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SUMMARY

Most patients diagnosed with resected pancreatic adenocarcinoma (PDAC) survive less than 5-

years, but a minor subset survives longer. Here, we dissect the role of the tumor microbiota and the 

immune system in influencing long-term survival. Using 16S rRNA gene sequencing, we analyzed 

the tumor microbiome composition in PDAC patients with short and long-term survival (STS, 

LTS). We found higher alpha-diversity in the tumor microbiome of LTS patients and identified an 

intra-tumoral microbiome signature (Pseudoxanthomonas/Streptomyces/Saccharopolyspora/

Bacillus clausii) highly predictive of long term survivorship in both discovery and validation 

cohorts. Through human-into-mice Fecal Microbiota Transplantation (FMT) experiments from 

STS, LTS or control donors, we were able to differentially modulate the tumor microbiome and 

affect tumor growth as well as tumor immune infiltration. Our study demonstrates that PDAC 

microbiome composition, which cross-talks to the gut microbiome, influences the host immune 

response and natural history of the disease.

Graphical Abstract
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In Brief

The distinct tumor microbiome from pancreatic cancer long-term survivors can be used to predict 

PDAC survival in humans, and transfer of long-term survivor gut microbiomes can alter the tumor 

microbiome and tumor growth in mouse models.

INTRODUCTION

Pancreatic ductal adenocarcinoma (PDAC) is a disease of near uniform mortality (Hidalgo, 

2010; Kamisawa et al., 2016; Miller et al., 2016). Most patients present with advanced stage 

disease and the prognosis is dismal, with a 5-year overall survival of 9% (Siegel et al., 

2018). Even when patients can undergo surgical resection, the recurrence rate is very high 

and median overall survival varies between 24 to 30 months (Siegel et al., 2018). Despite 

this, a minor subset of patients survive more than 5-years post-surgery (Dal Molin et al., 

2015; DeSantis et al., 2014). The factors that determine such enigmatic long-term survival 

are unknown. It is widely accepted that the cancer genomic landscape can be predictive of 

overall survival and response to therapy (Le et al., 2015; Ock et al., 2017; Vogelstein et al., 

2013). However, analysis of stage-matched PDAC long term survivors has not demonstrated 

significant genomic differences compared to those patients with shorter survival (Dal Molin 

et al., 2015; Makohon-Moore et al., 2017). Recently, Balachandran et al. have used an in 
silico prediction approach to demonstrate that PDAC tumors from long term survivors have 

high quantity and quality of neoantigens, and stronger infiltration and activation of CD8+ T 

cells. Interestingly, the neoantigens exhibited homology to infectious disease-derived 

peptides, suggesting a neoantigen molecular mimicry with microbial epitopes (Balachandran 

et al., 2017). These data suggest that microbial host factors, independent of the genomic 

composition of the tumor, may determine tumor behavior and patient outcomes.

The key role of the gut microbiota as a host factor mediating tumor responses to 

chemotherapy and immunotherapy in patients with melanoma and lung cancers has been 

recently highlighted (Gopalakrishnan et al., 2018; Matson et al., 2018; Routy et al., 2018). 

These studies suggest that gut bacteria influences the activation of the immune system, 
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promoting cancer-associated inflammation and ultimately affecting tumor responses to 

therapies. This information has allowed the stratification of patients into responders and non-

responders using the microbiota composition as a predictive biomarker of response to 

immunotherapy.

Recently, Geller et al. reported the presence of Gammaproteobacteria (GP), besides other 

bacteria, in human PDAC. Importantly, they reported that GP is able to metabolize 

gemcitabine (2′,2′-difluorodeoxycytidine) into its inactive form (2′,2′-
difluorodeoxyuridine), suggesting that the presence of this bacteria in PDAC may be 

responsible for the tumor resistance to gemcitabine (Geller et al., 2017). Additionally, 

Pushalkar et al. detected specific gut and tumor microbiome in murine models of PDAC, 

suggesting potential bacterial translocation from the intestinal tract into the peritumoral 

milieu (Pushalkar et al., 2018). Bacterial ablation with antibiotics in a PDAC orthotopic 

mouse model reshapes the tumor microenvironment, inducing T-cell activation, improving 

immune surveillance, and increasing sensitivity to immunotherapy. Together, these data 

suggest that modulating the gut and/or tumor microbiome could emerge as a novel strategy 

to sensitize tumors to therapeutics.

Despite all this knowledge, the composition of the human PDAC microbiome that 

contributes favorably or adversely to the natural history of pancreatic cancer remains 

incompletely studied. This represents a significant unmet need, as most chemotherapeutic 

and immunotherapeutic agents that have proven efficacy in other malignancies have limited 

efficacy in PDAC (Garrido-Laguna and Hidalgo, 2015; Manji et al., 2017). To help address 

this, we designed a study focused on dissecting the tumor microbiota of independent cohorts 

of PDAC patients at two geographically disparate tertiary care institutions (studying long-

term versus short-term survivors) to gain insights on the host-related influences that might 

guide this unusual long-term survival. Furthermore, we have performed human fecal 

microbial transplants from patients with PDAC, survivors of PDAC and healthy controls to 

assess the capacity of the gut microbiome to shape the tumor microbiome, modulate the 

immune system and, ultimately, affect tumor growth.

RESULTS.

Tumor microbial diversity is associated with better outcomes in resected PDAC patients

To explore the role of the human tumor microbiome composition in mediating clinical 

outcomes of PDAC patients, we used a discovery cohort to compare surgically resected 

patients who survived more than 5 years post-surgery, or long-term survivors (LTS, median 

survival 10.1 years), to stage-matched short-term survivors who survived less than 5 years 

post-surgery (STS, median survival 1.6 years) from UT MD Anderson Cancer Center 

(MDACC) in Houston, Texas (Figure 1A and Table 1). Patients in LTS and STS groups were 

matched with respect to age, gender, stage and prior therapies, including antibiotics use, 

neadjuvant or adjuvant treatments (Table 1). We then used a validation cohort with similar 

survival characteristics from Johns Hopkins Hospital (JHH) in Baltimore, Maryland. 

