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Abstract: The large amount of sensors in modern electrical networks poses a serious challenge in the
data processing side. For many years, spectral analysis has been one of the most used approaches to
extract physically meaningful information from a sea of data. Fourier Transform (FT) and Wavelet
Transform (WT) are by far the most employed tools in this analysis. In this paper we explore the
alternative use of Hilbert–Huang Transform (HHT) for electricity demand spectral representation.
A sequence of hourly consumptions, spanning 40 months of electrical demand in Spain, has been used
as dataset. First, by Empirical Mode Decomposition (EMD), the sequence has been time-represented
as an ensemble of 13 Intrinsic Mode Functions (IMFs). Later on, by applying Hilbert Transform
(HT) to every IMF, an HHT spectrum has been obtained. Results show smoother spectra with more
defined shapes and an excellent frequency resolution. EMD also fosters a deeper analysis of abnormal
electricity demand at different timescales. Additionally, EMD permits information compression,
which becomes very significant for lossless sequence representation. A 35% reduction has been
obtained for the electricity demand sequence. On the negative side, HHT demands more computer
resources than conventional spectral analysis techniques.

Keywords: Hilbert–Huang Transform; Empirical Mode Decomposition; spectral analysis; electricity
demand

1. Introduction

Modern electrical networks are one of the main scenarios in which a widespread deployment
of sensors is being achieved [1], thus acquiring a large amount of information of different types.
Processing that information fosters making more efficient and intelligent decisions, in such a way that
resulting power networks are usually known as smart grids [2].

The large number of sensors used in today′s smart grids has become economically and technically
feasible due to a significant reduction in their cost, the availability of higher capacity communication
systems, and the greater accessibility to storage and processing equipment [3].

The straightforward availability of greater datasets poses a challenge on the data analytic side [4]
making possible new and more efficient approaches to several applications such as fault detection [5],
predictive maintenance [6], transient stability analysis [7], electric device state estimation [8], power
quality monitoring [9], topology identification [10], renewable energy forecasting [11], and non-technical
loss detection [12].

Especially relevant are the smart grid applications in which a high ratio of renewable and
distributed energies has to be considered. Autoregressive integrated moving average (ARIMA) has
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been proposed in forecasting solar production [13], long-term energy demand [14] and electricity
prices [15]. Other uses of data analytics in smart grids include heterogeneous data integration [16]
or estimation of battery state-of-charge in solar farms [17]. A comprehensive and updated review of
issues regarding the role of data analysis in the development of intelligent energy networks can be
found in [18].

Among all smart grid applications, those concerning the load curve occupy a prominent place,
for instance, load forecasting [19], load profiling [20], and load disaggregation [21,22]. Some of the
most employed techniques for load curve analysis are frequency-domain based [23], in which mainly
the Fourier Transform (FT) is applied to hourly [24], weekly [25], or annual [26] load curves. In those
cases where short-term transitions have to be characterized, it is also common to rely on the Wavelet
Transform (WT) for frequency analysis [27].

However, evaluating long sequences of energy demand poses a difficult challenge because, using
classical spectral analysis, we can either focus on long-term behavior or, alternatively, pay attention to
short-term evolutions. Coping with long sequences of data, we should be able to look at its overall
evolution while simultaneously regarding seasonal variations and transient events. But in conventional
spectral techniques, simultaneously managing different timescales is a task that remains unexplored
and requires new solutions.

On the other hand, the use of Hilbert–Huang Transform (HHT) has gained increasing popularity in
recent years for frequency analysis applied to many different realms, such as rolling bearing mechanical
behavior [28], fault diagnosis of electrical motors [29], and even financial information [30]. HHT has
also been applied to power networks in some specific tasks such as energy load forecasting [31] and
fault classification [32]. However, to our best knowledge, the capabilities of HHT to discover and
describe the ensemble of frequencies of a power network load profile remain unexplored.

The objective of this research is to obtain the multiple harmonic components of a long-term
electricity load curve applying HHT, and to compare these results with those obtained using more
traditional methods (FT and WT).

Spectral analysis techniques, especially HHT, play an important role in today’s practical problems
of power networks with a high penetration of renewable energies. Recent studies have shown examples
of statistical classical methods (like ARIMA) outperforming modern machine learning approaches [33],
while other authors have reached the opposite conclusions [34]. But either using classical or modern
forecasting methods, spectral decomposition of time series clearly provides better results [31,35].

This paper is organized in 5 sections. After this introduction, the first parts of Section 2 will
present the dataset used to define the electricity load curve; then classical techniques for frequency
analysis (FT and WT) will be reviewed. Section 2.3 will present newer approaches for spectral analysis
based on Hilbert Transform (HT), while Section 2.4 will address the application of the Empirical Mode
Decomposition (EMD) to solve the HT problems obtaining the so-called Hilbert–Huang Transform
(HHT). In Section 3, results of applying classical and newer techniques to the dataset will be shown.
Section 4 will discuss the principal findings of the research, comparing HHT with classical techniques in
terms of frequency description, detection of abnormal behavior, and sequence information compression.
Finally, Section 5 will provide some conclusions.

The main novel contributions which will be exposed throughout the paper address the problem
of electricity demand multiscale spectral analysis:

• Revealing clearer, smoother, and more intuitive spectra, which discover more physically
significant harmonics;

• enabling a more in-depth analysis of abnormal electricity demand at different timescales; and
• obtaining an improved lossless spectral compression method.
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2. Materials and Methods

2.1. Dataset

Different national and international sources provide load curves at many levels of disaggregation.
In this research, the Monthly Hourly Load Values (MHLV) for Spain have been used [36]. Maintained
by the European Network of Transmission System Operators for Electricity (ENTSO-E) [37], the dataset
contains hourly values of aggregated electricity demand for different European countries. By the time
of its download, the dataset have values for the period comprised between the first of January 2016,
and the end of April 2019, that is, 40 months (more than 3 years), with a total of N = 29,183 values.
Similar information can also be obtained from other sources [38].

The overall dataset is shown in Figure 1a, where the evolution of the demand along seasons can
be easily seen.
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In Figure 1b, a ten week evolution (March and April 2016) is depicted, showing a typical weekly
behavior with high electricity consumption on labor days and lower values on weekends. Finally,
Figure 1c shows an example for a 15-day period, where the two daily peaks (typically at noon and
mid-afternoon) are shown.

2.2. Conventional Techniques for Spectral Analysis

Frequency-domain analysis of the dataset is primarily tackled by employing Fourier Transform
(FT). Calling x(t) the value of the electricity demand at time t, its frequency representation X( f ) is
defined as:

X( f ) ≡ FT [x(t)] =
∫ +∞

−∞

x(t) e− j2π f t dt. (1)

When x(t) is digitized at Ts intervals, that is, at a sampling rate fs = 1/Ts, a sequence of N
values is obtained, where x(n) denotes the electricity demand at the n-th sampling time. For discrete
sequences, frequency-domain representation is obtained using the Discrete Fourier Transform (DFT):

X(k) ≡ DFT [x(n)] =
N−1∑
n=0

x(n)e−
j2π
N kn, (2)

where X(k) is a complex value representing the amplitude and phase of the harmonic component at
frequency k fs/N. The graph representing the absolute value

∣∣∣X(k)
∣∣∣ is usually known as the spectrum

of x.
Instead of DFT, a faster version of the algorithm, called Fast Fourier Transform (FFT), is commonly

used. As the dataset described in the previous subsection contains hourly load values, sampling period
is Ts = 1 h and, then, sampling frequency is fs = 1 hour−1 = 8760 year−1.
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If x(n) cannot be considered a stationary sequence, it is more convenient to consider the DFT of a
full sequence’s short slice:

X(m, k) ≡ STFT [x(n)] = DFT [x(n)·w(n−m)], (3)

where w(n−m) is a certain window function centered at the m-th sampling time. In this research,
the Hamming window function has been used [39]. X(m, k) is a discrete complex sequence that
it is commonly represented by the square of its absolute value. The resulting graph is called the
sequence’s spectrogram.

Although Short-Time Fourier Transform (STFT) is widely used in many technical fields, it suffers a
serious limitation on time–frequency resolution. Calling nw the number of values (width) of the window
function, then time interval ∆t (time resolution) and frequency interval ∆ f (frequency resolution), are:

∆t = nwTs, ∆ f =
fs

nw
. (4)

Joint time–frequency resolution is limited because:

∆t·∆ f = 1, (5)

that is, the greater the resolution in time, the smaller in frequency. Making window function wider
(greater value of nw), time interval ∆t is increased (time resolution decreased) and frequency interval
∆ f is decreased (frequency resolution increased).

