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Coral reefs host hundreds of thousands of animal species that are increas-
ingly threatened by anthropogenic disturbances. These animals host
microbial communities at their surface, playing crucial roles for their fitness.
However, the diversity of such microbiomes is mostly described in a few
coral species and still poorly defined in other invertebrates and vertebrates.
Given the diversity of animal microbiomes, and the diversity of host species
inhabiting coral reefs, the contribution of such microbiomes to the total
microbial diversity of coral reefs could be important, yet potentially vulner-
able to the loss of animal species. Analysis of the surface microbiome from
74 taxa, including teleost fishes, hard and soft corals, crustaceans, echino-
derms, bivalves and sponges, revealed that more than 90% of their
prokaryotic phylogenetic richness was specific and not recovered in
surrounding plankton. Estimate of the total richness associated with coral
reef animal surface microbiomes reached up to 2.5% of current estimates
of Earth prokaryotic diversity. Therefore, coral reef animal surfaces should
be recognized as a hotspot of marine microbial diversity. Loss of the most
vulnerable reef animals expected under present-day scenarios of reef degra-
dation would induce an erosion of 28% of the prokaryotic richness, with
unknown consequences on coral reef ecosystem functioning.
1. Background
Coral reefs provide habitats for at least 500 000 multicellular species [1], includ-
ing more than 6000 described fish and 1000 coral species [2,3]. These animals
are covered by diverse and abundant microbes (Bacteria, Archaea, viruses
and micro-eukaryotes) which all together constitute the surface microbiome
[4]. Animal surface microbiomes play crucial roles for their hosts, contributing
to host resistance to pathogens and environmental perturbations [5,6], and to
assimilation of nutrients [4]. However, animal surface microbiomes have been
assessed in fewer than 50 and 100 coral and fish species, respectively [4,6–10].

Large-scale surveys of the marine water column demonstrated the impor-
tant diversity of planktonic marine microbes [11,12]. However, these
planktonic microbes are compositionally distinct from marine animal surface
microbiomes, and many animal-associated microbes remain undetected in
planktonic microbial communities [8,10,13]. In addition, marine animals have
diverse biological traits that provide specific habitats at their surface, which ulti-
mately favours the proliferation of microbial lineages that are different among
different species [7]. Surface microbiomes and planktonic microbes form a
microbial ‘metacommunity’ [14], where local communities within it (individual
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animal microbiomes, as well as planktonic communities) are
connected by dispersal of microbes through direct contacts
and through the water column. Given the distinct compo-
sition of animal surface microbiomes between species, and
the diversity of animal surfaces inhabiting coral reefs, surface
microbiomes may constitute an important part of the coral
reef microbial metacommunity. However, the contribution
of animal surface microbiomes to the coral reef microbial
diversity is currently unknown.

Coral reefs are facing increasing human pressures (includ-
ing ocean warming, acidification and overfishing [15,16])
inducing an increased risk of extinction of a significant pro-
portion of animal diversity (up to 8% and 10% of coral and
fish species [16,17]). The documented erosion of animal
biodiversity as well as the decrease of animal abundance
may result in the loss of their associated microbial species.
However, the effect of such erosion on microbial diversity
has to date not been assessed.

In this study, we sampled surface microbiomes of abun-
dant coral reef animals (e.g. fishes, corals, crustaceans,
echinoderms, mollusks and sponges) from the same
restricted area over a short period. In so doing, we avoided
spatial and/or temporal variation of microbial diversity
driven by environmental variability. We sampled the surface
prokaryotic microbiome of 265 coral reef animals belonging
to 74 different taxa, including 32 and 18 genera of teleost
fishes and Anthozoa (hard and soft corals, and anemones),
respectively, and 12 taxa of crustaceans, echinoderms, mol-
lusks and sponges, from a single coral reef ecosystem
(Mayotte lagoon, Indian Ocean). In order to test the hypoth-
esis that surface microbiomes represent a major component of
the coral reef microbial metacommunity, we compared the
prokaryotic diversity hosted by animals to that of the sur-
rounding planktonic communities. Ultimately, we compared
the amount of microbial diversity to global microbial diver-
sity estimates and estimated the erosion of microbes due to
human-induced animal extinction.
2. Material and methods
(a) Sampling procedure
Sampling was conducted in November 2015 in Mayotte lagoon
shallow (depth less than 10 metres) barrier and fringing coral
reefs (Western Indian Ocean, electronic supplementary Material
SM1-1 and 2). We sampled the most abundant taxa from each
of the main animal groups (teleost fishes, Anthozoa, crustaceans,
echinoderms, mollusks and sponges) within a radius of 50 m
around each site (electronic supplementary material, SM1–3
and 4). Sampling procedure is provided in electronic supplemen-
tary material, SM1–5. Briefly, we sampled the skin microbiome
by collecting surface mucus or swabbing.