Bacterial DNA was extracted from 68 surgically resected PDAC tumor (36 LTS and 32 STS) 

and taxonomic profiling via 16S rRNA gene sequencing was performed. We first measured 

the tumor microbial diversity using different methodologies (Observed Taxonomic Units, 
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Shannon and Simpson Indices) and found that alpha-diversity of the tumor microbiome, 

defined as the number of species present within each tumor sample (Kurilshikov et al., 

2017), was significantly higher in the LTS patients compared to STS on both the MDACC 

discovery cohort (p < 0.0005, p < 0.0005 and p < 0.05, for each alpha-diversity indice, 

respectively) and the JHH validation cohort (p < 0.005, p < 0.005 and p < 0.005, for each 

alpha-diversity indice, respectively) (Figure 1B). Based on these results, we then tested the 

relationship berween PDAC tumor microbial diversity and overall survival (OS) in the 

MDACC cohort by stratifying the patients in two groups based on median diversity obtained 

by Shannon index. As expected, we found that patients with high alpha diversity had 

significantly prolonged overall survival (median survival: 9.66 years) than those with low 

alpha diversity (median survival: 1.66 years) using univariate Cox proportional hazard 

models (Figure 1C). The relationship between tumoral microbial diversity and survival 

actually allowed for the stratification and redistribution of PDAC patients according to alpha 

diversity value (high or low) (Figure 1C). Importantly, we assessed for potential contributors 

to microbial diversity, including clinico-pathological features, body mass index, sex, 

smoking, neoadjuvant/adjuvant therapies as well as antibiotics use, and were not able to find 

any significant association (Figure S1). Recent studies have proposed that a high microbial 

diversity in the gut microbiome is associated with favorable outcomes to treatment 

(Gopalakrishnan et al., 2018). On the contrary, an imbalance in the gut microbiome or 

dysbiosis, is associated with poor responses to these therapies, and associated with chronic 

diseases and cancer development (Ferretti et al., 2017; Human Microbiome Project, 2012b; 

Kundu et al., 2017; Lloyd-Price et al., 2017; Shoemark and Allen, 2015). Our findings 

indicate that the tumor alpha diversity could serve as a predictor of survival outcome in 

resected PDAC patients, suggesting the potential relevance of the microbiome composition 

in mediating pancreatic cancer progression.

To extend our understanding of the role of microbiome diversity and its association with 

survival, we aimed to detect whether phylogenetic relationships exist between the bacterial 

communities enriched in the PDAC milieu of STS and LTS. We used beta-diversity to 

generate a principal coordinate analysis (PCoA) using Unweighted-UniFrac distances 

(Lozupone et al., 2011) and using Bray-Curtis metric distances (McMurdie and Holmes, 

2013). A clear clustering between operational taxonomic units (OTUs) from LTS and STS 

was revealed by both methods in both independent cohorts (Figure 1D and 1E), suggesting 

that the tumor microbial communities exhibit phylogenetic closeness within each group (p < 

0.05).

Tumor microbiome communities are significantly different between LTS and STS

Considering the relationship between PDAC intra-tumoral bacterial diversity and overall 

survival, we next sought to determine if there were differences in the tumor microbiome 

composition between PDAC LTS and STS. To this end, we first assessed the general 

landscape of the tumor microbiome on all patients from both cohorts which revealed 

presence of similar communities (Figure 2A). We then compared enrichment of OTUs in 

LTS versus STS, which revealed enrichment for specific bacterial communities in each 

group at the various taxonomic level (Figure S2A–S2E). When we evaluated for the 

influence of neadjuvant/adjuvant therapies and antibiotics use in MDACC cohort, we did not 
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detect significant differences in the taxonomic composition at the order level (Figure S2F–

S2H). To further investigate these findings, we focused on our discovery cohort and 

conducted high dimensional class comparisons using linear discriminant analysis of effect 

size (LEfSe) (Segata et al., 2011) which detected marked differences in the predominance of 

bacterial communities between LTS and STS (Figure 2B and 2C): The LTS tumors exhibited 

a predominance of Alphaprotebacteria Sphingobacteria, and Flavobacteria at the Class level. 

In contrast, the PDAC STS cases were dominated by Clostridia and Bacteroidea at the Class 

level (Figure 2B and 2C). We then interrogated if the tumor microbiome can be segregated 

by comparison heatmap based in the OTU abundance at the genus level using patients 

survival as a variable (Figure 2D). The genus features were selected using logistic regression 

combined with LASSO (See STAR methods). We visualized the differential taxonomic 

communities differential segregation according to the survival of the PDAC patients. The 

LTS patients showed an enrichment on Proteobacteria (Pseudoxanthomonas) and 

Actinobacteria (Saccharopolyspora and Streptomyces), while no predominant genus was 

detected in the STS tumors. We then stratified patients into high versus low categories based 

on their median relative abundance of these three taxa (Pseudoxanthomonas, 

Saccharopolyspora and Streptomyces). Significantly better outcomes were predicted for 

PDAC patients with higher abundance of Saccharopolyspora (HR= 13.47, 95% CI 4.672–

38.83), Pseudoxanthomonas (HR=5.885, 95% CI 2.37–14.61) and Streptomyces (HR= 

4.572, 95% CI 2.033–10.28) (Figure 2E and Table S1A). Considering that all above 

comparisons were done in the discovery cohort, we then proceeded to validate the relative 

abundance of top 3 hits in the JHH cohort and found that Pseudoxanthomona, 

Saccharopolsypora and Streptomyces were also significantly more abundant in LTS vs STS 

from this cohort (Figure 2F). We then used these three genus with higher abundance in LTS 

to run Area Under Curve (AUC)-Receiver Operator Characteristic (ROC) analysis. We 

found that the combination of these Top 3 taxa (Pseudoxanthomonas, Saccharopolyspora 

and Streptomyces) resulted in an AUC of 88.89 in the discovery cohort and 86.67 in the 

validation cohort (Figure 2G).

We then attempted to assess for differences in mean relative abundance of species between 

LTS and STS that could potentially increase predictive value of long-term survivorship and 

found two species significantly enriched in LTS vs STS in the discovery cohort: Bacillus 
clausii (1.78% vs 0%, FDR adj P-value: 0.001) and Saccharopolyspora rectivirgula (1.91% 

vs 0.26%, FDR adj P-value: 0.001) (Table S1B). Since Bacillus clausii belongs to a genus 

different from the three described, we tested its addition to the signature to predict LTS. 

While the individual AUC were 88.10 and 63.3 in the discovery cohort and validation 

cohorts, respectively, when we added Bacilus Clausii to the three genus signature, the AUC 

in the discovery cohort increased to 97.51 and in validation cohort to 99.17 (Figure 2G and 

2H). These data suggest that the presence and abundance of these three taxa communities 

Saccharopolyspora, Pseudoxanthomonas and Streptomyces, added with the presence of 

Bacillus Clausii, could influence and predict long-term survivorship in PDAC patients.