To overcome this problem many researchers use the Wavelet Transform (WT), defined as:

X(m, s) ≡WT [x(n)] =
N−1∑
n=0

x(n)ψ
[
(n−m)Ts

s

]
, (6)

where ψ[·] is a time-limited function called a wavelet, which is shifted at time mTs (m is an integer) and
time-scaled by a factor s (a real positive value). X(m, s) is a function, discrete in m and continuous in s,
that it is commonly represented by the square of its value. The resulting graph is called the sequence’s
scalogram where the m-axis represents the time and the s-axis is inversely proportional to the frequency.
In this research, the Morlet wavelet has been used, which is defined as:

ψ[ξ] ≡ e−
ξ2
2 cos(5ξ). (7)

Wavelet transform is widely used for analyzing non-stationary sequences. In the case of stationary
sequences, we are no longer interested in the evolution over time of its spectral behavior as they do not
change. Thus, it is better to obtain a time-invariant spectrum using the Marginal Wavelet Transform
(MWT) which is defined as:

X(s) ≡ MWT [x(n)] =
N−1∑
m=0

WT [x(n)] =
N−1∑
m=0

N−1∑
n=0

x(n)ψ
[
(n−m)Ts

s

]
. (8)

2.3. The Hilbert Transform for Spectral Analysis

In some harmonic analysis applications, it is sometimes preferred to rely on an alternative
approach called Hilbert Transform (HT), defined as:

x̂(t) ≡ HT [x(t)] =
1
π

∫
∞

−∞

x(τ)
t− τ

dτ , (9)
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where x̂(t) is a real-valued time-dependent function. When x is a discrete sequence x(n), Hilbert
Transform can be written as:

x̂(n) ≡ HT [x(n)] =
N−1∑

m = 0
m , n

x(m)

n−m
. (10)

In most applications, the resulting Hilbert Transform x̂(n) is combined with the original function,
obtaining the so-called analytic function, defined as:

x̃(n) ≡ x(n) + j x̂(n), (11)

which is a time-dependent complex sequence. Its module is called instantaneous amplitude, that is,
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(n) ≡
∆arg[x̃(n)]

Ts
=

arg[x̃(n)] − arg[x̃(n− 1)]
Ts

. (12)

Combining the instantaneous amplitude and frequency in a single vector of two functions,
the Hilbert Spectrum (HS) is obtained, that is:

S(n) = HS[x(n)] ≡
[

Sensors 2020, 20, x FOR PEER REVIEW 5 of 25 

 

In most applications, the resulting Hilbert Transform �̂�(𝑛)  is combined with the original 

function, obtaining the so-called analytic function, defined as: 

�̃�(𝑛) ≡ 𝑥(𝑛) + 𝑗 �̂�(𝑛), (11) 

which is a time-dependent complex sequence. Its module is called instantaneous amplitude, that is, 

𝕒(𝑛) ≡ |�̃�(𝑛)| . An instantaneous frequency 𝕗(𝑛)  can also be obtained using the phase of the  

analytic function:  

𝕗(𝑛) ≡
Δ arg[�̃�(𝑛)]

𝑇𝑠

=
arg[�̃�(𝑛)] − arg[�̃�(𝑛 − 1)]

𝑇𝑠

. (12) 

Combining the instantaneous amplitude and frequency in a single vector of two functions, the 

Hilbert Spectrum (HS) is obtained, that is:  

𝑆(𝑛) = ℋ𝒮[𝑥(𝑛)] ≡ [𝕒(𝑛), 𝕗(𝑛)] ∈ ℝ2. (13) 

For the case of stationary sequences, it is better to obtain the Marginal Hilbert Spectrum (MHS), 

which is defined as:  

𝑆𝑚(𝑓) ≡ ∑ 𝕒(𝑛)

𝑁−1

𝑛=0
𝕗(𝑛)=𝑓

. (14) 

2.4. Empirical Decomposition and the Hilbert–Huang Transform for Spectral Analysis 

In many practical sequences it is not uncommon that some Hilbert instantaneous frequencies 

(and their derived HS and MHS) have negative values, which are meaningless [40]. For the 

instantaneous frequency to always be positive, the sequence must satisfy two conditions [41]: 

1. It is symmetric with respect to a null local average value; and 

2. It has the same number of zero-crossing and extrema. 

A sequence fulfilling these requirements is called an Intrinsic Mode Function (IMF). Therefore, 

to obtain meaningful Hilbert Transform, the original sequence 𝑥(𝑛) should be first decomposed in 

several IMFs 𝑐𝑖(𝑛). A method to achieve this goal is named Empirical Mode Decomposition (EMD) 

which is based on two nested loops: An outer iteration to obtain the 𝑖-th IMF 𝑐𝑖(𝑛); and an inner 

iteration to obtain ℎ𝑖,𝑗(𝑛), the 𝑗-th trial for the 𝑖-th IMF. The EMD algorithm (also called a sifting 

process) can be summarized in the following steps [42]: 

1. Consider original data as the first residue: 𝑟1(𝑛) = 𝑥(𝑛) 

2. Make 𝑖 = 1  

3. Obtaining the 𝑖-th IMF: 𝑐𝑖(𝑛) 

1. Consider the 𝑖-th residue as the first trial for the 𝑖-th proto-IMF: ℎ𝑖,1(𝑛) = 𝑟𝑖(𝑛) 

2. Make 𝑗 = 1 

3. Consider the 𝑗-th trial for the 𝑖-th proto-IMF as the ongoing sequence: 𝑥𝑖,𝑗(𝑛) = ℎ𝑖,𝑗(𝑛) 

4. Obtain upper local extrema of 𝑥𝑖,𝑗(𝑛) 

5. Obtain upper envelope (joining upper extrema with a cubic spline): 𝑢𝑖,𝑗(𝑛) 

6. Obtain lower local extrema and lower envelope: 𝑙𝑖,𝑗(𝑛) 

7. Obtain mean value of upper and lower envelopes: 𝑚𝑖,𝑗(𝑛) = [𝑢𝑖,𝑗(𝑛) + 𝑙𝑖,𝑗(𝑛)]/2 

8. Obtain the 𝑗-th trial for the 𝑖-th proto-IMF subtracting the mean value from the original 

data: ℎ𝑖,𝑗(𝑛) = 𝑥𝑖,𝑗(𝑛) − 𝑚𝑖,𝑗(𝑛) 

9. Repeat inner steps 3 to 7 (increasing 𝑗) until the inner loop stop criterion is fulfilled, which 

occurs in the 𝑘-th inner iteration 

10. Consider the last proto-IMF ℎ𝑖,𝑘(𝑛) as the 𝑖-th IMF: 𝑐𝑖(𝑛) = ℎ𝑖,𝑘(𝑛) 

(n),

Sensors 2020, 20, x FOR PEER REVIEW 5 of 25 

 

In most applications, the resulting Hilbert Transform �̂�(𝑛)  is combined with the original 

function, obtaining the so-called analytic function, defined as: 

�̃�(𝑛) ≡ 𝑥(𝑛) + 𝑗 �̂�(𝑛), (11) 

which is a time-dependent complex sequence. Its module is called instantaneous amplitude, that is, 

𝕒(𝑛) ≡ |�̃�(𝑛)| . An instantaneous frequency 𝕗(𝑛)  can also be obtained using the phase of the  

analytic function:  

𝕗(𝑛) ≡
Δ arg[�̃�(𝑛)]

𝑇𝑠

=
arg[�̃�(𝑛)] − arg[�̃�(𝑛 − 1)]

𝑇𝑠

. (12) 

Combining the instantaneous amplitude and frequency in a single vector of two functions, the 

Hilbert Spectrum (HS) is obtained, that is:  

𝑆(𝑛) = ℋ𝒮[𝑥(𝑛)] ≡ [𝕒(𝑛), 𝕗(𝑛)] ∈ ℝ2. (13) 

For the case of stationary sequences, it is better to obtain the Marginal Hilbert Spectrum (MHS), 

which is defined as:  

𝑆𝑚(𝑓) ≡ ∑ 𝕒(𝑛)

𝑁−1

𝑛=0
𝕗(𝑛)=𝑓

. (14) 

2.4. Empirical Decomposition and the Hilbert–Huang Transform for Spectral Analysis 

In many practical sequences it is not uncommon that some Hilbert instantaneous frequencies 

(and their derived HS and MHS) have negative values, which are meaningless [40]. For the 

instantaneous frequency to always be positive, the sequence must satisfy two conditions [41]: 

1. It is symmetric with respect to a null local average value; and 

2. It has the same number of zero-crossing and extrema. 

A sequence fulfilling these requirements is called an Intrinsic Mode Function (IMF). Therefore, 

to obtain meaningful Hilbert Transform, the original sequence 𝑥(𝑛) should be first decomposed in 

several IMFs 𝑐𝑖(𝑛). A method to achieve this goal is named Empirical Mode Decomposition (EMD) 

which is based on two nested loops: An outer iteration to obtain the 𝑖-th IMF 𝑐𝑖(𝑛); and an inner 

iteration to obtain ℎ𝑖,𝑗(𝑛), the 𝑗-th trial for the 𝑖-th IMF. The EMD algorithm (also called a sifting 

process) can be summarized in the following steps [42]: 

1. Consider original data as the first residue: 𝑟1(𝑛) = 𝑥(𝑛) 

2. Make 𝑖 = 1  

3. Obtaining the 𝑖-th IMF: 𝑐𝑖(𝑛) 

1. Consider the 𝑖-th residue as the first trial for the 𝑖-th proto-IMF: ℎ𝑖,1(𝑛) = 𝑟𝑖(𝑛) 

2. Make 𝑗 = 1 

3. Consider the 𝑗-th trial for the 𝑖-th proto-IMF as the ongoing sequence: 𝑥𝑖,𝑗(𝑛) = ℎ𝑖,𝑗(𝑛) 

4. Obtain upper local extrema of 𝑥𝑖,𝑗(𝑛) 

5. Obtain upper envelope (joining upper extrema with a cubic spline): 𝑢𝑖,𝑗(𝑛) 

6. Obtain lower local extrema and lower envelope: 𝑙𝑖,𝑗(𝑛) 

7. Obtain mean value of upper and lower envelopes: 𝑚𝑖,𝑗(𝑛) = [𝑢𝑖,𝑗(𝑛) + 𝑙𝑖,𝑗(𝑛)]/2 

8. Obtain the 𝑗-th trial for the 𝑖-th proto-IMF subtracting the mean value from the original 

data: ℎ𝑖,𝑗(𝑛) = 𝑥𝑖,𝑗(𝑛) − 𝑚𝑖,𝑗(𝑛) 

9. Repeat inner steps 3 to 7 (increasing 𝑗) until the inner loop stop criterion is fulfilled, which 

occurs in the 𝑘-th inner iteration 

10. Consider the last proto-IMF ℎ𝑖,𝑘(𝑛) as the 𝑖-th IMF: 𝑐𝑖(𝑛) = ℎ𝑖,𝑘(𝑛) 

(n)
]
∈ R2. (13)

For the case of stationary sequences, it is better to obtain the Marginal Hilbert Spectrum (MHS),
which is defined as:

Sm( f ) ≡
N−1∑

n = 0
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2.4. Empirical Decomposition and the Hilbert–Huang Transform for Spectral Analysis

In many practical sequences it is not uncommon that some Hilbert instantaneous frequencies
(and their derived HS and MHS) have negative values, which are meaningless [40]. For the instantaneous
frequency to always be positive, the sequence must satisfy two conditions [41]:

1. It is symmetric with respect to a null local average value; and
2. It has the same number of zero-crossing and extrema.