Fishes were identified at species level. Corals were identified
at genus level. Classification of other invertebrates was made at
species level when possible (for crustaceans, starfish, urchins
and anemones), or at higher taxonomic levels for a few clades
(one sea cucumber, comatules, hermit crabs, brittle stars and
giant clams; electronic supplementary material, SM1-4). A total
of 138 fishes were sampled across two sites, as well as 82 colonies
of hard and soft corals, gorgonians and anemones (referred col-
lectively as Anthozoa) belonging to 13 genera of Scleractinia,
three Octocorallia (soft corals and gorgonians) and one anemone
species. We also sampled 43 individuals of crustaceans, echino-
derms, mollusks and sponges. For each of 6 days of sampling,
water samples were collected and filtrated to collect prokaryotic
plankton as explained in electronic supplementary material,
SM1-5. Prokaryotic diversity was assessed using high-through-
put sequencing of the V4 hypervariable region of the 16S
rDNA gene, as detailed in electronic supplementary material,
SM1-5.

(b) Sequence processing and phylogenetic analyses
Sequence reads were processed using the ‘DADA2’ R package
v. 1.2 and R software v. 3.4.3 using script provided in
electronic supplementary material, SM1-6. Around 7% of the
50 237 constructed ASVs were unclassified at this step. In order
to define whether they could potentially correspond to remain-
ing mitochondrial sequences, we mapped them onto the
GenBank database (NCBI) using the BLASTn alignment tool.
Around 7% of them showed more than 97% identity with a mito-
chondrial sequence and were removed before computing further
analyses.

Sequence number ranged from 7074 to 56 927 across samples
(electronic supplementary material, SM1-4). 7000 sequences were
randomly sub-sampled within each sample in order to correct
the uneven sequencing efficiency among samples using ‘rrarefy’
function from ‘vegan’ R package v. 2.5-5 [18]. To assess the effect
of rarefaction on our results, all subsequent analyses were com-
puted on both rarefied and unrarefied data. Analyses based on
rarefied data are included in the main document, while the
ones based on unrarefied data are included in electronic sup-
plementary material, SM2. These two approaches provided
similar results. Zhang & Huang’s coverage estimator [19] was
calculated using the ‘entropart’ R package v. 1.6-1 [20], using ‘cov-
erage’ function, and averaged 0.982 ± 0.015 across all samples
(0.998 ± 0.001 before rarefaction). A phylogenetic tree was
obtained by adding the ASV sequences into the GreenGenes phy-
logenetic tree v. 13.8 [21] using SEPP insertion tool [22] with
default parameters.

(c) Assessing microbial biodiversity
The average surface microbiome of each fish species, Anthozoa
genus, or other invertebrate taxa, was computed as the mean
relative abundance of each ASV across individuals from the
same taxon (electronic supplementary material, SM1-4). Phyloge-
netic richness of each community was measured using Faith’s PD
[23], using ‘pd’ function from ‘picante’ R package v. 1.8 [24]. Phy-
logenetic diversity, taking into account the relative abundance of
ASVs, was measured using Allen’s index [25] using our own
R function (https://github.com/marlenec/chao, q = 1). The
evenness of ASVs abundances was measured for each microbial
sample using O [26], which is robust against richness variation
[27].

