, this reduction came at the expense of
greater variability in the steady-state behaviour of the channel. A similar effect was noticed in the
inactivation processes of the C model of ICaL. For the N model of Ito and the inactivation of the
C model of IKur, calibrating to the unified dataset resulted in noticeable changes to the shift and
steepness of the steady-state functions. Full graphs of the posterior gating functions are included
in electronic supplementary material, S3.1.

(c) Comparing to a standardized model
No statistically significant reduction in RSD values for parameter posterior distributions was
observed when re-calibrating the N and C models to more complete datasets. This implies that
the additional data covering a wide range of kinetics for each channel was not sufficient to reduce
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unidentifiability observed in parameters. We hypothesized that this could be due to problems
with structural unidentifiability caused by the complex form of the equations in either model.
To test this, we next studied whether a simpler model structure of the S model could be used to
reflect the same experimental data with reduced parameter uncertainty for each channel.

(i) Fast sodium channel

Figure 3a compares INa models calibrated to the unified experimental dataset. The goodness-
of-fit of each model can be assessed by comparing the residual in the distance function after
convergence, shown in the rightmost graph of figure 3d (a per-experiment version of this measure
for all channels is given in electronic supplementary material, S3.5). In most experiments, the
S model qualitatively reflects the experimental data to a comparable degree as the N and C
models, improving notably over the N model in recovery experiments. The overall converged
residual of the S model is 23.5% lower than the N model and 30.0% lower than the C model.
It notably deviates from experimental data in the upper voltage range of the activation time
constant where it falls too quickly towards zero. We observe that although the S model has in
total nine parameters compared to 15 in the N model and 29 in the C model (figure 3d, left),
the S model has more tightly constrained parameter posterior distributions exhibiting lower RSD
(figure 3d, centre). This reduction of RSD values was statistically significant when tested using a
Mann–Whitney U-test against the N model (p = 0.02) and C model (p = 0.04).

Figure 3b compares the underlying gate functions of each INa model. The S model exhibits
generally well-constrained behaviour other than in the region of a gap in experimental data
(deactivation data in lower voltages of the activation gate time constant). Only the C model
exhibits low uncertainty in this region. In this case, the uncertainty may not be beneficial as it
could imply undue confidence in the C model’s behaviour in model space without experimental
data to compare. There is a distinct difference in the form of the N model inactivation gate time
constants which have a sigmoid shape rather than the peaked curve exhibited by both C and S
models. Comparing the current trace of each model at the end of a pulsetrain (figure 3c), there is
little difference between the fully calibrated traces of the C and S models, and the S model has a
significantly reduced runtime for this protocol.

(ii) L-type calcium channel

ICaL has calcium- as well as voltage-dependent components of inactivation. The N and C
models differ in how they formulate this channel; the former including two voltage-dependent
inactivation gates and the latter including a single voltage-dependent inactivation gate. Both
include a single calcium-dependent inactivation gate that was held at a constant value to isolate
the voltage-dependent features of the channel. Given the data typically show a fast and slow
component of inactivation [24], we include two voltage-dependent inactivation gates in the S
model of ICaL. Thus comparisons are more meaningful between the N and S models in this case, as
the structure of the C model differs substantially and relies more directly on intracellular calcium
concentration to modulate the rate of current decay.

Figure 4 summarizes the results for ICaL. None of the models appear able to calibrate to the
slowest components of recovery from inactivation (figure 4a). The gating functions in figure 4b
show high uncertainty in the steady-state function of the S model and differs from the N and
C models at higher voltages of the inactivation steady-state curve. Each model has reduced
uncertainty around the voltages of time constants which are explicitly tested (inactivation and
recovery τ measurements) with, particularly in the N model, wide uncertainty outside of these
ranges. Figure 4c shows there were no significant differences between RSD values between the
models, highlighting that each model suffers from issues with parameter identifiability in some
parts. The N and S models provided better fits to the data when assessed by the final converged
residual though, as noted above, the C model relies more heavily on the calcium-dependent
inactivation processes held constant in this experiment.
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Figure 3. (a) Results of calibrating each INa model to the unified dataset. Model output is plotted as median line and 89%
HDPI from 100 parameter posterior samples. Experimental data are plotted as black crosses and bars representingmean and s.d.
(b) Steady-state and time constant functions for each gate from samples in (a). Dashed lines indicate the published N and
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(Online version in colour.)