A sequence fulfilling these requirements is called an Intrinsic Mode Function (IMF). Therefore,
to obtain meaningful Hilbert Transform, the original sequence x(n) should be first decomposed in
several IMFs ci(n). A method to achieve this goal is named Empirical Mode Decomposition (EMD)
which is based on two nested loops: An outer iteration to obtain the i-th IMF ci(n); and an inner
iteration to obtain hi, j(n), the j-th trial for the i-th IMF. The EMD algorithm (also called a sifting process)
can be summarized in the following steps [42]:

1. Consider original data as the first residue: r1(n) = x(n)
2. Make i = 1
3. Obtaining the i-th IMF: ci(n)

1. Consider the i-th residue as the first trial for the i-th proto-IMF: hi,1(n) = ri(n)
2. Make j = 1
3. Consider the j-th trial for the i-th proto-IMF as the ongoing sequence: xi, j(n) = hi, j(n)
4. Obtain upper local extrema of xi, j(n)
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5. Obtain upper envelope (joining upper extrema with a cubic spline): ui, j(n)
6. Obtain lower local extrema and lower envelope: li, j(n)

7. Obtain mean value of upper and lower envelopes: mi, j(n) =
[
ui, j(n) + li, j(n)

]
/2

8. Obtain the j-th trial for the i-th proto-IMF subtracting the mean value from the original data:
hi, j(n) = xi, j(n) −mi, j(n)

9. Repeat inner steps 3 to 7 (increasing j) until the inner loop stop criterion is fulfilled, which
occurs in the k-th inner iteration

10. Consider the last proto-IMF hi,k(n) as the i-th IMF: ci(n) = hi,k(n)
11. Inner loop stop criterion: During S consecutives iterations the number of upper extrema

(Ue), lower extrema (Le), and zero-crossing (Zc) of the ongoing sequence xi, j(n) satisfy the
equation |Ue + Le −Ze|≤ 1 , where S is a predefined constant (usually 4 ≤ S ≤ 8)

4. Obtain the i-th residue subtracting i-th IMF from the first trial of the ongoing sequence: ri(n) =
xi,1(n) − ci(n)

5. Repeat outer steps 3 and 4 (increasing i) until the outer loop stop criterion is fulfilled, which
occurs in the q-th outer iteration

6. Outer loop stop criterion: Residue is a monotonic function; or IMF or residue are smaller than a
predetermined value

7. Consider the last residue as the overall residue: r(n) = rq(n).

Finally, using EMD, the sequence x(n) can be decomposed into a sum of q IMFs and a residue,
according to the following expression:

x(n) =

 q∑
i=1

ci(n)

+ r(n). (15)

Considering the way of obtaining the IMFs, they satisfy the conditions so that their HSs do
not have meaningless negative instantaneous frequencies. Calling
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of two functions:

HHT [x(n)] ≡
{
HS[c1(n)],HS[c2(n)], · · · ,HS

[
cq(n)

]
,HS[r(n)]

}
. (16)

HHT [x(n)] =
{[
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q+1(n)
]}

. (17)

In these equations the residue is understood as the (q + 1)-th IMF. This function, which is discrete
in time but continuous in frequency and amplitude, is also known as the Hilbert–Huang Spectrum
(HHS).

To manage HHS as an ensemble of q + 1 pairs of vectors is often quite burdensome and leads
to graphics that are not easy to read. To simplify its representation it is common to discretize the
frequencies using a quantizing ∆ f step, building up a grid in the time–frequency plane. Then the
amplitudes of all IMFs for every single grid spot are added, obtaining a Discrete Hilbert–Huang
Spectrum (DHHS) defined by:

X(n, k) ≡ DHHS[x(n)] =
q+1∑

i = 1
k∆ f ≤
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several IMFs 𝑐𝑖(𝑛). A method to achieve this goal is named Empirical Mode Decomposition (EMD) 
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process) can be summarized in the following steps [42]: 

1. Consider original data as the first residue: 𝑟1(𝑛) = 𝑥(𝑛) 

2. Make 𝑖 = 1  

3. Obtaining the 𝑖-th IMF: 𝑐𝑖(𝑛) 

1. Consider the 𝑖-th residue as the first trial for the 𝑖-th proto-IMF: ℎ𝑖,1(𝑛) = 𝑟𝑖(𝑛) 

2. Make 𝑗 = 1 

3. Consider the 𝑗-th trial for the 𝑖-th proto-IMF as the ongoing sequence: 𝑥𝑖,𝑗(𝑛) = ℎ𝑖,𝑗(𝑛) 

4. Obtain upper local extrema of 𝑥𝑖,𝑗(𝑛) 

5. Obtain upper envelope (joining upper extrema with a cubic spline): 𝑢𝑖,𝑗(𝑛) 

6. Obtain lower local extrema and lower envelope: 𝑙𝑖,𝑗(𝑛) 

7. Obtain mean value of upper and lower envelopes: 𝑚𝑖,𝑗(𝑛) = [𝑢𝑖,𝑗(𝑛) + 𝑙𝑖,𝑗(𝑛)]/2 

8. Obtain the 𝑗-th trial for the 𝑖-th proto-IMF subtracting the mean value from the original 

data: ℎ𝑖,𝑗(𝑛) = 𝑥𝑖,𝑗(𝑛) − 𝑚𝑖,𝑗(𝑛) 

9. Repeat inner steps 3 to 7 (increasing 𝑗) until the inner loop stop criterion is fulfilled, which 

occurs in the 𝑘-th inner iteration 

10. Consider the last proto-IMF ℎ𝑖,𝑘(𝑛) as the 𝑖-th IMF: 𝑐𝑖(𝑛) = ℎ𝑖,𝑘(𝑛) 

i(n). (18)
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For the case of stationary sequences, it is sometimes better to obtain the Marginal Hilbert–Huang
Spectrum (MHHS), which is derived from DHHS and defined as:

Sm(k) ≡
N−1∑
n=0

X(n, k) =
N−1∑
n=0

q+1∑
i = 1

k∆ f ≤
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6. Obtain lower local extrema and lower envelope: 𝑙𝑖,𝑗(𝑛) 

7. Obtain mean value of upper and lower envelopes: 𝑚𝑖,𝑗(𝑛) = [𝑢𝑖,𝑗(𝑛) + 𝑙𝑖,𝑗(𝑛)]/2 
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data: ℎ𝑖,𝑗(𝑛) = 𝑥𝑖,𝑗(𝑛) − 𝑚𝑖,𝑗(𝑛) 

9. Repeat inner steps 3 to 7 (increasing 𝑗) until the inner loop stop criterion is fulfilled, which 

occurs in the 𝑘-th inner iteration 

10. Consider the last proto-IMF ℎ𝑖,𝑘(𝑛) as the 𝑖-th IMF: 𝑐𝑖(𝑛) = ℎ𝑖,𝑘(𝑛) 

i(n) < (k + 1)∆ f
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i(n). (19)

3. Results

3.1. Spectral Analysis of Electricity Demand

In this subsection the spectral analysis methods previously explained will be applied to the MHLV
load curve for Spain.

3.1.1. Fourier Transform of Electricity Demand

Let us begin applying FT to the dataset, resulting in the spectrum depicted in Figure 2a. As the
sampling frequency is fs = 8760 year−1, full spectrum contains meaningful frequencies up to fs/2 =

4380 year−1. Regardless of the Direct Current (DC) component (corresponding to the energy demand
mean value), two main harmonics can be seen: At 365 (times per year) corresponding to once per day;
and at 730 corresponding to twice per day. These two harmonics reveal the main periodic behavior of
the load curve featured by a daily evolution with two humps at noon and mid-afternoon.
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Figure 2. Electricity demand Fourier Spectrum at different frequency scales: (a) Full spectrum; (b)
spectrum discarding higher frequencies; (c) low frequency spectrum.

Zooming in on the spectrum to discard higher frequencies (Figure 2b), a third harmonic stands
out at the frequency of 52 (times per year), revealing a weekly periodicity characterized by a higher
demand on labor days and lower consumption on weekends. A much closer zoom centered on the low
frequency spectrum (Figure 2c) shows a harmonic peak at frequency 2 (twice per year) and a lower
and not very well defined peak at 1 (once per year), corresponding to a yearly periodicity with two
seasonal peaks of high demand (due to heating in winter and air conditioning in summer). It has to be
noted that this graph has a frequency resolution which can be computed by:

∆ f =
fs
N

=
8760

29183
= 0.3 years−1. (20)

3.1.2. Short-Time Fourier Transform of Electricity Demand

Trying to discover transient behaviors, an STFT with time resolution ∆t = 1 week has been
applied to the dataset’s sequence, obtaining the result depicted in Figure 3a. It can be seen that the
spectrogram is quite stationary, that is, it has approximately the same values along time, although
a small decrease during summer can be noted (mainly in higher frequencies). The most significant
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harmonics (dark red in the graph) appear in the low-frequency band, and a zoom-in of the frequency
axis is shown in Figure 3b, where several harmonics clearly appear (around 50, 400, and 750 years−1).
However, their values are not precisely determined as the corresponding frequency resolution is,
according to Equation (5), ∆ f = 52 years−1.
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(c) low frequency spectrogram, ∆t = 0.5 years.