Phylogenetic dissimilarities between animal taxa were
assessed using the unweigthed and weighted versions of Unifrac
index (U- and W-Unifrac), computed using ‘GUniFrac’ R package
v. 1.1 [28], and were visualized using principal coordinates analy-
sis (PCoA) computed using ‘ape’ R package, and boxplots
computed using function ‘boxplot.stats’ from ‘grDevices’ R package
using default parameters.

(d) Statistical tests
Difference in phylogenetic α-diversity between plankton and
animal surface microbiomes was tested using Kruskal–Wallis
(KW) tests (999 permutations) computed with ‘vegan’ R package.
Correlation between fish vulnerability (see ‘Vulnerability of
microbial diversity’ below) and its associated microbiome diver-
sity was assessed using Spearman’s correlation tests
(‘cor.test’) performed on phylogenetic independent contrasts
(PIC) calculated on diversity indices, using the fish phylogenetic
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tree used before [7]. Due to the lower resolution of taxonomic
identification of corals in our dataset (at genus level) and the
polyphyly of genera in published coral trees [29], it was not poss-
ible to compute PIC on scleratinians. Therefore, correlation
between coral vulnerability and its associated microbiome diver-
sity was performed using a simple Spearman’s correlation test.

Difference in microbial structure between plankton and
animal surface microbiomes was tested using permutational
multivariate ANOVAs (PERMANOVAs) performed on dissimila-
rities, using ‘adonis’ function in ‘vegan’ R package and 999
permutations. To test if planktonic communities were more vari-
able than surface-associated communities, a permutation
analysis of dispersion (PERMDISP) was performed on both indi-
ces among planktonic communities and among animal surface
microbiomes using ‘betadisper’ provided in ‘vegan’, with 999
permutations.

Differences between surface microbiomes associated with the
three major animal groups (44 teleostean fish species, 17
anthozoan genera and 12 other invertebrates’ taxa) were tested
using PERMANOVAs. The effect of animal’s taxon to its associ-
ated surface microbiome was assessed for each animal group
(before averaging the microbiome per animal taxon; electronic
supplementary material, SM1-3 and 4) using separated
PERMANOVAs.

Lastly, in order to identify prokaryotic clades that are differ-
ent between plankton and animal surface microbiomes, and
consistent enriched in all water samples or animal taxa, we per-
formed a LEfSe analysis [30] using water samples and animal
taxa as subclasses, with all-against-all parameter and p-value
threshold for significance of 0.05. Then, to identify biomarkers
for each animal group (teleostean fishes, Anthozoa and other ver-
tebrates), a LEfSe analysis was performed using these groups as
main classes, and the different animal taxa belonging to these
groups (fish species, anthozoan genera and other invertebrates’
taxa) as subclasses, using the same parameters.

(e) Contribution of surface microbiomes to total
microbial diversity

We used two approaches to assess the importance of planktonic
versus animal-associated prokaryotic diversity to total coral reef
microbial diversity. We first computed the phylogenetic richness
of ASVs that were unique to plankton or to animal surfaces. We
then compared the diversity of planktonic and animal surface
microbiomes, by randomly picking from 1 to 74 animal taxa
and 1 to 35 planktonic samples and then computing the total
ASV and phylogenetic richness for each sampling depth. This
procedure was performed 100 times.

To get a conservative estimation of the total sampled + un-
sampled prokaryotic species richness in our dataset, we first
curated the ASVs in our dataset, removing all unclassified
ASVs that could not match any sequence in GenBank database.
The remaining ASVs were then grouped into 97%-identity oper-
ational taxonomic units (OTUs) using ‘pick_otus.py’ function
provided in QIIME v. 1.9 [31], with default de novo usearch par-
ameter, and OTUs found in less than two animal taxa were
removed. We obtained 20 021 OTUs from 37 758 curated ASVs.
Then, each animal taxon was considered as an independent
sampling unit to count the occurrence of each OTU (i.e. the
number of sampling units where the OTU was recovered). Esti-
mates of OTU richness were calculated using the estimators
provided in ‘SpadeR’ R package [32] using ‘ChaoSpecies’
function and type 2 incidence frequency data option.