(iii) Potassium channels

Figure 5 summarizes the results from the calibration for Ito. Although the N and S models both
show parameter posteriors with significantly lower RSD values than the C model, this is balanced
by the lower goodness-of-fit to the experimental data (figure 5b, lower). In particular, the S model
was unable to capture kinetics such as the plateau region of the upper voltage range for the
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Figure 4. (a) Results of calibrating ICaL models to the unified dataset. Plotted as described in figure 3. (b) Steady-state and time
constant functions for each gate from the samples in (a). Dashed lines indicate published N and Cmodels. (c) RSD of parameter
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inactivation time constant. By contrast, the C model has the most parameters and appears to
suffer from unidentifiability in a subset of these parameters (suggested by their high RSD values),
but it also produces the best fit to the experimental dataset.

The underlying gating functions also reveal clear differences between models in the mid-point
and slope of steady-state activation, and peak activation time constant (electronic supplementary
material, figure S9). The peak time constants of each model are approximately at the mid-point
voltage of activation and thus also differ from each other.

IKur exhibits a very slow voltage-dependent component of inactivation and only partially
inactivates in the available voltage-clamp experimental data [28]. As a result of these factors,
each channel model showed distinct differences when calibrated to experimental data using
the experimental voltage protocols rather than comparing gating functions to experimental data
directly. Each channel deviates from experiment data points at lower voltage ranges of steady-
state activation, and the S model converged to a substantially different model output for the
steady-state inactivation gate (electronic supplementary material, figure S10).

(d) Effect on action potential
We next studied how the inclusion of uncertainty in the gating of these channels would impact
the full AP of the cell models. Figure 6 shows how the AP changed for the channel models for the
re-calibrated N channels, re-calibrated C channels, and inserting the re-calibrated S channel into
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Figure 6. Strip plots showing measurements of resting potential (RP), action potential amplitude (AMP) and AP duration to
90% repolarization (APD90) from APs elicited from the full N and C models. Crosses indicate values from the models run at
published settings. Each point is ameasurement from an AP generated from a sample from the posterior parameter distribution
of the channel indicated. The diamond is themedian of the samples. N: using N unified posterior distribution in the full Nmodel,
C: using C unified posterior distribution in the full C model, +S: indicates the standardized model replaced the corresponding
channel in the full model and used the S posterior distribution. Line plots in the two rightmost columns display a summary of
the AP traces in each case. Traces are displayed asmedian lineswith shading representing 89%HDPI from 100 posterior samples.
The published N and C models are plotted as dashed lines in all plots for comparison. (Online version in colour.)

either model (referred to as N+S and C+S). As noted in the Methods, this experiment could not be
completed for INa models. More detailed results are in electronic supplementary material, S3.6.

For ICaL, a portion of posterior samples in the N model resulted in an elevated resting potential,
though the median was still close to the published value. This causes the wide 89% HDPI
observed in the corresponding trace, while the median line is much closer to the dashed line of
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the original model. This also occurred to a lesser degree when the S model inserted into the C cell
model. The re-calibrated C model was more stable with the action potential duration (APD) being
mainly reduced from the published value as a result of quicker and more complete inactivation
of the channel during the AP (electronic supplementary material, figure 13B).

Traces generated by using the posterior parametrizations for Ito generally showed small
differences from the published values for resting potential and AP amplitude, though larger
changes in the APD. For the full N model (both with the original channel form and S form), an
increased APD is observed while the opposite was observed for the C model. This makes the two
AP models, which have quite different published AP morphology, more similar to one another.
A small degree of variability is apparent from the posterior intervals around the traces and, in
contrast to ICaL all samples resulted in ‘normal’ APs.