To increase frequency resolution, the width of the window function has to be enlarged and,
consequently, the time resolution decreases. Figure 3c depicts the result when a ∆t = 0.5 years is
applied, resulting in a frequency resolution of ∆ f = 2 years−1.

3.1.3. Wavelet Transform of Electricity Demand

To overcome the limitations of STFT regarding the time–frequency resolution, a Morlet WT is
applied to the sequence according to Equation (6), obtaining the scalogram shown in Figure 4a. For an
easier reading, the vertical axis has been converted from scale s to frequency. Again, the electricity
demand frequency representation shows a quite stationary behavior, although a small decrease during
summer can be noted in the highest frequencies. Several harmonics clearly appear in the plot, centered
around 50, 400, and 750 years−1. Figure 4b presents a detail of the scalogram for the lower frequencies.
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3.1.4. Marginal Wavelet Transform of Electricity Demand

If the sequence analysis considers only its stationary behavior, it is better to obtain the marginal
spectrum applying Equation (8). The result is shown in Figure 5 using different graphic scales and
with different frequency resolution. The accumulated over time spectral amplitude (vertical axis)
versus frequency (horizontal axis) is plotted. Depicted in red are those harmonics already identified in
Figure 2, while the values in green reveal new harmonics.
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3.1.5. Hilbert Spectrum of Electricity Demand

Now that the more conventional spectral analysis techniques have been employed, let us focus
on the application of Hilbert Transform to our dataset. In Figure 6a, Hilbert Spectrum is depicted in
accordance with the definitions in Equation (13).

Sensors 2020, 20, x FOR PEER REVIEW 9 of 25 

 

Now that the more conventional spectral analysis techniques have been employed, let us focus 
on the application of Hilbert Transform to our dataset. In Figure 6a, Hilbert Spectrum is depicted in 
accordance with the definitions in Equation (13).  

 

Figure 6. Electricity demand Hilbert Transform: (a) Hilbert Spectrum (scatter plot); (b) Marginal 
Hilbert Spectrum. 

The plot represents the instantaneous frequency (vertical axis) versus time (horizontal axis), 
while the instantaneous amplitude corresponding to each time is also color-coded. As there is an 
instantaneous amplitude-frequency pair at every hour, the total number of points (pairs) in the 
full-scale graph is quite high (𝑁 = 29,183). Therefore, the figure is easier to understand if the pairs 
are drawn as scattered points, that is, not forming a line. 

On the other hand, Figure 6b shows the Marginal Hilbert Spectrum as it is defined in Equation (14). 
The accumulated-over-time amplitude (vertical axis) versus instantaneous frequency (horizontal 
axis) is plotted. In both figures, meaningless negative frequencies clearly appear, making a physical 
interpretation of these spectra difficult.  

3.1.6. Hilbert–Huang Spectrum of Electricity Demand 

To tackle the Hilbert Spectrum’s lack of meaning, the original electricity demand sequence is 
split into several Intrinsic Mode Functions (IMF) using the Empirical Mode Decomposition (EMD) 
method described in Section 2.4. The result of this process is a set of 12 IMFs and a residue, which are 
depicted in Figure 7 using a monthly timescale. The corresponding original signal is shown in the 
first panel and in Figure 1a. The last IMFs (those with higher indexes) contain the electricity demand 
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Figure 6. Electricity demand Hilbert Transform: (a) Hilbert Spectrum (scatter plot); (b) Marginal
Hilbert Spectrum.

The plot represents the instantaneous frequency (vertical axis) versus time (horizontal axis),
while the instantaneous amplitude corresponding to each time is also color-coded. As there is an
instantaneous amplitude-frequency pair at every hour, the total number of points (pairs) in the full-scale
graph is quite high (N = 29,183) . Therefore, the figure is easier to understand if the pairs are drawn as
scattered points, that is, not forming a line.

On the other hand, Figure 6b shows the Marginal Hilbert Spectrum as it is defined in Equation
(14). The accumulated-over-time amplitude (vertical axis) versus instantaneous frequency (horizontal
axis) is plotted. In both figures, meaningless negative frequencies clearly appear, making a physical
interpretation of these spectra difficult.

3.1.6. Hilbert–Huang Spectrum of Electricity Demand

To tackle the Hilbert Spectrum’s lack of meaning, the original electricity demand sequence is split
into several Intrinsic Mode Functions (IMF) using the Empirical Mode Decomposition (EMD) method
described in Section 2.4. The result of this process is a set of 12 IMFs and a residue, which are depicted
in Figure 7 using a monthly timescale. The corresponding original signal is shown in the first panel
and in Figure 1a. The last IMFs (those with higher indexes) contain the electricity demand slow-rate
evolution. Therefore, IMFs 12, 11, 10, and 9 show an approximate period of 30, 12, 6, and 2 months,
respectively. It can be seen that, for instance, the higher demands in winter and summer are neatly
uncovered by the peaks in IMF 10 (6-month period).



Sensors 2020, 20, 2912 10 of 25

Sensors 2020, 20, x FOR PEER REVIEW 9 of 25 

 

Now that the more conventional spectral analysis techniques have been employed, let us focus 
on the application of Hilbert Transform to our dataset. In Figure 6a, Hilbert Spectrum is depicted in 
accordance with the definitions in Equation (13).  

 

Figure 6. Electricity demand Hilbert Transform: (a) Hilbert Spectrum (scatter plot); (b) Marginal 
Hilbert Spectrum. 

The plot represents the instantaneous frequency (vertical axis) versus time (horizontal axis), 
while the instantaneous amplitude corresponding to each time is also color-coded. As there is an 
instantaneous amplitude-frequency pair at every hour, the total number of points (pairs) in the 
full-scale graph is quite high (𝑁 = 29,183). Therefore, the figure is easier to understand if the pairs 
are drawn as scattered points, that is, not forming a line. 

On the other hand, Figure 6b shows the Marginal Hilbert Spectrum as it is defined in Equation (14). 
The accumulated-over-time amplitude (vertical axis) versus instantaneous frequency (horizontal 
axis) is plotted. In both figures, meaningless negative frequencies clearly appear, making a physical 
interpretation of these spectra difficult.  

3.1.6. Hilbert–Huang Spectrum of Electricity Demand 

To tackle the Hilbert Spectrum’s lack of meaning, the original electricity demand sequence is 
split into several Intrinsic Mode Functions (IMF) using the Empirical Mode Decomposition (EMD) 
method described in Section 2.4. The result of this process is a set of 12 IMFs and a residue, which are 
depicted in Figure 7 using a monthly timescale. The corresponding original signal is shown in the 
first panel and in Figure 1a. The last IMFs (those with higher indexes) contain the electricity demand 
slow-rate evolution. Therefore, IMFs 12, 11, 10, and 9 show an approximate period of 30, 12, 6, and 2 
months, respectively. It can be seen that, for instance, the higher demands in winter and summer are 
neatly uncovered by the peaks in IMF 10 (6-month period). 

 

Figure 7. Empirical Mode Decomposition of the electricity demand: Monthly scale. 

For a better understanding of the IMFs behavior, they are also represented in a weekly 
timescale. Figure 8 depicts a 10-week sequence corresponding to the time-domain representation of 

Figure 7. Empirical Mode Decomposition of the electricity demand: Monthly scale.

For a better understanding of the IMFs behavior, they are also represented in a weekly timescale.
Figure 8 depicts a 10-week sequence corresponding to the time-domain representation of the original
signal shown in the first panel and in Figure 1b. It shows that IMFs 8, 7, 6, and 5 have approximate
periods of 4, 2, 1, and 0.5 weeks, respectively. It is not difficult to establish connections between the
original signal and IMFs. For instance, IMF 5 (0.5-week period) clearly presents two singularities
(very low values) at weeks 12 and 17, corresponding to two quite visible depressions of energy demand
at these times in the original signal. Additionally, the deepest depression in the original signal during
this 10-week period occurs at week 12, which is also clearly revealed by the minimum value of IMF 8
(4-week period).
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Finally, Figure 9 depicts a 15-day sequence corresponding to the time-domain representation of
the original signal shown in the first panel and in Figure 1c. It reveals approximate periods of 4, 2,
1, and 0.5 days for IMFs 4, 3, 2, and 1, respectively. Again, connections between original signal and
IMFs can be easily established. For instance, IMF 1 (0.5-day period) presents very low amplitude
corresponding to two low energy demand periods during weekend days 16 and 23, both clearly visible
in Figure 1b. These weekend days can also be detected by low amplitude in IMF 2 (1-day period).