To definitively confirm the presence of intratumoral bacteria in PDAC cases, we conducted 

several additional experiments. We first performed ribosomal RNA (rRNA) fluorescence in 

situ hybridization (FISH) in a subset of archival FFPE PDAC samples, using a specific probe 

that targets bacterial 16S rRNA. The FISH analysis of bacterial 16S rRNA confirmed the 
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presence of bacterial DNA in all PDAC samples analyzed (Figure S3A). Additionally, in the 

same set of FFPE samples, we detected the presence of bacterial lipopolysaccharide (LPS) 

by immunohistochemistry using an antibacterial lipopolysaccharide antibody, as previously 

performed (Figure S3B) (Geller et al., 2017). Consistently, this approach confirmed the 

presence of intratumoral bacterial in all PDAC samples evaluated (Figure S3B). 

Furthermore, to verify the presence of bacteria in frozen samples, we analyzed 9 frozen 

PDAC tissue samples matched to FFPE specimens that were previously analyzed. The 16S 

rDNA PCR demonstrated the presence of bacterial DNA in the 9 PDAC frozen samples 

analyzed (Figure S3C). Additionally, we sought for the presence of Saccharopolyspora 
rectivirgula, one of the top species enriched in LTS vs STS, using primers designed for this 

species and isolated bacteria as positive control and we detected positive bands on 6/6 LTS 

PDAC frozen samples analyzed (Figure S3D).

Additionally, to confirm whether the overall tumor bacterial composition was similar 

between frozen and FFPE samples, and to exclude the possibility that most of bacteria 

previously found was an artifact of FFPE fixation, we performed 16S rRNA gene 

sequencing of frozen tissue and compared it to the corresponding FFPE samples (Figure 

S3E). The data showed similar taxonomic composition between FFPE and frozen PDAC 

samples, and notably, no statistically significant differences were found between their 

taxonomic compositions of both types of samples (Figure S3E and Table S2). Additionally, 

we used frozen PDAC samples to obtain and isolate bacteria from the tissue (Figure S3F). 

These colonies were selected and DNA was extracted for subsequent PCR amplification of 

the 16S rDNA (Figure S3G).

Overall, the results obtained from all of these approaches confirmed the presence of bacteria 

in the PDAC samples including some of the species enriched in LTS.

The tumor microbiome shapes immune responses promoting T cell activation

The gut microbiota plays a pivotal role in shaping the immune system (Atarashi et al., 2013; 

Mazmanian et al., 2008; McAllister et al., 2014). Recent studies have described that the gut 

microbiota composition can improve responses to immunotherapy by modulating the 

immune system (Gopalakrishnan et al., 2018; Matson et al., 2018; Riquelme et al., 2018; 

Routy et al., 2018; Vetizou et al., 2015). We hypothesized that tumoral bacteria has the 

ability to shape the immune tumor microenvironment which can influence the natural history 

of the cancer. We used singleplex immuhistochemistry, as well as multiplex 

immunofluorescence staining to delineate the tumor immune infiltrates in the discovery 

cohort (MDACC). We found greater densities of CD3+ and CD8+ T cells in the LTS 

compared with the STS patients (p = 0.0273 and p < 0.0001, respectively) (Figure 3A–3C). 

We also detected significantly higher number of Granzyme B+ (GzmB) cells in the LTS 

(Figure 3A and 3B, lower panel, p = 0.04), while no significant differences were detected in 

regulatory T cells (CD3+ FOXP3+), macrophages (CD68), or MDSC (CD66b) (data not 

shown). Consistently, we found greater densities of CD8+ T cells in the LTS compared with 

the STS patients (p = 0.008) in the validation cohort (Figure 3D and 3E). The Spearman 

rank-order correlation demonstrated a significant positive correlation between CD3+, CD8+ 

and GzmB+ tissue densities and the overall survival of PDAC patients (p = 0.03, p < 0.001 
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and p = 0.01, respectively) (Figure 3F). Interestingly, we found a strong significant 

correlation between CD8+ and GzmB+ tissue densities with microbiome diversity (Figure 

3F, lower panel), suggesting that the tumor microbiome diversity may influence both the 

extent of immune infiltration and the degree of activation of CD8+ T cells. Finally, when we 

correlated the CD8+ T cell tissue densities with the top-three enriched genus in LTS 

patients, Saccharopolyspora, Pseudoxanthomonas and Streptomyces, we found a positive 

Spearman correlation between the two variables (p < 0.0001, p = 0.006 and p < 0.0001, 

respectivelly) (Figure 3G). These findings suggest that the tumor microbiome diversity and 

the presence of these three genus in the tumor may contribute to the anti-tumor immune 

response by favoring recruitment and activation of CD8+ T cells.

Microbiome communities from LTS and STS are associated with different metabolic 
pathways.

It has been demonstrated that microbiota imbalances can induce systemic metabolic 

alterations (Devaraj et al., 2013; Nieuwdorp et al., 2014). Conversely, metabolic dysfunction 

can also induce microbiome imbalances (Cani, 2017). Based on this data, we next assessed 

if the intra-tumoral microbiome is associated with host metabolic pathways. We used 

Phylogenetic Investigation of Communities by Reconstruction of Unobserved States 

(PICRUSt) (Langille et al., 2013), a technique which uses evolutionary modeling, to predict 

metagenomes from 16S data and reference genome databases (Kanehisa and Goto, 2000). 

Predicted metagenomes were then used as inputs for metabolic reconstruction, using level 2 

KEGG Pathways and/or KEGG modules between LTS and STS groups (MDACC cohort; 

FDR adjusted p < 0.05), were mean-centered and visualized as a heatmap by Linear 

Discriminant Analysis (LDA) to assess enrichment and depletion between the two groups. 

PICRUSt analysis identified 26 core functional modules present across all PDAC samples 

with a coverage of >90% and p < 0.05. We detected enrichment of differential pathways 

between LTS and STS groups. Predicted functional categories involved in important cellular 

functions were associated with diverse metabolic and energetic processes (Figure S4A and 

S4B). The LTS cases exhibited enrichment in the pathways related to metabolism of amino 

acids, xenobiotics, lipids, terpenoids and polyketides, besides other cellular functions. 

Significantly better outcomes were predicted for PDAC patients demonstrating enrichment 

in xenobiotics biodegradation and lipids metabolism pathways (HR=5.198, 95% CI 1.07–

25.06 and HR=4.528, 95% CI 1.54–13.305, respectivelly) (Figure S4C). In contrast, the STS 

cases demonstrated enrichment in synthesis and processing of proteins, processing of 

genetic information, energetic and nucleotide metabolism, replication and repair. Some of 

the pathways shared by both groups, and probably not directly related to the differential 

outcomes of patients, were related to enzymes, cancer, excretory and circulatory system. The 

PICRUSt taxonomic functional relationships suggest that the composition of the intra-

tumoral microbiome determines a differential enrichment of metabolic functional pathways 

between LTS and STS cases, which may influence patient survival.