Using the re-calibrated form of IKur resulted in more noticeable changes to the AP than Ito.
For both the N and N+S experiments, this increases the resting potential and AP amplitude
accompanied by an increase in APD to a similar level as the published C model. In both cases, the
triangular morphology of the published N model was altered to have a more prolonged plateau
phase. For the C model, the resting potential and amplitude of the AP from close to the published
values, while a large degree of variability is observed in the APD. When using the C form of the
channel, this variability encompassed the published value, which is apparent from the shading of
the AP trace including the dashed trace of the published C model. When using the S form of the
channel, the cell repolarises more quickly as a result of an increased IKur current density.

4. Discussion
Understanding the uncertainty and unidentifiability of parameters in AP models is critical to
the development of trustworthy cardiac models for the era of personalized medicine [3,5]. In
this study, we have applied an ABC method based on sequential Monte Carlo to characterize
the existing uncertainty in gating kinetics of four major ion channel types in human atrial cell
models. The wide posterior distributions for a subset of parameters in all models was indicative
of potential unidentifiability, which may be structural or practical. We then sought to assess
whether the poorly constrained parameters could be more clearly identified by re-calibrating
to complete datasets or through using a standardized gating formulation with less complex
structure and fewer parameters to constrain. We finally looked at the changes introduced by using
the re-calibrated ICaL, Ito and IKur channels in the full cell models.

Figure 1 shows uncertainty in parameter estimates for the INa channel current in the N model
manifest in a range of possible outputs of the current trace in response to voltage steps. The
medians of the posterior parameter distributions related to time constant behaviour were close to
the original reported values but showed a high degree of uncertainty. This was the expected result
as only steady-state data were used to calibrate INa of the N model. As a consequence, the time
constant parameters in this example likely exhibit practical unidentifiability, as they cannot be
constrained given the provided experimental data. It should be noted that the well-constrained
parameter q1 in figure 1a is offset from the published value due to a constant offset applied to
the steady-state curve in the N model justified by time- and/or temperature-dependent drifts in
steady-state characteristics of the current [12].

In comparison, the C model used a more complete dataset to calibrate kinetics for this
channel. Nevertheless, this model also exhibits parameters with high RSD values suggesting
unidentifiability (figure 2). In contrast to the practical unidentifiability observed in the case of
the N INa model, this is likely to be due to structural identifiability issues. The high number of
parameters in the C INa model (figure 3d) facilitates over-fitting to experimental data and leads
to redundancy of some parameters. In [4], Daly et al. investigated the uncertainty in parameter
estimates of the Hodgkin–Huxley AP model. They reported wide posteriors around the estimates
of certain parameters in the potassium and sodium channels of that far simpler AP model. It,
therefore, is unsurprising to observe these results in more complex models of a sodium channel
where there is more opportunity for parameters to covary within the structure of the model.
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Additionally, the use of conventional voltage-clamp protocols further aggravates this issue as it
only provides an indirect measure of the underlying gating kinetics [34].

We next re-calibrated the N and C models to the unified datasets. In figure 2, it was apparent
that the addition of data sources, most often relating to the time constant of gates, would reduce
the uncertainty around the gating functions though often at the expense of increased uncertainty
in other regions of the model behaviour. In the case of the N model of INa, the addition of time
constant data led to a reduction in the RSD value of time constant parameters at the expense
of increased RSD values of the steady-state parameters. This may be a result of the structure of
the N model INa, with sigmoid functions for inactivation time constants, not providing a good
fit to the experimental data. As a result, the ABC calibration reaches the sampling rate stopping
criteria earlier because the steady-state experimental data now represent only a small portion of
the overall calibration dataset.

The C model of INa has 29 parameters to constrain across three gates, the most of any of the
channels investigated. Although using a complete dataset for calibration, the high RSD values
of parameters show that this model still suffers from parameter unidentifiability. The complex
form of the equations makes over-fitting possible when using conventional calibration processes
such as simple least squares, which would not highlight the consequences of doing so as with
a Bayesian method such as ABC. Often these complex forms of equations are initially based on
direct comparisons between the gating functions and the experimental data and may be tailored
to the specific data sources selected for calibration, rather than through forward evaluations
of the model. In [34], the authors highlight the importance of replicating the experimental
conditions and voltage protocols as closely as possible when calibrating AP models, despite
the inherent difficulties of doing so. The complex form of model gating functions, which are
often combined in parallel, means that the behaviour of the gating function itself may not
be representative of the behaviour of the full channel model when tested with experimental
protocols.