After the EMD process, every resulting IMF does satisfy the conditions expressed in Section 2.4
for having a meaningful Hilbert Transform (HT). The electricity demand Hilbert–Huang Transform
(HHT) is then no more than the ensemble of the HT of each IMF, as reflected in Equation (17), which is
depicted in Figure 10a. The plot represents, for each IMF, the instantaneous frequency (vertical axis)
versus time (horizontal axis), while the instantaneous amplitude corresponding to each point is also
color-coded. This plot can be seen as 13 overlapping Hilbert Spectra (corresponding to each of the
12 IMFs plus the residue). As the graph covers the full timescale, it is drawn as a scatter plot for a
better interpretation.
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Figure 10. Electricity demand Hilbert–Huang Transform: (a) Hilbert–Huang Spectrum (scatter plot);
(b) Marginal Hilbert–Huang Spectrum.

On the other hand, Figure 10b shows Marginal Hilbert–Huang Spectrum as it is defined in
Equation (19). The accumulated-over-time amplitude (vertical axis) versus instantaneous frequency
(horizontal axis) is plotted, with all the IMFs added.

In both figures, meaningless negative frequencies have almost disappeared, presenting only some
negligible values which will be discarded from now on.

When the timescale is smaller, the points in the Hilbert–Huang Spectrum (HHS) can be joined in
a line plot without affecting its readability. That is the case in Figure 11a where 13 lines are drawn,
one per IMF. Each line represents the instantaneous frequency versus time for a single IMF, with color
representing the instantaneous amplitude. It can be seen that the most significant components are in
the low frequency range with two outstanding regions, around twice (IMF 1) and once (IMF 2) per day
(365 and 730 times per year). It can also be noted that higher frequencies (but with low amplitudes)
exist on IMF 1 during weekends.
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Reading an HHS, either in its scatter or set-of-lines plot versions, is sometimes difficult due to the
fact that several IMFs overlap in the graphic representation (as in Figures 10a and 11a). Therefore, it is
a common practice to discretize frequencies to obtain the Discrete Hilbert–Huang Spectrum (DHHS) as
it is defined in Equation (18). The result is depicted in Figure 11b where again the once and twice per
day frequencies can be seen.

The MHHS can now easily be extended to the whole dataset obtaining the results depicted in
Figure 12a, where the red arrows on the right axis point to a stationary and well-defined 365 times
per year frequency (once per day), as well as a somehow fluctuant 730 frequency (twice per day).
As most of the harmonics are in the low frequency region, Figure 12 (panels b to f) shows the MHHS at
different frequency (vertical) scales. The most outstanding regions are pointed with an arrow at the
following panels and frequencies: (b) 365; (c) 52 (once per week); (d) 2 (once per semester), and a quite
fluctuant component between 4 (once per trimester) and 6 (once per bimester); (e) 1 (once per year)
and 2 (once per semester); and (f) 0.3 (once per full 40 month period) and 1 (once per year).
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Figure 12. Electricity demand Discrete Hilbert–Huang Transform at different frequency scales: (a) Very
high; (b) high; (c) medium high; (d) medium low; (e) low; (f) very low.

If the electricity demand can be considered stationary, or if we are not interested in its transient
behavior, the temporal axis of DHHS can be squeezed to obtain the Marginal Hilbert–Huang Spectrum
(MHHS) according to Equation (19). Results obtained using different frequency scales are depicted in
Figure 13. Besides the harmonics obtained by FFT (marked in red), the Hilbert–Huang analysis reveals
new harmonics pointed in green in the graphics. The new values, in times per year, are the following:
183 (2-day period); 91 (4-day period); 12 (1-month period); 4.35 (12-week period) and a blurry region
till 6 (2-month period); and 0.3 covering the full 40-month dataset.

It has to be noted that although DHHS and its derived MHHS are quantized in frequency (also in
time), the frequency step ∆ f can be arbitrary selected. To maintain the details at each frequency scale,
the number of frequency quanta has been fixed to 100 in every panel of Figure 13 (also in Figure 12).
On the other hand, frequency resolution in FT is fixed and depends on the number of values in the
dataset (∆ f = 0.3 in our case). Then FT leads to an over-detailed spectra for full range frequencies
(Figure 2a), and to an under-detailed spectra for small range frequencies (Figure 2c). However, HHT
produces spectra with a selectable frequency granularity which can be adjusted to obtain similar detail
levels at each frequency range, as can be seen in Figure 13.
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(b) medium; (c) low. In red are the harmonics obtained by Fourier analysis, while in green are the new
harmonics revealed by HHT.

3.2. Spectral Analysis of the Intrinsic Mode Functions

One of the key elements of Hilbert–Huang Spectrum is the decomposition of the original sequence
(the electricity demand in our case) in an ensemble of Intrinsic Mode Functions (IMFs). Although the
main goal of this decomposition is to obtain a meaningful Hilbert Spectrum, the IMFs have interest on
their own, as any of them convey information about the electricity demand evolution for a certain
periodicity (or frequency) scale.

For this reason, it is worthy to study the spectral representation of every individual IMF. The first
approach will be to apply Fourier Transform (FT), getting the results depicted in Figure 14, where the
spectrum for the original sequence, the 13 IMFs, and the residue, can be compared.
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Figure 14. Spectral analysis of the electricity demand Intrinsic Mode Functions (IMFs), using Discrete
Fourier Transform. Peak frequencies (red circle) and spectrum centroid (dashed green line) are marked.

In each panel, the red circle marks the peak frequency, and the dashed green line represents the
spectrum centroid defined as:

fc ≡

∑N
k=1 k fsX(k)∑N

k=1 X(k)
, (21)

where fs is the sampling ratio and X(k) is the DFT of the IMF obtained applying Equation (2). It can be
seen that centroid is in all cases at a higher frequency than the peak, which indicates that the spectrum
contains a significant right-side tail.

Our second approach for the spectral characterization of IMFs will be to apply Hilbert Transform
recalling that, by definition, IMFs verify the conditions to avoid meaningless negative frequencies.
Then, the Marginal Hilbert Spectrum (MHS) is obtained according to Equation (14) and the results are
shown in Figure 15.



Sensors 2020, 20, 2912 14 of 25

Sensors 2020, 20, x FOR PEER REVIEW 13 of 25 

 

However, HHT produces spectra with a selectable frequency granularity which can be adjusted to 
obtain similar detail levels at each frequency range, as can be seen in Figure 13. 

3.2. Spectral Analysis of the Intrinsic Mode Functions 

One of the key elements of Hilbert–Huang Spectrum is the decomposition of the original 
sequence (the electricity demand in our case) in an ensemble of Intrinsic Mode Functions (IMFs). 
Although the main goal of this decomposition is to obtain a meaningful Hilbert Spectrum, the IMFs 
have interest on their own, as any of them convey information about the electricity demand 
evolution for a certain periodicity (or frequency) scale.  

For this reason, it is worthy to study the spectral representation of every individual IMF. The 
first approach will be to apply Fourier Transform (FT), getting the results depicted in Figure 14, 
where the spectrum for the original sequence, the 13 IMFs, and the residue, can be compared. 

 

Figure 14. Spectral analysis of the electricity demand Intrinsic Mode Functions (IMFs), using Discrete 
Fourier Transform. Peak frequencies (red circle) and spectrum centroid (dashed green line) are marked. 

In each panel, the red circle marks the peak frequency, and the dashed green line represents the 
spectrum centroid defined as:  𝑓 ≡ ∑ 𝑘𝑓௦𝑋(𝑘)ேୀଵ∑ 𝑋(𝑘)ேୀଵ , (21)

where 𝑓௦ is the sampling ratio and 𝑋(𝑘) is the DFT of the IMF obtained applying Equation (2). It can 
be seen that centroid is in all cases at a higher frequency than the peak, which indicates that the 
spectrum contains a significant right-side tail. 

Our second approach for the spectral characterization of IMFs will be to apply Hilbert 
Transform recalling that, by definition, IMFs verify the conditions to avoid meaningless negative 
frequencies. Then, the Marginal Hilbert Spectrum (MHS) is obtained according to Equation (14) and 
the results are shown in Figure 15.  

 
Figure 15. Spectral analysis of the electricity demand IMFs, using Marginal Hilbert Spectrum. Peak 
frequencies (red circle) and spectrum centroid (dashed green line) are marked. 
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frequencies (red circle) and spectrum centroid (dashed green line) are marked.

Unlike DFT, peaks and centroids have similar values in MHS, indicating that spectra are
approximately balanced around their central values. Additionally, it can be noted that frequency peaks
are quite similar in both methods.

Spectra for every IMF can also be plotted as a color map with frequency (vertical axis) versus IMF
index (horizontal axis) color-coding the spectrum value. Figure 16a shows the results applying DFT,
while MHT results are depicted in Figure 16b. Peaks can be identified as the highest colored regions
for each IMF, while the centroid is plotted as a black line.
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In the effort to obtain the frequency (or period) that best defines every IMF, the use of the
autocorrelation will finally be explored, defined as:

%(L) =
cov[x(n), x(n− L)]

var[x(n)]
=

∑N
n=1[x(n) − µx][x(n− L) − µx]∑N

n=1[x(n) − µx]
2 , (22)

where x(n) denotes the electricity demand series, µx is its mean value, and %(L) is the Pearson
autocorrelation coefficient for a certain lag L (an integer number). Then, the main periodicity is
defined by Lp∆t, where Lp is the lag corresponding to the autocorrelation first peak. Its inverse can be
considered the dominant frequency according to:

fd ≡
1

Lp∆t
. (23)

The autocorrelation corresponding to the first IMF is shown in Figure 17a, where the resulting
12 h main periodicity is marked with a red circle.
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In this subsection, three methods to obtain the featuring frequency of every IMF have been
presented. The results are summarized and compared in Figure 17b. It can be seen that all of them
offer very similar results, except the DFT-obtained centroids. A more detailed analysis shows that the
IMF main frequency is approximately halved in every step, as is clearly indicated by the dashed red
line in the plot.