Gut microbiota can influence tumor microbiota and tumor growth

We asked if the gut microbiome can modulate the intratumoral microbiome and to this end 

we collected stools, PDAC tumor specimens and non-tumoral adjacent normal tissue from 3 

patients who underwent Whipple surgery. We compared the taxonomic composition of 
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matched samples and found that the human gut microbiome represents approximately 25% 

of the human tumor microbiome, while it is absent from the normal adjacent tissue (Figure 

4A). Since the bacterial composition found in normal adjacent tissue differs from that found 

in the tumor, it suggests that the tumor microbiome might be unique. This data suggests that 

the gut microbiota has the capacity to specifically colonize pancreatic tumors. To determine 

if we can actively modify the tumor microbiome by changing the gut microbiome, we 

performed fecal microbial transplantation (FMT) from patients with advanced PDAC 

(“STS”) into mice previously treated with antibiotics (ATBx). Human fecal material was 

transferred by oral gavage three times a week and weekly after two weeks. Mice were then 

challenged with orthotopic implantation of syngeneic cancer lines derived from genetically 

engineered Pdx1-Cre, LSL-KrasG12D/+, LSL-Trp53R172H/+ (“KPC”) mice. We examined 

the OTUs abundance in the human STS donor samples, murine fecal samples pre-FMT 

(Basal condition), post-FMT, and murine tumors at the end point of 5 weeks post-tumor 

implantation. Interrogation of bacterial origin showed that a large number of bacteria of 

human donor origin was found as part of the murine gut microbiome (~40%) of recipient 

mice post-FMT (Figure 4B and 4C). Interestingly, we were able to detect human donor 

bacteria in the murine tumor microbiome post-FMT while it remained absent from mice who 

did not get FMT (Figure 4B and 4C). However, the bacteria coming from donors represented 

a small percent of the tumor microbiome (<5%), while the remaining 20% represented the 

basal murine gut microbiome. Since over 70% of the tumor microbiome was not 

representative of the gut microbiome (Figure 4C, grey bars), we then wondered if FMT 

could modulate or shift the overall intratumoral bacterial composition, in addition to direct 

translocation. We used beta-diversity to generate a principal coordinate analysis (PCoA) and 

a clear differential clustering was detected between operational taxonomic units (OTUs) on 

tumors from mice who received FMT versus mice that did not receive FMT (p < 0.001) 

(Figure 4D). Additionally, we looked at the taxonomic composition of tumors and found 

significant changes in individual bacterial populations after FMT (Figure S5A). 

Interestingly, one of the bacterial classes that increased in tumors from mice who received 

FMT from STS donors was Clostridiales, which was enriched in the original human STS 

tumor specimens. This data suggests that the gut microbiome can modulate the tumor 

microbiome, in minor part by direct translocation into the tumors, but more significantly, by 

altering the microbial landscape.

In order to expand our findings to assess how tumor growth may get affected by differential 

modulation of the tumor microbiome in response to recipient fecal transplants, we obtained 

stool specimens from the following 3 groups of patients: PDAC patients with advanced 

disease who would likely experience short term surivaval (“STS”), patients who had PDAC 

resected more than 5 years previous to collection who would be classified as LTS with no 

evidence of disease (“LTS-NED”), and healthy controls (“HC”). We employed a similar 

FMT design as described above (Figure 4E). Five weeks after tumor implantation we 

assessed gut/tumor microbiome and tumor growth. Gut microbial beta-diversity 

distinguished the three types of recipient mice (Figure S5B) and tumor microbial beta-

diversity differentially clustered mice groups according to the type of FMT they received 

(Figure S5C–S5G).
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We observed a significant reduction in tumor growth in mice that received FMT from LTS-

NED donors compared with the mice transplanted with stools from STS donors (p < 0.001) 

or HC donors (p = 0.02) (Figure 4F and 4G). These results suggest that gut/tumor bacteria 

from patients who had PDAC and survived long term may have a protective effect against 

tumors. We also found that tumors from mice who got FMT from STS patients were larger 

than those from mice who got HC FMT, suggesting that PDAC-associated gut/tumor 

bacteria may exert a tumor-promoting effect.

To confirm that the anti-tumoral effect exerted by LTS-NED was definitively induced by 

change in bacterial content, we treated mice transplanted with stools from LTS-NED with 

antibiotics post-FMT and compared with mice that didn’t receive antibiotics post-FMT 

(Figure S5H). We found that short term antibiotics on mice that received FMT from LTS-

NED donors induced larger tumors than untreated mice by modifying the gut microbiome 

(Figure S5I–S5J). When we analyzed the tumor microbiome of the two groups, we were 

indeed able to see differential clustering for beta-diversity between the two groups (Figure 

S5K). This data indicates that bacteria ablation can decrease the anti-tumoral efficacy 

induced by LTS-NED FMT, which validates the central role of bacteria.

Next we assessed if the gut microbiome can influence the pancreatic tumor immune 

infiltrates. Flow cytometry analysis demonstrated that tumors from mice that received FMT 

from LTS-NED had significantly higher numbers of CD8+ T cells, as well as activated T 

cells (CD8+/IFNg+ T cells) versus those with stools transferred from STS or HC donors, 

whereas those who received STS FMT had increased CD4+FOXP3+ and myeloid-derived 

suppressor cells (MDSC) infiltration (Figure 4H). Additionally, mice receiving FMT from 

LTS-NED patients had higher serum level of IFN-γ and IL-2 (p < 0.05) compared to mice 

receiving STS FMT (Figure 4I). To evaluate the role of T cells in mediating the observed 

phenotype, we depleted CD8+ T cells using neutralizing antibodies in mice transplanted 

with LTS-NED stools and subsequently challenged with orthotopic tumors (Figure 4J). We 

found that CD8+ T cells depletion blocked the anti-tumoral effect induced by LTS-NED 

FMT (Figure 4K), suggesting that the beneficial effect of LTS-NED-associated gut/tumor 

bacteria is mediated by CD8+T cells. Together, these data strongly suggest that the gut 

microbiome can colonize pancreatic tumors, modify its overall tumoral bacterial 

composition, and modulate immune function to ultimately affect the natural history and 

survival.