Reducing the structural complexity of the model equations by adopting a standardized
gating formulation showed channel-dependent success. For INa, the S formulation resulted in a
significant reduction in RSD values for parameter posterior distributions (p = 0.02 compared to N
model, p = 0.04 compared to C model), which suggests it is partly alleviating unidentifiability
concerns. The INa S model output also gave a goodness-of-fit measure of converged residual
lower than either other model (figure 3d). Despite this, for some experiments the goodness-of-
fit was clearly worse than either N or C model, such as for activation and slow recovery time
constants. In addition, there was variability around the lower voltage range of the activation
gate time constant for which there is an absence of experimental data, highlighting this model
is not immune to practical identifiability issues. For INa, there appears to be an advantage to the
less complex formulation which provides more confidence in the identifiability of its parameters
without sacrificing representation of the experimental data. Fewer parameters also allow more
direct reasoning about the effects of altering gating parameters on the overall channel behaviour.
As with any model, considerations should to be taken of the specific goals of the modelling study,
though the S INa presents a less complex foundation from which to build on with additional,
context-specific data.

For ICaL, the S model produced approximately the same goodness-of-fit as the more complex
N model. However, in this case, the similar RSD values across each model imply that the use of
a simpler model structure did not alleviate issues relating to parameter unidentifiability. This
is particularly noticeable in the steady-state activation gate of the channel, where there is a
greater variation in the posterior behaviour compared to the other two models (figure 4b). This is
potentially a result of the way steady-state summary statistics are calculated through normalizing
to a reference value in the output. As a consequence, the gate is less constrained to be fully open
at the maximum activation as the normalization hides this behaviour. The unidentifiability of
parameters across all models for this channel is likely a consequence of the relative paucity of
experimental data relating to the voltage-dependent time constant behaviour of ICaL, which has
fewer voltages tested in the unified dataset compared to the other channels studied.
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For both potassium channel models (Ito and IKur), simplifying the model structure is a balance
between reduced unidentifiability of parameters and reduced goodness-of-fit to experimental
data. The inactivation τ plot of figure 5a shows an example where both the N and C models
are able to capture the plateau region at upper voltage ranges while the S model tends to zero.
Similarly, the form of the S model requires the peak of the time constant curve to occur at the
mid-point of activation or inactivation which appears inappropriate for the activation gate of this
channel. This is reflected in the higher converged residual of the S model compared to the N and C
models (figure 5b, lower). The parameters of the less complex model have lower RSD values than
the C model (p < 0.001) and a smaller range than the N model. This suggests that the closest fit of
this model to the experimental data is identifiable, despite also being a poorer fit than either other
model. This highlights the fact that low uncertainty in posterior parameters does not necessary
imply a model fits the data well (and vice versa), and a trade-off exists which may depend on the
goals and particular use-case of a modelling study.

Beattie et al. [16] used the same standardized gating formulation to model the behaviour
of a rapid delayed rectifier potassium current using an information-rich voltage protocol. In
their case, the studied current appears to satisfy the requirement of peak time constant of the
gate at mid-point of the steady-state curve (see, for example, fig. 5 in [16]). Based on these
observations and our results, this standardized approach may, therefore, be appropriate in cases
when experimental data suggests particular requirements, such as this one, are met. Using a
standard gating formulation alleviates problems associated with the high number of parameters
in very detailed models, without sacrificing the biophysical basis for the model. In contrast to
purely phenomenological models, the form of the S model is based on Eyring-derived transition
rates giving its parameters a physical interpretation [16,19].