( f ) Vulnerability of microbial diversity
To assess the vulnerability of reef microbial diversity to the loss
of macro-organisms, we simulated an extinction scenario
combining the effects of global warming and overfishing.
Macro-organisms taxa were removed proportionally to their
respective vulnerability to heat stress for hard corals, and to habi-
tat loss (due to coral bleaching) plus fishing for fishes.

Vulnerability of scleractinian coral genera to global warming
was based on their bleaching response in the western Indian
Ocean [33]. The genus Isopora, for which we had no data, was
excluded from the extinction scenario. Similarly, no data were
available for non-scleratinian Anthozoa and for all other invert-
ebrates. There were therefore excluded from the scenario.
Vulnerability to fishing [34] was obtained from FishBase
(http://www.fishbase.org/, 2017). Vulnerability to habitat loss
due to global change in coral reefs was computed as in
Graham et al. [35] using data from FishBase and expert knowl-
edge for input variables. All vulnerability indices are provided in
electronic supplementary material, SM1-7, and the script used to
simulate such animal diversity extinction and subsequent losses
of microbial taxonomic and phylogenetic diversity is available
online (https://github.com/marlenec/MicroErosion).

We assessed the vulnerability of prokaryotic diversity hosted
by the 44 fish species and 12 genera of scleractinian corals
included in the scenario by simulating loss of the 1 to 100%
most vulnerable taxa according to their individual vulnerability.
At each level of extinction, the percentage of remaining microbial
diversity was compared to the one obtained from a random loss
of the same number of scleractinian corals and fishes, computed
100 times. Deviation from this random loss was assessed by com-
puting a p-value, calculated as the rank of the mean diversity value
in the 100 replicates of the extinction scenario, among the increas-
ingly sorted diversity values of all 100 replicates of the random
scenario. We considered that the deviation from the random scen-
ario was significant when p < 0.05, meaning that the diversity
value in the observed community was lower than the 5% lowest
diversity values following the random loss of animal taxa.
3. Results and discussion
(a) High diversity of animal microbiomes
In our entire dataset made of 74 animal taxa and 35 samples
of plankton, prokaryotic diversity hosted by animal surfaces
contributed to 95% of total phylogenetic richness (Faith’s PD)
on rarefied data (figure 1a,b; unrarefied data in electronic sup-
plementary material, SM2-1). Individual fish and Anthozoa
samples contained slightly more ASVs than 200 ml plank-
tonic samples (electronic supplementary material, SM2-2).
A recent study found on average five times more 97%-iden-
tity bacterial OTUs in 1 l of seawater than in coral mucus
[36]. Such different results may be due to the contrasting
volume of coral microbiome versus seawater compared, a
coral surface of 15–20 cm2 (see electronic supplementary
material, SM1-5) to 0.2 l water samples in our study versus
approximately 2 cm2 to 1 l of seawater in this former study.
Similarly, differences in the protocols used (i.e. biomolecular
methods and data analysis pipelines) may explain such
discrepancies.

Average surface microbiome recovered from each animal
taxon (fish species, coral genus or other invertebrate taxon)
was phylogenetically richer and more diverse than a 200 ml
water sample (KW on Faith’s PD and Allen’s index on rarefied
and unrarefied data, p < 0.001), with one animal taxon hosting
on average 4.9 ± 2.4% of the total branch length of the phylo-
genetic tree grouping all ASVs recovered in the rarefied
dataset, while one 200 ml water sample contained on average
only 1.7 ± 0.2% of the total branch length (figure 1c,d;
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Figure 1. Phylogenetic diversity of reef microbial communities. (a) Accumulation curves showing the phylogenetic richness (Faith’s PD, expressed in percentage of
maximum PD of the entire dataset) obtained from animal surface microbiomes and planktonic communities, depending on the number of randomly selected
planktonic communities or animal taxa, represented as the mean ± the s.d. across 100 random subsamples. (b) Venn diagram representing the percentage of
phylogenetic richness unique to animal surface microbiomes after pooling all animal taxa and to planktonic communities, and shared between both compartments.
(c,d ) Boxplots of (c) percentage of PD and (d ) phylogenetic diversity (Allen’s index) recovered from animal surface microbiomes and plankton. The same figure based
on unrarefied data is provided in electronic supplementary material, SM2-1. Accumulation curves and Venn diagram based on ASV richness are provided in electronic
supplementary material, SM2-3. (Online version in colour.)
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unrarefied data in electronic supplementary material, SM2-1).
Additionally, 35 randomly chosen average animal micro-
biomes reached roughly eightfold higher phylogenetic
richness than our 35 water samples (figure 1a), indicating
that at a similar sampling effort, animal taxa host higher pro-
karyotic diversity compared to seawater. When considering
unrarefied data, the gap between both types of communities
was narrower (electronic supplementary material, SM2-1).
Similar results were obtained based on ASV richness
(electronic supplementary material, SM2-3).

