Table 1.
Designation | Type of modification | Outcome | Reference |
---|---|---|---|
Modification leading to Loss of P2X7 Macropore function | |||
V76A | SNP | Partial loss of macropore function | (Stokes et al., 2010; Oyanguren-Desez et al., 2011) |
R117W | SNP | Partial loss of channel and macropore function | (Roger et al., 2010; Wiley et al., 2011; Jiang et al., 2013) |
G150R | SNP | Loss of macropore function | (Stokes et al., 2010) |
E186K | SNP | Loss of channel and macropore function | (Roger et al., 2010; Wiley et al., 2011; Jiang et al., 2013) |
N187D | SNP | Possible loss of function | (Chong et al., 2010b) |
L191P | SNP | Partial loss of channel and macropore function | (Roger et al., 2010; Wiley et al., 2011; Jiang et al., 2013) |
R276H | SNP | Loss of macropore function | (Stokes et al., 2010) |
R307Q | SNP | Loss of macropore function | (Gu et al., 2004; Gartland et al., 2012; Jorgensen et al., 2012; Gu et al., 2015) |
A348T | SNP | Mild increase of channel function in human P2X7 and mild decrease in channel function in rat P2X7 | (Cabrini et al., 2005; Bradley et al., 2011) |
T357S | SNP | Partial loss of channel and macropore function | (Cabrini et al., 2005; Shemon et al., 2006) |
Q460R | SNP | Partial loss of channel and macropore function | (Cabrini et al., 2005; Stokes et al., 2010) |
E496A | SNP | Loss of channel and macropore function | (Gu et al., 2001; Boldt et al., 2003; Cabrini et al., 2005; Roger et al., 2010; Sun et al., 2010; Gidlof et al., 2012; Wesselius et al., 2012; Jiang et al., 2013) |
I568N | SNP | Loss of channel and pore function due to impaired P2X7 trafficking to the plasma membrane | (Wiley et al., 2003) |
P2X7 variant B | Splice variant | Loss of macropore function (P2X7 variant A and B coexpression leads to gain of macropore function) | (Cheewatrakoolpong et al., 2005; Adinolfi et al., 2010) |
P2X7 variant C | Splice variant | Assumed to have lost macropore function | (Cheewatrakoolpong et al., 2005; Benzaquen et al., 2019) |
P2X7 variant D | Splice variant | Assumed to have lost macropore function | (Cheewatrakoolpong et al., 2005; Benzaquen et al., 2019) |
P2X7 variant E | Splice variant | Assumed to have lost macropore function | (Cheewatrakoolpong et al., 2005; Benzaquen et al., 2019) |
P2X7 variant F | Splice variant | Assumed to have lost macropore function | (Cheewatrakoolpong et al., 2005; Benzaquen et al., 2019) |
P2X7 variant G | Splice variants | Loss of macropore function | (Cheewatrakoolpong et al., 2005; Benzaquen et al., 2019) |
P2X7 variant H | Splice variants | Loss of macropore function | (Cheewatrakoolpong et al., 2005) |
P2X7 variant J | Splice variant | Loss of macropore function (P2X7 variant J act as a dominant negative when coexpressed with P2X7 variant A leading to loss macropore function) |
(Feng et al., 2006) |
N187A | Impaired N-glycosylation | Loss of macropore function | (Lenertz et al., 2010) |
R578Q | Impaired N-glycosylation | Loss of macropore function | (Wickert et al., 2013) |
R277 or Y298 | Proteolytic cleavage | Loss of macropore function following MMP-2 cleavage of P2X7 extracellular domain | (Young et al., 2018) |
C-terminal tail | Binding partner | NMMHC-IIA | (Guo et al., 2007; Gu et al., 2009) |
TM domains | Cholesterol binding | Loss of macropore function | (Robinson et al., 2014; Karasawa et al., 2017) |
C362S and C363S | Prevent cholesterol inhibition rescue | Loss of macropore function | (Karasawa et al., 2017) |
Modification leading to Gain of P2X7 Macropore function | |||
H155Y | SNP | Gain of macropore function | (Cabrini et al., 2005; Stokes et al., 2010; Oyanguren-Desez et al., 2011; Jiang et al., 2013) |
A166G | SNP | Gain of macropore function | (Jiang et al., 2013) |
H270R | SNP | Gain of macropore function | (Stokes et al., 2010) |
R125 | ADP-ribosylation of mouse P2X7 | Gating of mouse P2X7 macropore | (Adriouch et al., 2008) |
R206K, R276K, R277K (mouse) | Mutation | Gain of macropore function in mouse P2X7 | (Adriouch et al., 2008) |
TM domain | phosphatidylglycerol and sphingomyelin binding | Gain of macropore function | (Karasawa et al., 2017) |