3.3. Statistical Analysis of the Intrinsic Mode Functions

To get a deeper insight on IMFs, a statistical analysis of its Hilbert Transforms will now be developed.
Let us consider the electricity demand sequence x(n) and its Empirical Mode Decomposition (EMD).
Let us call zi(n) the resulting i-th IMF and let us obtain its Hilbert Spectrum Si(n) = HS[zi(n)] ≡[
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i(n)
]

according to Equation (13). If the instantaneous frequency
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F
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i < ϕi
]
=

1
N

N∑
i = 1
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i < ϕi

1. (24)

Then, its derivative is called the Probability Density Function (PDF), commonly approximated by
a histogram, and defined as:

f
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dF
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ϕi ≤
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= lim

∆ϕi→0

1
N∆ϕi

N∑
i = 1

ϕi ≤
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7. Obtain mean value of upper and lower envelopes: 𝑚𝑖,𝑗(𝑛) = [𝑢𝑖,𝑗(𝑛) + 𝑙𝑖,𝑗(𝑛)]/2 

8. Obtain the 𝑗-th trial for the 𝑖-th proto-IMF subtracting the mean value from the original 

data: ℎ𝑖,𝑗(𝑛) = 𝑥𝑖,𝑗(𝑛) − 𝑚𝑖,𝑗(𝑛) 

9. Repeat inner steps 3 to 7 (increasing 𝑗) until the inner loop stop criterion is fulfilled, which 

occurs in the 𝑘-th inner iteration 

10. Consider the last proto-IMF ℎ𝑖,𝑘(𝑛) as the 𝑖-th IMF: 𝑐𝑖(𝑛) = ℎ𝑖,𝑘(𝑛) 

i < ϕi + ∆ϕi

1. (25)

The resulting PDF for the instantaneous frequencies of every IMF is depicted in Figure 18. In each
panel, the red circle and the dashed green line marks mode and mean, respective of the instantaneous
frequency. These results are similar to those obtained through the spectral analysis shown in Figure 15.

Besides instantaneous frequency, the instantaneous amplitude
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i(n) can also be analyzed as a
random variable, and its probability density function can be derived in a similar way. The resulting
amplitude PDFs f
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(vertical axis) versus instantaneous amplitude (horizontal axis) are depicted in

Figure 19 (blue line). For the sake of completeness, the same figure also depicts in a rotated way
(orange line), the frequency PDFs f
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Figure 18. Instantaneous frequency Probability Density Function (PDF) of the electricity demand IMFs.
Instantaneous frequency mode (red circle) and mean (dashed green line) are marked.
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Figure 20. Statistical analysis (probability density function) of the electricity demand IMFs Hilbert 
Spectra: (a) Instantaneous amplitude; (b) instantaneous frequency. Black line shows the statistical mean. 

Previous statistical analyses consider instantaneous amplitude and frequency as two 
independent variables, but this is not really the case. Extending the PDF concept to the full Hilbert 
Spectrum considered as a 2-dimensional random process 𝑆(𝑛) = ሾ𝕒(𝑛), 𝕗(𝑛)ሿ, a joint PDF can be 
obtained, and the results for each IMF are shown in Figure 21. They are plotted color-coding the 
logarithm of the joint PDF (normalized in the 0–1 range) as a function of the instantaneous 
amplitude (horizontal axis) and frequency (vertical axis). The mean value ሾ𝜇𝕒, 𝜇𝕗ሿ is marked with a 
black cross. 

It can be seen that some IMFs present a very well defined frequency, for example, IMF 3 at 365 
times per year, IMF 6 at 52, or IMF 11 at once per year. Some others, for instance IMF 2 and 5, show 
this defined frequency at 365 and 52, plus a secondary lower-amplitude higher frequency region at 
around 730 and 91, respectively. 

Figure 19. Instantaneous amplitude Probability Density Function (PDF) of the electricity demand
IMFs (blue line). In a rotated way (orange line), frequency PDFs (horizontal axis) versus instantaneous
frequency (vertical axis) are also depicted.

Probability Density Functions for every IMF can also be plotted as a color map with instantaneous
amplitude (vertical axis) versus IMF index (horizontal axis), color-coding the PDF value (normalized in
the 0–1 range), as is shown in Figure 20a. A similar plot for instantaneous frequency PDF is depicted
in Figure 20b. Peaks (mode) can be identified as the highest colored regions for each IMF, while mean
value is plotted as a black line.
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Figure 20. Statistical analysis (probability density function) of the electricity demand IMFs Hilbert
Spectra: (a) Instantaneous amplitude; (b) instantaneous frequency. Black line shows the statistical mean.

Previous statistical analyses consider instantaneous amplitude and frequency as two independent
variables, but this is not really the case. Extending the PDF concept to the full Hilbert Spectrum
considered as a 2-dimensional random process S(n) =

[

Sensors 2020, 20, x FOR PEER REVIEW 5 of 25 

 

In most applications, the resulting Hilbert Transform �̂�(𝑛)  is combined with the original 

function, obtaining the so-called analytic function, defined as: 

�̃�(𝑛) ≡ 𝑥(𝑛) + 𝑗 �̂�(𝑛), (11) 

which is a time-dependent complex sequence. Its module is called instantaneous amplitude, that is, 

𝕒(𝑛) ≡ |�̃�(𝑛)| . An instantaneous frequency 𝕗(𝑛)  can also be obtained using the phase of the  

analytic function:  

𝕗(𝑛) ≡
Δ arg[�̃�(𝑛)]

𝑇𝑠

=
arg[�̃�(𝑛)] − arg[�̃�(𝑛 − 1)]

𝑇𝑠

. (12) 

Combining the instantaneous amplitude and frequency in a single vector of two functions, the 

Hilbert Spectrum (HS) is obtained, that is:  

𝑆(𝑛) = ℋ𝒮[𝑥(𝑛)] ≡ [𝕒(𝑛), 𝕗(𝑛)] ∈ ℝ2. (13) 

For the case of stationary sequences, it is better to obtain the Marginal Hilbert Spectrum (MHS), 

which is defined as:  

𝑆𝑚(𝑓) ≡ ∑ 𝕒(𝑛)

𝑁−1

𝑛=0
𝕗(𝑛)=𝑓

. (14) 

2.4. Empirical Decomposition and the Hilbert–Huang Transform for Spectral Analysis 

In many practical sequences it is not uncommon that some Hilbert instantaneous frequencies 

(and their derived HS and MHS) have negative values, which are meaningless [40]. For the 

instantaneous frequency to always be positive, the sequence must satisfy two conditions [41]: 

1. It is symmetric with respect to a null local average value; and 

2. It has the same number of zero-crossing and extrema. 

A sequence fulfilling these requirements is called an Intrinsic Mode Function (IMF). Therefore, 

to obtain meaningful Hilbert Transform, the original sequence 𝑥(𝑛) should be first decomposed in 

several IMFs 𝑐𝑖(𝑛). A method to achieve this goal is named Empirical Mode Decomposition (EMD) 

which is based on two nested loops: An outer iteration to obtain the 𝑖-th IMF 𝑐𝑖(𝑛); and an inner 

iteration to obtain ℎ𝑖,𝑗(𝑛), the 𝑗-th trial for the 𝑖-th IMF. The EMD algorithm (also called a sifting 

process) can be summarized in the following steps [42]: 

1. Consider original data as the first residue: 𝑟1(𝑛) = 𝑥(𝑛) 

2. Make 𝑖 = 1  

3. Obtaining the 𝑖-th IMF: 𝑐𝑖(𝑛) 

1. Consider the 𝑖-th residue as the first trial for the 𝑖-th proto-IMF: ℎ𝑖,1(𝑛) = 𝑟𝑖(𝑛) 

2. Make 𝑗 = 1 

3. Consider the 𝑗-th trial for the 𝑖-th proto-IMF as the ongoing sequence: 𝑥𝑖,𝑗(𝑛) = ℎ𝑖,𝑗(𝑛) 

4. Obtain upper local extrema of 𝑥𝑖,𝑗(𝑛) 

5. Obtain upper envelope (joining upper extrema with a cubic spline): 𝑢𝑖,𝑗(𝑛) 

6. Obtain lower local extrema and lower envelope: 𝑙𝑖,𝑗(𝑛) 

7. Obtain mean value of upper and lower envelopes: 𝑚𝑖,𝑗(𝑛) = [𝑢𝑖,𝑗(𝑛) + 𝑙𝑖,𝑗(𝑛)]/2 

8. Obtain the 𝑗-th trial for the 𝑖-th proto-IMF subtracting the mean value from the original 

data: ℎ𝑖,𝑗(𝑛) = 𝑥𝑖,𝑗(𝑛) − 𝑚𝑖,𝑗(𝑛) 

9. Repeat inner steps 3 to 7 (increasing 𝑗) until the inner loop stop criterion is fulfilled, which 
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]
, a joint PDF can be obtained, and

the results for each IMF are shown in Figure 21. They are plotted color-coding the logarithm of the
joint PDF (normalized in the 0–1 range) as a function of the instantaneous amplitude (horizontal axis)
and frequency (vertical axis). The mean value

[
µ
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It can be seen that some IMFs present a very well defined frequency, for example, IMF 3 at
365 times per year, IMF 6 at 52, or IMF 11 at once per year. Some others, for instance IMF 2 and 5,
show this defined frequency at 365 and 52, plus a secondary lower-amplitude higher frequency region
at around 730 and 91, respectively.