DISCUSSION

The microbiota can exert regulatory effects in other sites beyond the gut. Our study 

represents the first report to explore the influence of the tumor microbiome on clinical 

outcomes. We have performed a comprehensive analysis of the PDAC intratumoral 

microbiome in two independent cohorts of long and short term survival patients from 

different institutions. It is important to note that one of these cohorts (JHH) had already been 

examined for genome wide differences in the mutational landscape that could be 

contributing to favorable survival and none were identified (Dal Molin et al., 2015). Overall, 

we detected substantial abundance of microbiome in PDAC tumors from all patients, as 

previously reported (Geller et al., 2017). We found that PDAC patients with the uncommon 
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phenotype of LTS had significantly higher tumor bacteria diversity that the patients with 

more typical shorter survival. Further, the LTS and STS cohorts each had a distinctive tumor 

microbiome signature with specific bacterial genus that were predictive of survival in a 

multi-variate analysis. Notably, we demonstrated for the first time that the microbiota 

reconstitution by FMT with stool from HC, STS or LTS-NED patients in tumor-bearing 

mice mirrors the recruitment, or lack thereof, of immune cells to the tumor milieu seen in 

the respective cohorts and influences tumor growth, supporting a causal role for the gut 

microbiome in shaping tumor immune-responses and PDAC progression.

Recent studies have shown that the gut microbiome composition can improve the outcome 

of cancer immunotherapy (anti-CTLA4 and anti-PD-L1) by influencing the immune system 

(Gopalakrishnan et al., 2018; Matson et al., 2018; Routy et al., 2018). Our finding suggests 

that, independent of therapy, the PDAC tumor microbiome diversity and composition can 

influence immune infiltration which ultimately influences PDAC survival. Importantly, we 

found a signature of 3 tumor bacterial taxa: Sachharopolyspora, Pseudoxanthomonas and 

Streptomyces significantly enriched in LTS patients. Presence of Bacillus clausii, one of top 

species enriched in LTS, combined with the three genus signature, were highly predictive of 

long term survivorship in the MDA discovery cohort and validated in the JHH cohort. In the 

future, tumor microbiome sequencing could be used to stratify patients for adjuvant trials, 

including microbiome interventions.

Although the greater microbial diversity could have an immunoregulatory impact, its role in 

the antitumor response is not entirely clear. Components of the Saccharopolyspora family, 

specifically Saccharopolyspora rectivirgula, have been described as having a role in 

inflammatory lung diseases, such as hypersensitivity pneumonitis that are associated with 

IFN-γ overproduction (Kim et al., 2010). The presence of Saccharopolyspora spp could 

contribute towards generating a proinflammatory microenvironment mediated by cytokines 

and chemokines that recruit inflammatory cells and IFN-γ secretion. However, its role in 

PDAC remains to be explored. Future investigations will determine if similar mechanism 

can be used by the tumor microbiota to modulate the immune system by improving or 

impairing the immune response against the tumor.

Most of the bacterial communities found in the tumoral milieu are present commonly in the 

gut microbiome (Human Microbiome Project, 2012b; Lloyd-Price et al., 2017), suggesting 

that potentially bacterial translocation from the gut to the pancreas might be occuring. We 

demostrate for the first time in human PDAC patients that the gut microbiota has the 

capacity to colonize pancreatic tumors and that this colonization can modify the overall 

microbiome of the tumor. Additionally, our preclinical data shows that the modification of 

the gut/tumor microbiome with human flora from LTS-NED patients is able to induce an 

antitumor response and activation of the immune system in tumor-bearing mice, which is not 

observed in FMT from STS PDAC patients. Furthermore, we have found that 

immunosuppressive populations were also modulated with stools from survivors or healthy 

patients by decreasing tumor infiltration by Tregs. This could be a potential mechanism for 

certain bacteria to promote immune activation. Microbiome-dependent CD8 T cell activation 

may play a key role. Further studies are needed with in human PDAC patients to determine 

how FMT can induce changes in the microbiome tumor and inmune activation. Additionally, 
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the potential evaluation of cross-reactivity between T cells that recognize tumor neoantigens 

and microbial antigen (mimicry) present in the tumor should be conducted in future studies 

as they may be useful in understanding mechanisms by which bacteria can exert immuno-

activating effects but also may be useful in the design on novel therapeutic strategies.

In conclusion, we found that the tumor microbiome diversity has a powerful impact in 

determining the survival of PDAC patients. The tumor microbiome unique to LTS may 

contribute towards shaping a favorable tumor microenvironment, characterized by the 

recruitment and activation of CD8 T cells to the tumor milieu, and it might also be useful as 

a predictor of patients outcomes. Besides the microbiome-based prognostic tool, the results 

of FMT represent an immense therapeutic opportunity to manipulate the microbiome to 

improve the life expectancy of PDAC patients in whom few therapeutic options exist.

STAR METHODS

CONTACT FOR REAGENTS AND RESOURCE SHARING

Further information and request for resources and reagents should be directed to and will be 

fulfilled by the contact, Florencia McAllister (fmcallister@mdanderson.org).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human Tumor Specimens.—We initially used a discovery cohort of patients with long-

term survivors PDAC (>5-years overall survival, median survival 10.14 years, called LTS, 

n=22), compared with stage-matched PDAC patients who survive less than 5 years (median 

survival 1.62 years, called STS, n=21) from the University of Texas MD Anderson Cancer 

Center (MDACC), Houston, TX. Detailed clinical and pathologic information on the patients 

are presented in Table 1. A second validation cohort with very long-term survivors of similar 

characteristics of survival (>10 years overall survival, n=15) were compared with stage-

matched regular PDAC patients who survive less than 5 years (n=10), from Johns Hopkins 

Hospital (JHH), Baltimore, MD. Archived formalin-fixed paraffin-embedded (FFPE) tumor 

specimens obtained from these patients who underwent surgical resection with curative 

intent were collected from MDACC and JHH. The staging of disease was reviewed and 

updated to comply with the 7th Edition of the American Joint Committee on Cancer 

classification. The study protocols were approved by the Institutional Review Board at 

MDACC and JHH.

Human Stool Samples.—Stool collection from PDAC STS, PDAC LTS-NED patients 

and healthy control (HC) donors were collected on OMNIgene GUT kit. Fresh stools for 

fecal microbiota transplantation (FMT) studies were collected and frozen at −80°C prior to 

FMT.

Murine studies

Antibiotic treatments and Fecal microbiota transplantation (FMT): All animal 

experiments were carried out in compliance and approved by the Animal Care and Use 

Committee at The UT MD Anderson Cancer Center. Female C57BL/6 aged 6 weeks were 

purchased from Taconic Biosciences, USA. Mice were treated for two weeks with an 
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antibiotic solution (ATBx) containing streptomycin (5 mg/ml), and clindamycin (0.1 mg/ml) 

added to the sterile drinking water of mice ad libitum. Solutions and bottles were changed 2 

times a week. After two weeks, ATBx treatment was stopped and the mice were recolonized 

by FMT, receiving stool from patients with PDAC STS, LTS-NED or HC donors. Mice 

received stools a total of 3 times/week by oral gavage using animal feeding needles before 

undergoing orthotopic tumor implantation and once/week after the tumor implantation until 

the end point. For CD8+ T cells depletion experiments, mice were treated for two weeks, 

biweekly with 150ug of antibodies against mouse CD8a (by intraperitoneal injections). For 

late bacterial ablation experiments, mice transplanted with stools from LTS-NED were 

treated with antibiotics post-FMT in the last two weeks of the experiment.