ASVs unique to animal surfaces (i.e. not detected in plank-
ton) made more than 85% of total phylogenetic richness
(figure 1b; unrarefied data in electronic supplementary
material, SM2-1), demonstrating that most of the prokaryotic
phylogenetic richness was associated with animal micro-
biomes. Around 16.8% of such ASVs were abundant to
moderately abundant on animal surfaces, i.e. belonging to
the top 20% most abundant ASVs (figure 2; unrarefied data
in electronic supplementary material, SM2-4). By contrast,
only 0.3% of the ASVs unique to plankton belonged to the
20%most abundant ASVs in planktonic samples. These results
suggest that a significant portion of animal microbiome is
specialized to a host-associated lifestyle and may not thrive
in the water column, while the most abundant planktonic
prokaryotes were also capable of colonizing animal skin.
Such transient colonization of animal surface microbiomes
may be a result of water contamination [37] or may permit
host adaptation to environmental fluctuations [38].
(b) Bacterial composition
Bacteria dominated communities, accounting for 99.1 ± 1.8%
of sequences. The 18 dominant bacterial classes in animal
microbiome are depicted in figure 3a. Around 72% of them
were also detected among the dominant classes in the
whole microbiome of corals [39–41], and 61% and 50%
were also detected on temperate fish skin and on tropical
fish gills, respectively [42,43]. Two classes, Gracilibacteria
and Campylobacteria, were not reported to be associated
with animals in the aforementioned studies. Gracilibacteria
belongs to the candidate phyla radiation (CPR), containing
ultra-small bacteria that are recovered from diverse environ-
ments and have a probable symbiotic lifestyle [44].
Campylobacteria contained mostly the genus Arcobacter in
our study (up to 8% of abundance). This genus usually inha-
bits the human or animal gastrointestinal system, though
free-living strains have been isolated in various environments
[45]. This genus has been isolated from coral disease
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lesions [46,47]. It has also been recovered from corals exposed
to fish farm effluents and in thermally stressed corals [48,49].
Here, while the corals were apparently healthy and sampled
far from coastal cities (electronic supplementary material,
SM1-1), the high temperatures at the time of sampling (elec-
tronic supplementary material, SM1-2), together with a
potential contamination of the lagoon by human faeces due
to the absence of effluent treatment in Mayotte [50] may
explain the presence of this genus.

Structure of prokaryotic communities recovered on
animal surfaces was significantly distinct from plankton
(PERMANOVA on W-Unifrac on rarefied data, p = 0.001,
R2 = 0.29; figure 3; unrarefied data and U-Unifrac in electronic
supplementary material, SM2-5 and 6). Plankton was mostly
enriched in Alphaproteobacteria (especially SAR11 and
SAR86 clades), Cyanobacteria (especially Prochlorococcus
and Synechococcus) and the actinobacterial family Actinomar-
inaceae (figures 3a; electronic supplementary material, SM2-6
and 7). All these clades are abundant and widely distributed
marine photoautotrophs and photoheterotrophs displaying
small cell sizes and genomic reduction [51–55], that may be
selected by the very oligotrophic conditions of surface
ocean [56]. The presence of such taxa on our sites suggests
that the reefs were well preserved from coastal eutrophication
at the time of sampling.