4. Discussion

This section will provide an interpretation of the previous results and a comparison of HHT
with more conventional spectral analysis techniques, such as Fourier or Wavelet Transforms. We will
focus on three aspects: The ability of HHT to provide more physically accurate frequency detection;
its application to abnormal behavior; and its power as an information compression technique.

4.1. Reading HHT Spectrum

Comparing spectral analysis by using HHT, as is depicted in Figure 13, and results obtained using
conventional FFT, as in Figure 2, clearly shows that HHT provides more clear and meaningful spectra.
HHT is also capable of discovering new underlying frequencies, such as 91 and 183 times per year.

Moreover, FFT-based spectrum frequency resolution is limited by the sampling frequency and the
number of values, as it is described in Equation (20), while HHT-based spectra can arbitrarily choose
frequency resolution by freely defining the quantizing ∆ f step in Equation (18). This HHT feature is
especially powerful to detect low frequency components (long-term periods) of electricity demand.

Wavelet Transform (WT), as it is shown in Figure 5, also enhances FFT low-frequency resolution.
However, compared to HHT, WT is not as powerful at discovering new frequencies, and they are less
accurate [43].

Therefore, HHT-based spectral analysis results are clearer, more intuitive, and more physically
meaningful than FFT and even WT. Other authors have also obtained similar results studying electrical
users [44], and other electrical or mechanical sequences [45,46].

4.2. Detecting Abnormal Energy Demand Behavior

Although full research on abnormal detection is out of the scope of the present paper, some of the
findings in our research also have significant implications in detecting electricity demand abnormalities.

The full sequence decomposition using EMD provides an ensemble of IMFs of different periodicities
(or frequencies). Therefore, by choosing the proper IMF, the abnormal behavior at the IMF periodicity
scale can be detected. For instance, IMF 6 has a periodicity of about one week (see Figure 15); thus,
examining this IMF, it would be possible to detect weeks with abnormal electricity demand. Similarly,
as IMF 3 has a periodicity of one day, abnormal daily consumptions would be detected based on its
analysis. EMD thus provides a tool for searching for abnormalities at a determined timescale.

On the other hand, the Hilbert Spectrum of each IMF provides instantaneous amplitude and
frequency which can be labeled as normal or abnormal using different techniques. As a first approach,
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amplitude (or frequency or joint) Probability Density Function (PDF) can be used as the likelihood
of normal behavior. Detecting low likelihood is therefore equivalent to detecting abnormal demand.
Figure 22 shows the instantaneous amplitude logarithmic likelihood for every IMF.
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Considering, for instance, IMF 6, a very low likelihood can be appreciated at approximately
time 2.0 (years), corresponding to New Year’s week. As this IMF has a weekly periodicity, it should
correspond to a week with abnormal electricity demand. Let us take a closer look, just as an example,
at this IMF and the instantaneous amplitude logarithmic likelihood as it is shown in Figure 23a.
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This low likelihood value is due to an abnormally high (and wide) value of the instantaneous
amplitude of the IMF 6 Hilbert Spectrum as shown in Figure 23b, where the dashed gray line indicates
the low likelihood time. The IMF 6 sequence also displays high and wide values at the abnormal time,
as is depicted in Figure 23c. Finally, Figure 23d shows the evolution of electricity demand (in blue) and
weekly demand (in orange), where it can be seen that, at the abnormal demand time, there is a weekly
demand in “V”, while one year earlier or later, the weekly demand mainly looks like a “W”.

The abnormal behavior of electricity demand detected analyzing IMF 6 is shown in Figure 24,
where a normal week is displayed in panel (a), while three New Year’s weeks are shown in the
remaining panels. A normal week (a) usually has two days of lesser demand: Saturday and Sunday.
The New Year’s week of 2017 (b) does not very much differ from this pattern. However, 2018 New
Year’s week (c) has three days (not just two) of lesser demand. On the other hand, 2019 New Year’s
week (d) also has an abnormal pattern, but with 4 days of lesser demand. This longer abnormality is
not detected by IMF 6 but, instead, it is caught by IMF 7, probably due to its longer periodicity.
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Abnormal demand detection is an important issue in smart metering when an algorithm is
incorporated into the meters to detect abnormal electricity consumption as a result of illegal human
intervention [12], or when external events produce anomalies in large systems’ energy demand [47,48]
or customer-related consumption [49].

Some frequency domain-based methods have been proposed for anomaly detection in power
load curves either using Fourier Transform [50] or Wavelet Transform [51]. However, to the best
of our knowledge, no solution has been proposed using Hilbert–Huang Transform. As has been
revealed throughout the paper, HHT-based anomaly detection provides a multiscale perspective,
making possible to detect short-, medium-, and long-term anomalies.

A related issue is load curve characterization in which spectral methods have also been proposed
using Fourier [27] or Wavelet Transforms [52,53]. No HHT-based solution for load or client profiling
has been found in the technical literature. Again, the multiscale perspective provided for Empirical
Mode Decomposition deserves to be further explored.

4.3. Electricity Demand Sequence Compression

One of the applications of spectral analysis is its capability of compressing the information
required to characterize a signal or sequence. Let us consider a sequence x(n) of N values representing,
for instance, the hourly electricity demand. Its Fourier Transform (FT) also has N harmonics. In fact,
only N/2 harmonics are required as the resulting spectrum is symmetric, but each harmonic is a complex
number defined by 2 values, so N values are still required to describe the spectrum. If instead of N
values, M coefficients are kept and N −M are discarded, the inverse FT recovers an approximation x̃(n).
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Therefore, by reducing the amount of information representing the sequence, an error is introduced.
A common measure of the overall compressing error is the Root Mean Square Error (RMSE), defined as:

RMSE =

√
1
N

∑N

n=1
[x(n) − x̃(n)]2. (26)

An alternative for the spectral representation of a sequence is the use of EMD. By decomposing
the sequence x(n), several IMFs are obtained, each of them with N values. However, recalling the
procedure to obtain IMFs described in Section 2.4, only the extrema points are required to fully define
an IMF as the remaining points are obtained by a standard cubic spline interpolation. As the number
of extrema can be considerably lower than N, a reduction in the number of coefficients required to
represent x(n) can be expected.

Applying these ideas to our electricity demand dataset, the results shown in Figure 25 are obtained.
In panel (a) the number of coefficients required to fully describe each IMF is displayed. This number
is approximately halved in every IMF, as is clearly indicated by the dashed red line in the plot. If a
compression is required, only extrema representing lower frequencies IMFs are kept.
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describe an IMF (dashed red line for halving this number); (b) cumulative number of coefficients when
several IMFs are employed (as a % of the total number of values in the original sequence).

The cumulative number of values required when several IMFs are employed is displayed in
Figure 25b. These results, expressed as a percentage of the total number of values in the original
sequence (N), clearly reveal that even when using the full set of IMFs, the information required is
34.85% lower than N.

From previous results, it is clear that the electricity demand sequence can be compressed either
using a Fourier Decomposition (FD) in its harmonics, or an Empirical Mode Decomposition (EMD)
in its IMFs. Comparing the error introduced by both procedures, the results depicted in Figure 26
are obtained. For a very high compression ratio (higher than 90%) both methods offer equivalent
performance (FD slightly better). In the medium-range compression ratio, FD obtains smaller errors
than EMD. But for zero-error compression EMD clearly outperforms FD.

As a final discussion, let us compare the analysis methods discussed in this section. The first
and main goal of any spectral analysis should be identifying a signal’s underlying frequencies
(or periodicities). Regarding electricity demand, the frequency discovering capabilities of each method
are summarized in Table 1.

It can be seen that the Hilbert–Huang Transform discovers more physically meaningful frequencies
with an excellent time-frequency resolution. Additionally, a qualitative assessment of the spectral
analysis methods is summarized in Table 2.
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Table 1. Frequencies discovered for different spectral analysis methods.

Periodicity Theoretical Fourier Wavelet Hilbert-Huang

12 h 730 730 726 730
24 h 365 365 367 365

2 days 182.5 183
4 days 91.25 106 91
1 week 52.14 52.00 52.00 52.00

1 month 12 9.2 12
2 months 6 6
12 weeks 4.35 4.60 4.35
6 months 2 2 2 2

12 months 1 1 1
40 months 0.30 0.40 0.30

Table 2. Comparison of spectral analysis techniques.

Feature Fourier Wavelet Hilbert-Huang

Linearity required Yes Yes No
Stationarity required Yes No No
Frequency analysis Yes Yes; Marginal WT Yes; Marginal HHT

Time –frequency analysis Yes; STFT Yes Yes
Time–frequency resolution Constant Variable Arbitrarily small

Spectrum smoothness Low Medium High
Frequencies discovering Medium High Very high

Non-linear modes discovering No No Yes
Compression ratio Medium High Low

Lossless compression ratio Low Low High
Processing requirements Low Medium High

5. Conclusions

Regarding energy demand frequency-domain characterization, the spectral analysis based on
conventional Fourier analysis clearly reveals two harmonics at 365 and at 730 showing the main periodic
behavior of the load curve featured by a daily evolution with two humps at noon and mid-afternoon.
A third harmonic stands out at the frequency of 52, revealing a weekly periodicity characterized by a
higher demand on labor days and lower consumption on weekends. Finally, frequencies at 2 (semester)
and 1 (year) appear.
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On the other hand, by using Hilbert–Huang Transform, 6 new harmonics have been revealed,
centered at the following frequencies: 183 (2-day period); 91 (4-day period); 12 (1-month period); 4.35
(12-week period); 6 (2-month period); and 0.3 (covering the full 40-month dataset).