Orthotopic tumor implantation: C57BL/6 mice were anesthetized with 2% isoflurane in 

oxygen. A lateral incision was made on the abdominal wall of each mouse and tumors were 

implanted orthotopically in the pancreas with 2 × 104 KPC pancreatic adenocarcinoma cell 

lines. Tumor growth was monitored by Magnetic Resonance Imaging (MRI) of mice body at 

4 weeks after the tumor implantation. At the endpoint, tumors, fecal and blood specimens 

were harvested and processed for further analysis.

METHOD DETAIL

DNA extraction and bacterial 16S rRNA sequencing—16S rRNA gene sequencing 

methods were adapted from the methods developed for the Earth Microbiome Project (X) 

and NIH-Human Microbiome Project (Human Microbiome Project, 2012b) (Caporaso et al., 

2012; Human Microbiome Project, 2012a, b). Briefly, three sections of 10 um of FFPE of 

PDAC tissue were aseptically collected and placed in 1.5ml Eppendorf tube. Normal 

pancreatic tissue and paraffin without tissue were used as controls. Bacterial genomic DNA 

was extracted using Qiagen QIAamp DNA FFPE. The 16S rDNA V4 region was amplified 

by PCR and sequenced in the MiSeq platform (Illumina) using the 2x250 bp paired-end 

protocol yielding pair-end reads that overlap almost completely. The primers used for 

amplification contain adapters for MiSeq sequencing and single-index barcodes so that the 

PCR products may be pooled and sequenced directly (Caporaso et al., 2012), targeting at 

least 10,000 reads per sample. 16S (variable region 4 [v4]) rRNA gene pipeline data 

incorporated phylogenetic and alignment based approaches to maximize data resolution. The 

read pairs were demultiplexed based on unique molecular barcodes added via PCR during 

library generation, then merged using USEARCH v7.0.1090 (Edgar, 2010).

Microbiome Pipeline Analysis steps—Raw paired-end 16S rRNA reads (V4 region) 

were merged into consensus fragments by FLASH (Magoc and Salzberg, 2011) and 

subsequently filtered for quality (targeted error rate < 0.5%) and length (minimum 200bp) 

using Trimmomatic (Bolger et al., 2014) [and QIIME (Caporaso et al., 2010a; Kuczynski et 

al., 2011). Spurious hits to the PhiX control genome were identified using BLASTN and 

removed. Passing sequences were trimmed of primers, evaluated for chimeras with 

UCLUST (de novo mode) (Edgar et al., 2011), and screened for human-associated 

contaminants using Bowtie2 (Langmead and Salzberg, 2012). Chloroplast and mitochondrial 

contaminants were detected and filtered using the RDP classifier (Wang et al., 2007) with a 

confidence threshold of 50%. High-quality passing 16S rRNA sequences were assigned to a 
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high-resolution taxonomic lineage using Resphera Insight (Daquigan et al., 2017; Drewes et 

al., 2017) and SILVA Database v128 (Quast et al., 2013). Bacterial contaminant removal was 

performed using four paraffin-only samples (no tissue) and additional literature. 

Contaminant list can be found in Table S2C. Resulting contaminant-free 16S rRNA profiles 

were subsampled to 2,000 sequences per sample for downstream comparative analysis. 

Alpha- and beta-diversity analysis and principal coordinates analysis utilized QIIME and R. 

Differential abundance analysis of alpha diversity features of interest evaluated differences 

using the nonparametric difference test. Differential abundance analysis of taxonomic 

abundances evaluated differences using the negative binomial test (DESeq) (Anders and 

Huber, 2010). The false discovery rate (FDR) was used to correct for multiple hypothesis 

testing (Benjamini et al., 2001). Generalized linear modeling adjusting for cohort 

membership and survival status was performed using R. LEfSe was used for linear 

discriminant analysis (Segata et al., 2011). High-quality non-contaminant 16S rRNA 

sequences were analyzed for functional gene content using PICRUSt (Langille et al., 2013) 

which provides proportional contributions of KEGG categories for each sample (Kanehisa 

and Goto, 2000). Differentially abundant functional categories (KEGG Level 2, FDR adj.P < 

0.05 MDA cohort) were utilized for visualization as a heatmap. Relative abundance values 

were mean centered by functional category and colored according to enrichment or depletion 

between LTS and STS groups (Magoc and Salzberg, 2011). Statistical annotations are added 

to denote significant correlations with metadata, enabling quick assessment of many 

variables. Receiver Operator Characteristic (ROC) and Area Under Curve (AUC) analysis 

were performed using R, evaluating variable thresholds for relative abundance of taxa 

individually and in aggregate for classification of LTS vs STS status. Sensitivity was 

calculated as 100*(number of true positive LTS / total LTS). Specificity was calculated as 

100*(number of true negative STS / total STS).

Chromogenic Immunohistochemistry (IHC)—4μm sections of FFPE tumor tissue 

were mounted on Superfrost Plus Microscope Slides (FisherScientific) and prepared for IHC 

and Multiplex IF. The slides were deparaffinized in xylene and rehydrated in graded ethanol. 

Antigen retrieval was performed in citrate buffer (citrate pH 6.0) using microwave heating 

(EZ Retriever by BioGenex). Chromogen-based IHC analysis was performed by using anti-

human antibodies against the following: CD3 (T-cell lymphocytes), CD8 (CD8 T cells), 

Granzyme B (GzmB), FOXP3 (regulatory T cell), CD68 (Macrophages), CD66b 

(Granulocytes/MDSC). Signal Stain DAB Substrate KIT (Cell signal, Danvers, MA) was 

used for IHC detection and hematoxylin counterstaining. The densities of cells expressing 

CD3, CD8 and GzmB were measured by quantifying positively stained cells in five random 

square areas (1 mm2 each) in the tumor. The average total number of cells positive for each 

marker in the five square areas was expressed in density per mm2.