By contrast, animal surfaces were mostly enriched in
Gammaproteobacteria (especially Endozoicomonas), Firmicutes
(especially Clostridia), Betaproteobacteriales (especially
Burkholderiaceae), the α-proteobacterial Rhizobiales and Sphin-
gomonadaceae, and Verrucomicrobia. Such clades have been
previously identified in temperate and tropical marine fish
skin, gut and gill microbiomes [42,43,57–61], and at the surface
or inside marine invertebrates [9,58,62,63]. Endozoicomonas,
especially, is associated with a wide range of hosts, from fish
to hard and soft corals, sponges and tunicates, and is hypoth-
esized to play a significant role in host’s nutrition and health
[58]. Particularly, Endozoicomonas genomes show enrichment
in several functions that may help to cooperate with various
types of hosts (e.g. protein secretion and carbohydrate trans-
port), but also potential functional specialization depending
on their hosts [64], that might explain the ubiquity of such
genus on the wide diversity of animals studied here. To
confirm this hypothesis, such taxonomic assessment of
animal-associated microbiomes should be completed by
studies assessing the functions that are necessary for bacteria
to thrive on marine hosts.
(c) High dissimilarity between animal microbiomes
The high phylogenetic diversity of animal surface micro-
biomes was paired with a 2.3 times higher variability
among those microbiomes than among planktonic samples
(PERMDISP on W-Unifrac on rarefied data, p < 0.001;
figure 3c; electronic supplementary material, SM2-5). The
three major animal groups sampled (i.e. teleostean fishes,
Anthozoa and other invertebrates) hosted significantly differ-
ent prokaryotic communities at their surface, with the
distinction between such groups explaining between 5%
and 11% of variability (PERMANOVAs, p < 0.001, SM2-8).
However, no significant biomarker was identified using
LEfSe analysis for each of these groups, indicating that
there is no consistently enriched bacterial clade in all
animal taxa of these groups, as highlighted by the high
dissimilarity between taxa within each group (figure 3b,c;
electronic supplementary material, SM2-5).
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Among each main animal group, there was a significant
effect of animal taxon on surface-associated microbiome
structure and composition (PERMANOVAs, electronic sup-
plementary material, SM2-8). Interestingly, while the larger
animal groups explained up to 11% of microbiome dissimilar-
ity, the effect of such smaller taxa explained from 34% (for
coral genera) to 49% (for fish species) of surface microbiome
variability (PERMANOVAs on rarefied data, p < 0.001;
electronic supplementary material, SM2-8).

While the species specificity of marine animal skin micro-
biome has already been reported [7], here we report that this
interspecific variability within a clade is as high as between
clades that diverged approximately 800 Mya (figures 3c; elec-
tronic supplementary material, SM2-5, divergence time
estimate between Teleostei and Anthozoa according to
http://www.timetree.org/). This finding suggests that the
correlation between host phylogenetic relationships and
microbiome composition, a pattern called ‘phylosymbiosis’,
which has been evidenced in numerous animal models
including microbiomes of tropical fish skin, sponges and
coral skeleton [7,36,65], may be unobservable at deeper phy-
logenetic level due to the very large phenotypic differences
between the hosts that would saturate this signal.
(d) Exceptional reef microbial diversity
As a consequence of the coupled high diversity and high
variability of animal surface microbiomes, the prokaryotic
diversity sampled on animal surface microbiomes in this
study is far from reaching an asymptote (figure 1a; electronic
supplementary material, SM2-1, SM2-3). We estimated that
the total sampled and un-sampled bacterial diversity associ-
ated with the subset of reef animals we sampled would
range from 8700 to more than 20 000 97%-identity bacterial
OTUs, respectively, on rarefied and unrarefied data
(electronic supplementary material, SM2-9).