The S model leads to a reduction in simulation times, which is an important consideration
as patient-specific modelling is further explored in whole-heart tissue simulations. However,
in contrast to simpler models which have been shown to reproduce patient-specific AP
morphologies [35], the standardized formulation retains information about specific ion channel
currents which provides a stronger body of evidence in terms of model validation. It would be
encouraging if future ion channel modelling promoted the use of common forms of equations
in cell models rather than the current heritage of complex equations. Another promising
proposition is a model reductionist approach to reduce uncertainty in parameter estimates by
eliminating parameters which have little effect on the model output, e.g. manifold boundary
approximation [14].

When testing the new parametrizations in the full AP models, it was apparent that a proportion
of samples led to non-physiological behaviour. This was also the case when combining samples
from all new parametrizations, which generally caused simulations to fail. This highlights the
importance of a feedback process in the development of AP models, where the form of the full
AP also informs the design of the underlying currents. A future step for this work could follow
a similar approach to Kernik et al. [36] with multiple stages of calibration. For example, the full
AP samples in these results could be used to further constrain the posterior distribution of the
channel model parameters by eliminating non-physiological cases. These results also demonstrate
an important consideration in the development of full AP models that tends to be omitted from
modelling papers: the sheer challenge and achievement of combining a variety of nonlinear
models of individual channels usually developed in isolation into a single model of a cardiac
cell and tuning to produce a physiological AP.

(a) Limitations
RSD was used as a measure of the width of parameter posterior distributions and as an indicator
of parameter unidentifiability in this study. This measure tends to become inflated when the
mean value in the denominator is close to zero. This approach does not allow us to separate
structural and practical unidentifiability and the likely form was inferred from the availability of
experimental data and structural form of the model in experiments.
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Our ABC stopping criterion for all experiments was set to halt execution once an iteration had
dropped below a 1% particle acceptance rate. This was based on preliminary experiments on the
C model where it was assumed the algorithm is close to the optimum solution once sampling
became too difficult. However, in some cases, this criterion may be excessive or insufficient, as
was observed for example for the original N and S model of the ICaL channel. Investigations into
more appropriate stopping criterion were outside the scope of this work. Parameters involved in
the calcium-dependent gate in ICaL of all models were omitted from calibration and the gate set
to a constant value due to the lack of specific data and difficulty in isolating calcium handling
components of the cell model. Particularly for the C model, which relies on the calcium transient
to modulate the inactivation rates, it is perhaps inappropriate to attempt calibration using this
approach.

The calibration process relied on summary statistics of the model responses to the virtual
voltage-clamp protocols. Reducing the data in this fashion was necessary to obtain the same
form as in the experimental dataset. However, as highlighted in [7], it is generally not possible to
obtain a finite-dimensional set of summary statistics that are sufficient to fully capture all relevant
information obtained from a voltage-clamp protocol.

Channel models with greater than 14 parameters (N: ICaL, IKur; C: INa, Ito, IKur) could not
be calibrated as a complete model due to the large number of particles required to sample
the high-dimensional parameter hyperspace. In these cases, we calibrated the behaviour of
parameter subsets for each gate separately to the relevant experimental data while leaving
the remainder at their published values. It is possible that the original gates could affect the
calibration of the chosen gate, for example in exponential fitting to decay traces for channels
with fast and slow inactivation. Despite this, it should be noted that conventional calibration
techniques (e.g. least-squares regression) do not restrict the modeller from applying the method
in the case of this kind of sparse sampling space and will not explicitly convey the implications of
doing so.

(b) Conclusion
In this work, we have applied ABC to re-calibrate the gating kinetics in detailed ion channel
models of human atrial myocytes. We calibrated these models to the experimental datasets
used in the published calibration and showed a portion of parameters exhibited wide posterior
distributions indicative of unidentifiability. Calibration to more complete experimental datasets
did not reduce the unidentifiability present, which suggested that it may be both structural and
practical. Reducing the structural complexity of the model through a common gating form was
successful in reducing unidentifiability in INa without sacrificing goodness-of-fit. Experiments
with other channels suggested that a trade-off exists between tailoring a model to provide
a good fit to experimental data, and identifiability of parameters as models become more
complex. The technique employed in this work is general and could be applied to any model
of an AP.
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