Multiplex Immunofluorescence Staining (Multiplex IF).—Staining was performed 

manually using the same primary antibodies used for IHC analysis against markers: 

Cytokeratin AE1/AE3 (Epithelial cell marker), Smooth Muscle Actin (Alpha-smooth muscle 

isoform of actin), CD3, CD8, Granzyme B and FOXP3. Antibody detection was performed 

with Opal Polymer HRP Ms + Rb immunohistochemistry detection reagent (PelkinElmer, 

Boston, MA).
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Staining was performed consecutively by using the same protocol as described for IHC, and 

the detection for each marker was completed before application of the next antibody. The 

Opal Polymer HRP Ms + Rb detection reagent was used for the primary antibody detection 

and Opal 7-Color Manual IHC, with 6 reactive fluorophores Opal 520, Opal 540, Opal 570, 

Opal 620, Opal 650, Opal and 690 plus 4′,6-diamidino-2-phenylindole (DAPI) nuclear 

counterstain, were added according to the manufacturer’s instructions. Uniplex IF and 

Negative controls were stained with the same protocols. At the conclusion of the staining, 

slides were imaged using Vectra 3.0 spectral imaging system (PerkinElmer) according to 

previously published instructions.

Lipopolysaccharide (LPS) staining and Ribosomal RNA (rRNA) Fluorescence 
In Situ Hybridization (FISH).—Slides were stained for bacteria with the automated slide 

stainer BOND RXm (Leica) using the Bond polymer refine detection kit, according to 

manufacturer’s instructions. Heat induced epitope retrieval (HIER) at pH6 was done by a 20 

min heating step with the epitope retrieval solution 1 (BOND). Gram negative were stained 

with Lipopolysaccharide Core (1:1000 dilution).

FISH was executed using Vysis IntelliFISH Universal FFPE Tissue Pretreatment and Wash 

Reagents Kit (Abbott Molecular Inc, IL). 5μm sections of FFPE tumor tissue were 

hybridized to a probe that recognizes the 16S rRNA genes of all bacteria (green) (Salzman et 

al., 2010) and counterstained with DAPI to visualize nuclei (blue), and tissues were 

visualized using a Nikon Eclipse Ti microscope.

Flow Cytometry—To characterize different subpopulations of immune cells, murine 

orthotopic PDAC tumors were removed and single cell suspensions were obtained by 

digestion with Collagenase P. Cells were stained with anti-Mouse antibodies against: CD45, 

CD4, FoxP3, Ly-6G, Ly-6C, IFN-γ and CD8a. Sample acquisition was carried out on 

LSRFortessa X-20 Analyzer Flow Cytometer (BD Biosciences, Franklin Lakes, NJ). 

Analysis was performed with FlowJo version 10.

Tissue culture based and 16S rDNA PCR—Frozen PDAC tissue samples were gently 

digested with collagenase P in sterile conditions to obtain a single cell suspension. Once the 

cell fraction was obtained, it was pelleted and the supernatants were plated on Columbia 

agar and maintained under aerobic and anaerobic conditions overnight at 37°C. Bacterial 

colonies were selected and DNA was extracted for subsequent PCR amplification of the 16S 

rDNA using the primers 515F–806R targeting the V4 region of the 16S rRNA.

For 16S rDNA PCR, bacterial DNA was extracted from frozen PDAC tissue samples 

maintaining sterile conditions using DNA QIAamp DNA Mini Kit (QIAGEN). 16S rDNA 

PCR was executed using the primers 515F–806R targeting the V4 region of the 16S rRNA.

QUANTIFICATION AND STATISTICAL ANALYSES

The patients’ demographic and clinical information were compared using chi-squared test 

and Fisher’s exact test were used to evaluate the association between two categorical 

variables. Wilcoxon’s rank sum test was used to compare the distributions of continuous 

variables between two different groups (microbiota composition positive vs. negative). 
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Overall survival (OS) was defined as the time from diagnosis to death from any cause. 

Patients who did not experience death were censored at date of last follow-up. Kaplan-Meier 

curves were estimated for the survival distributions. The Log-rank test was used to test the 

difference in survival distributions between subgroups. Univariate Cox proportional hazard 

models were used to determine the effects of microbiota composition on OS (Heller, 2001). 

Hazard ratios and 95% confidence intervals were provided. All tests were two-sided. P-

values less than 0.05 were considered statistically significant. All analyses were conducted 

using SAS 9.4 and S-Plus 8.0 software. Raw 16S rRNA sequences were processed using 

QIIME (Caporaso et al., 2010b). The minimal sequencing depth was 817, mean: 22178 and 

maximal: 89566. Sequences were aligned with reference to Silva v128 (Quast et al., 2013). 

Alpha- and beta-diversity analysis, survival analysis, principal coordinates analysis, 

ecological network analysis and Logistic regression combined with LASSO method utilized 

R 3.4.3. For LASSO logistic regression, we ran 10-fold cross validations with logistic 

regression for 100 times (starting with different seeds), then we aggregated all the deviances 

from 100 validation results with respect to each tuning parameter of lambda. The one with 

minimal average deviance was set as the best lambda value. Then we fit the LASSO logistic 

regression again with this best lambda value to get a stable set of selected features. Linear 

discriminant analysis (LDA) effect size (LEfSe) was performed under bioconda environment 

(Segata et al., 2011) to determine the genomic features most likely to explain differences 

between biological classes (STS and LTS of MDACC cohorts). All p-values were adjusted 

for multiple comparisons with the FDR algorithm (Benjamini et al., 2001). For the 

discovery, validation and prioritization of candidate taxa, the procedure was the following; 

all genera/species from the discovery cohort (MDACC) with an FDR adjusted p-value < 

0.05 between LTS and STS were included. Those genera/species that remained significantly 

associated with LTS and STS in the validation cohort (JHH) were selected as candidates. 

Finally, the prioritization of the final candidates list required the candidate genera/species 

remain significantly associated with LTS/STS status (P<0.01) independent of cohort using a 

generalized linear model. IHC, Flow cytometry, Mouse Chemokine Assays and tumor size 

data were analyzed and expressed as the mean ± standard deviation using GraphPad Prism 7 

(GraphPad Software, Inc., San Diego, CA).

DATA AND SOFTWARE AVAILABLE

The raw data is deposited and available on NCBI BioProject Accession Number: 

PRJNA542615. All analyses were conducted using SAS 9.4 and S-Plus 8.0 software. Raw 

16S rRNA sequences were processed using QIIME (Caporaso et al., 2010b). Logistic 

regression combined with LASSO method utilized R 3.4.3. Linear discriminant analysis 

(LDA) effect size (LEfSe) was performed under bioconda environment (Segata et al., 2011). 

All p-values are adjusted for multiple comparisons with the FDR algorithm (Benjamini et 

al., 2001).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• PDAC long term survivors display high tumor microbial diversity and 

immunoactivation.

• A PDAC tumoral microbiome signature predicts PDAC long-term survival.

• The gut microbiome modulates the PDAC tumor microbiome landscape.