A recent estimate of world’s bacterial diversity predicted
that there exist 0.8–1.6 million prokaryotic OTUs worldwide

http://www.timetree.org/
http://www.timetree.org/
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[66]. Our richness estimates correspond to 0.5% to 2.5% of
such global diversity. This is striking, given that coral reefs
occupy less than 0.1% of surface worldwide, with southwes-
tern Indian Ocean coral reefs making 1.8% of that surface
(0.001% of global surface, www.reefbase.org/). Here, we
based our estimates on carefully curated ASVs grouped as
97%-identity OTUs, which prevented any overestimation of
prokaryotic richness at a local scale [67]. In addition, we
only sampled a less than 7% subset of animal diversity in
Mayotte’s lagoon, hosting more than 700 fish species [68],
57 soft corals [69], 22 sea cucumbers [70], more than 200 scler-
actinian species and subspecies, 13 Asteroideae, 36 ascidians,
56 bivalves and 23 Ophiuroideae [71]. We also did not sample
any species from other phylogenetically contrasted clades
such as sharks and rays, sea turtle and mammal and vegetal
species inhabiting Mayotte’s lagoon. Likewise, we did not
sample the microbes living within the tissue and skeleton
of corals nor those living in fish guts. Our claim is that
coral reef communities, just as they host a large portion of
marine macrobial diversity compared with their surface [1],
may also support a significant proportion of global marine
prokaryotic diversity. More extensive sampling on the thou-
sands of coral reef animals on different coral reefs will
allow refining the estimates provided here.
(e) Vulnerability of reef microbial diversity
The loss of an animal species due to environmental disturb-
ances at a given location induces the loss of its associated
unique microbial diversity. We classified fish species and
scleratinian genera depending on their respective vulner-
ability, to the combined overfishing and habitat loss in the
case of fish, and ocean warming in the case of corals (see
Material and methods; electronic supplementary material,

http://www.reefbase.org/
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SM1-7). There was no correlation between animal vulner-
ability and microbial diversity at its surface (Spearman
correlation tests, p > 0.05). Microbial diversity erosion follow-
ing macroscopic extinction scenarios revealed that the loss of
the 50% most vulnerable coral and fish species for which we
had vulnerability data would induce a loss of 28–29% of
ASVs (electronic supplementary material, SM2-10) and 23%
of phylogenetic richness (figure 4a; electronic supplementary
material, SM2-11). Such lower phylogenetic erosion indicates
a moderate phylogenetic redundancy between animal sur-
face-associated ASVs. The slope of microbial diversity
extinction was only slightly steeper with increasing loss of
macroscopic species (figure 4b; electronic supplementary
material, SM2-11). Accordingly, the levels of prokaryotic diver-
sity loss were not significantly different from that expected
under a random extinction scenario, because the most vulner-
able animal species and less vulnerable ones host partially
redundant prokaryotic diversity.

To our knowledge, no quantified vulnerability measures
exist for invertebrates other than sessile Anthozoa, so we
did not include them in our extinction scenario. In our data-
set, microbiomes of invertebrates other than Anthozoa
showed the highest diversity and variability (figure 3c; elec-
tronic supplementary material, SM2-2, SM2-5), suggesting
that the loss of such warming-sensitive taxa [72], as well as
those targeted by humans [73], would induce a more severe
erosion of coral reef microbial diversity than the one simu-
lated here. Our results should be further completed by an
assessment of the functional erosion that may result from
anthropic activities, as such unique phylogenetic diversity
in animal microbiomes may also host unique microbial func-
tions in coral reef ecosystems [74]. Finally, our scenario did
not account for potential direct effects of anthropic stressors
(warming, acidification) that could alter the diversity and func-
tions of microbiomes [75].
4. Conclusion
Reef animals macro-organisms host a high and unique diver-
sity of microbes at their surface. Hence, the thousands of
species living in coral reef ecosystems may support a substan-
tial part of marine microbial diversity. For now, roles of
animal surface microbiomes for ecosystem functioning are
only partially described, but could be essential (e.g. pro-
duction and degradation of dimethylsulfoniopropionate, a
crucial molecule in sulfur cycling [4]). Future studies should
investigate to what extent these unique and vulnerable
microbial lineages present on animals contribute to coral
reef functioning and possible consequence of their loss in
the Anthropocene.
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