From a more qualitative point of view, it can be stated that using the Hilbert–Huang Transform
(HHT) for spectral analysis of electricity demand leads to clearer, more intuitive, and more meaningful
results than those of more conventional techniques like Fourier or Wavelet transforms. HHT obtains
smoother spectra with more defined shapes, revealing physically significant harmonics. Moreover,
HHT spectra present an excellent frequency resolution, totally independent of time resolution.

Empirical Mode Decomposition (EMD) required in HHT also fosters a deeper analysis of
abnormal electricity demand at different timescales. The set of Intrinsic Mode Functions (IMFs) and
their instantaneous amplitude and frequency provides very useful tools to detect consumptions not
following normal patterns.

Applying this analysis, an example of abnormal behavior has been extensively studied (IMF 6)
corresponding to an anomalous weekly consumption during 2017 New Year’s week. Further analysis
using different IMFs has proven to be useful for discovering other irregularities, for instance: A day
with only one energy consumption peak (instead of two) at August 2, 2018 (IMF 3); a 2-week singularity
at the beginning of 2018 (IMF 7); and an unusual 2017 second trimester (IMF 9).

The main advantage of employing EMD-based methods relies on the fact that timescale can
be adjusted by selecting a certain IMF. In the effort to obtain the frequency (or period) that best
defines every IMF, several techniques have been explored (FFT, HHT, autocorrelation, and probability
distributions). A common conclusion arises: IMF main frequency is approximately halved in every
step, beginning at 730 times per year (twice a day) for IMF 1.

Additionally, EMD permits information compression, which becomes very significant for lossless
sequence representation. A 35% reduction has been obtained for the electricity demand sequence. On the
negative side, HHT demands more computer resources (memory and CPU time) than conventional
spectral analysis techniques.

In summary, the research presented in the paper has reached three main findings. First, Hilbert–
Huang Transform outperforms conventional spectral analysis techniques while providing multiple
timescales perspectives. Second, a combination of HHT and Empirical Mode Decomposition has
proved to excel abnormal energy consumption detection. Third, EMD provides very good lossless
compression ratios.
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ARIMA Autoregressive Integrated Moving Average
DFT Discrete Fourier Transform
DHHS Discrete Hilbert–Huang Spectrum
EMD Empirical Mode Decomposition
ENTSO-E European Network of Transmission System Operators for Electricity
FD Fourier Decomposition
FFT Fast Fourier Transform
FT Fourier Transform
HHS Hilbert–Huang Spectrum
HHT Hilbert–Huang Transform
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HS Hilbert Spectrum
HT Hilbert Transform
IMF Intrinsic Mode Functions
MHHS Marginal Hilbert–Huang Spectrum
MHLV Monthly Hourly Load Values
MHS Marginal Hilbert Spectrum
MWT Marginal Wavelet Transform
pdf Probability Density Function
RMSE Root Mean Square Error
WT Wavelet Transform
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35. Grzesica, D.; Wiȩcek, P. Advanced Forecasting Methods Based on Spectral Analysis. Procedia Eng. 2016,
161, 253–258. [CrossRef]

36. Monthly Hourly Load Values. Available online: https://www.entsoe.eu/data/power-stats/hourly_load/

(accessed on 23 May 2019).
37. ENTSO-E. Available online: https://www.entsoe.eu/ (accessed on 19 January 2020).
38. Real-Time Demand and Generation. Red Eléctrica de España. Available online: https://www.ree.es/en/

activities/realtime-demand-and-generation (accessed on 19 January 2020).
39. Podder, P.; Zaman Khan, T.; Haque Khan, M.; Muktadir Rahman, M. Comparative Performance Analysis of

Hamming, Hanning and Blackman Window. Int. J. Comput. Appl. 2014, 96, 1–7. [CrossRef]
40. Hahn, S.L. Hilbert Transforms in Signal Processing; Artech House: Boston, MA, USA, 1996; Volume 2.
41. Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Snin, H.H.; Zheng, Q.; Yen, N.C.; Tung, C.C.; Liu, H.H.

The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series
analysis. Proc. R. Soc. A Math. Phys. Eng. Sci. 1998, 454, 903–995. [CrossRef]

http://dx.doi.org/10.1109/MNET.2017.1600319
http://dx.doi.org/10.1109/TPWRS.2016.2536781
http://dx.doi.org/10.3390/s121216838
http://dx.doi.org/10.3390/s18051365
http://dx.doi.org/10.1109/TPWRS.2011.2170592
http://dx.doi.org/10.3390/en11030607
http://dx.doi.org/10.1016/j.enbuild.2016.03.047
http://dx.doi.org/10.1109/TPWRS.2014.2362492
http://dx.doi.org/10.1109/TII.2016.2638319
http://dx.doi.org/10.3390/s18124329
http://www.ncbi.nlm.nih.gov/pubmed/30544598
http://dx.doi.org/10.1002/asmb.501
http://dx.doi.org/10.1109/TSG.2012.2235089
http://dx.doi.org/10.1109/JSEN.2019.2913006
http://dx.doi.org/10.1371/journal.pone.0194889
http://dx.doi.org/10.1016/j.proeng.2016.08.546
https://www.entsoe.eu/data/power-stats/hourly_load/
https://www.entsoe.eu/
https://www.ree.es/en/activities/realtime-demand-and-generation
https://www.ree.es/en/activities/realtime-demand-and-generation
http://dx.doi.org/10.5120/16891-6927
http://dx.doi.org/10.1098/rspa.1998.0193


Sensors 2020, 20, 2912 25 of 25

42. Huang, N.E.; Shen, S.S.P. Hilbert–Huang Transform and Its Applications; Interdisciplinary Mathematical Sciences;
World Scientific: Singapore, 2014; Volume 16.

43. Donnelly, D. The Fast Fourier and Hilbert-Huang Transforms: A Comparison. In Proceedings of the
Multiconference on “Computational Engineering in Systems Applications”, Beijing, China, 4−6 October
2007; pp. 84–88.

44. Puliafito, V.; Vergura, S.; Carpentieri, M. Fourier, Wavelet, and Hilbert-Huang Transforms for Studying
Electrical Users in the Time and Frequency Domain. Energies 2017, 10, 188. [CrossRef]

45. Li, Y.; Zhang, L.; Li, B.; Jin, Z.; Wang, H.; Lin, R. The Comparative Analysis of Fourier Transformation and
Hilbert Huang Transformation Based on Dynamic EEG Data. In Proceedings of the 2017 2nd International
Conference on Materials Science, Machinery and Energy Engineering (MSMEE 2017), Dalian, China, 13–14
May 2017; pp. 1439–1447.

46. Ayenu-Prah, A.Y.; Attoh-Okine, N.O. Comparative study of hilbert-huang transform, fourier transform and
wavelet transform in pavement profile analysis. Veh. Syst. Dyn. 2009, 47, 437–456. [CrossRef]

47. Rossi, B.; Chren, S.; Buhnova, B.; Pitner, T. Anomaly detection in Smart Grid data: An experience report.
In Proceedings of the 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Budapest,
Hungary, 9–12 October 2016; pp. 2313–2318.

48. Karimipour, H.; Geris, S.; Dehghantanha, A.; Leung, H. Intelligent Anomaly Detection for Large-scale Smart
Grids. In Proceedings of the 2019 IEEE Canadian Conference of Electrical and Computer Engineering
(CCECE 2019), Edmonton, AB, Canada, 5–8 May 2019.

49. Araya, D.B.; Grolinger, K.; ElYamany, H.F.; Capretz, M.A.M.; Bitsuamlak, G. An ensemble learning framework
for anomaly detection in building energy consumption. Energy Build. 2017, 144, 191–206. [CrossRef]

50. Wrinch, M.; El-Fouly, T.H.M.; Wong, S. Anomaly detection of building systems using energy demand
frequency domain analysis. In Proceedings of the IEEE Power and Energy Society General Meeting, San
Diego, CA, USA, 22–26 July 2012.

51. Ghanbari, M.; Kinsner, W.; Ferens, K. Anomaly detection in a smart grid using wavelet transform, variance
fractal dimension and an artificial neural network. In Proceedings of the 2016 IEEE Electrical Power and
Energy Conference(EPEC 2016), Ottawa, ON, Canada, 12–14 October 2016.

52. Zhong, S. Electricity Load Modeling in Frequency Domain. Ph.D. Thesis, Virginia Polytechnic Institute and
State University, Blacksburg, VA, USA, 2017.

53. Jiang, Z.; Lin, R.; Yang, F.; Wu, B. A fused load curve clustering algorithm based on wavelet transform.
IEEE Trans. Ind. Inform. 2018, 14, 1856–1865. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/en10020188
http://dx.doi.org/10.1080/00423110802167466
http://dx.doi.org/10.1016/j.enbuild.2017.02.058
http://dx.doi.org/10.1109/TII.2017.2769450
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Dataset 
	Conventional Techniques for Spectral Analysis 
	The Hilbert Transform for Spectral Analysis 
	Empirical Decomposition and the Hilbert–Huang Transform for Spectral Analysis 

	Results 
	Spectral Analysis of Electricity Demand 
	Fourier Transform of Electricity Demand 
	Short-Time Fourier Transform of Electricity Demand 
	Wavelet Transform of Electricity Demand 
	Marginal Wavelet Transform of Electricity Demand 
	Hilbert Spectrum of Electricity Demand 
	Hilbert–Huang Spectrum of Electricity Demand 

	Spectral Analysis of the Intrinsic Mode Functions 
	Statistical Analysis of the Intrinsic Mode Functions 

	Discussion 
	Reading HHT Spectrum 
	Detecting Abnormal Energy Demand Behavior 
	Electricity Demand Sequence Compression 

	Conclusions 
	References