• Fecal microbial transplants can modulate tumors immunosuppression and 

growth.
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Figure 1. 
Tumor microbial diversity influences the outcome of PDAC patients.

(A) Kaplan-Meier plot of MDACC cohort PDAC patients.

(B) Alpha diversity box plot (Observed species, Shannon and Simpson reciprocal) in 

MDACC and JHH cohorts of PDAC patients.

(C) Kaplan-Meier plot of MDACC cohort PDAC patients defined by alpha diversity.

(D) Principal coordinate analysis (PCoA) using Unweighted-UniFrad of beta diversity.

(E) Principal coordinate analysis (PCoA) using Bray-Curtis metric distances of beta 

diversity.

Riquelme et al. Page 21

Cell. Author manuscript; available in PMC 2020 August 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Tumor microbiome communities are significantly different between LTS and STS.

(A) Bar plots of the class taxonomic levels in MDA and JHH cohorts of PDAC patients. 

Relative abundance is plotted for each tumor.

(B) Taxonomic Cladogram from LEfSe, depicting taxonomic association from between 

microbiome communities from LTS and STS PDAC patients. Each node represents a 

specific taxonomic type. Yellow nodes denote the taxonomic features that are not 

significantly differentiated between LTS and STS. Red nodes denote the taxonomic types 

with more abundance in LTS than in STS, while the green nodes represent the taxonomic 

types more abundant in STS.

(C) LDA score computed from features differentially abundant between LTS and STS. The 

criteria for feature selection is Log LDA Score > 4.
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(D) Heatmap of selected most differentially abundant features at the genus level. 

Highlighting three taxa enriched in LTS. The blue color represents less abundant, lighter 

yellow color represents intermediate abundance and red represents the most abundant. 

Highlighting three taxa enriched in LTS.

(E) Kaplan-Meier estimates for survival probability based on the abundance levels of 

microbes enriched at Genus level in LTS. Right plot, Saccharopolyspora, middle plot, 

Pseudoxanthomonas and left plot, Streptomyces (p < 0.0001).

(F) Plots of differentially abundant genus significantly enriched in both MDA and JHH LTS 

patients. FDR adjusted p-values from negative binomial test p-value.

(G) ROC analysis of Taxa relative abundance as predictive of LTS status. The top 3 
differential bacteria (Genus) identified and Baccilus Clausii (One of top species) were tested 

individually and in aggregate in the MDA Discovery Cohort (Left panel) were then validated 

in the JHH Validation Cohort (Right panel).

(H) Table depicting AUC of bacteria tested in Fig2G for both MDA and JHH cohorts.

Riquelme et al. Page 23

Cell. Author manuscript; available in PMC 2020 August 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure. 3. 
Commensal microbiome from LTS PDAC patients induces a strong immune infiltration and 

antitumoral immune response.

(A) Immunohistochemical (IHC) staining of CD3, CD8 and Granzyme B from tumors of 

STS and LTS PDAC patients (representative picture).

(B) Quantification of IHC of CD3, CD8 and Granzyme B on STS and LTS PDAC patients.

(C) Representive pictures of multiplex immunofluorescence staining (Multiplex IF) with 

Opal kit.

(D) Immunohistochemical staining of CD8 from tumors of STS and LTS PDAC patients 

from validation cohorts (JHH) (representative picture).

(E) Quantification of IHC of CD8 on STS and LTS PDAC patients from validation cohorts 

(JHH).
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(F) Spearman correlation between CD3+, CD8+ and GzmB+ tissue densities and the overall 

survival (upper panel) and alpha diversity by Shannon Index (lower panel) of all PDAC 

patients.

(G) Spearman correlation between CD8+ tissue densities and Saccharopolyspora, 

Pseudoxanthomonas and Streptomyces (p < 0.0001, p = 0.006 and p < 0.0001, respectivelly) 

in PDAC patients.
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Figure. 4. 
Gut microbiota from PDAC patients can influence tumor microbiota and tumor growth

(A) Taxonomic classification of bacterial 16S sequence detected in human samples by origin

(B) Experimental design of Fecal Microbiota Transplantation (FMT) from metastatic PDAC 

donors in C57BL/6 wild-type mice treated with antibiotics (ATBx).

(C) Taxonomic classification of bacterial 16S sequence detected in human donor stools and 

FMT recipient mice (stools/tumors) by origin.

(D) Principal coordinate analysis (PCA) using Unweighted-UniFraC of beta diversity, 

showing closeness between mice that received FMT from PDAC STS patients and distance 

from those that did not receive FMT.

(E) Experimental design of Fecal Microbiota Transplantation (FMT) from advanced PDAC 

(STS), PDAC LTS with no evidence of disease (LTS-NED) and Healthy Control (HC) 

donors in C57BL/6 wild-type mice treated with antibiotics (ATBx).
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(F) Tumor volume from mice orthotopically implanted with KPC pancreatic cancer cell lines 

along with transplantation with stools from STS, LTS-NED and HC donors.

(G) Magnetic resonance imaging (MRI) scans of KPC-implanted mice transplanted with 

stools from STS, LTS-NED and HC donors (representative images).

(H) Flow cytometry analysis of CD45+CD8+, CD45+CD8+IFN-γ+, Treg 

(CD45+CD4+FOXP3+) and MDSC (CD45+CD11b+Ly-6G/Ly-6C+) cells from KPC-

implanted mice and transplanted with stools from STS, LTS-NED and HC donors.

(I) Serum level of IL-2 and IFN-γ in KPC-implanted mice and transplanted with stools from 

STS, LTS-NED and HC donors.

(J) Experimental design of Fecal Microbiota Transplantation (FMT) from LTS-NED who 

received CD8 neutralizing antibodies vs isotype control.

(K) Tumor volume from KPC-implanted mice and transplanted with stools from LTS-NED 

who received CD8 neutralizing antibodies vs isotype control.

Riquelme et al. Page 27

Cell. Author manuscript; available in PMC 2020 August 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Riquelme et al. Page 28

Table 1.

Clinico-pathological Characteristics of MDACC Cohort PDAC Patients

Patients Characteristics
STS

(n=22)
LTS

(n=21) P value

Overall survival (yrs) 1.62 10.14 <0.0001

Surgery Date 1999–2014 2000–2010

Gender

Female 9 11 0.45

Male 13 10

Age (yrs)

Median 62.05 62.71 0.69

Range 46–74 44–73

Race

Caucasian 19 20 0.48

Asian 0 1

African American 1 0

Hispanic 2 0

Stage

IB 2 1 0.56

IIA 7 10

IIB 13 10

Neoadjuvant Therapy (Chemo-radiation)

Yes 14 17 0.31

No 8 4

Adjuvant Therapy

Yes 14 11 0.45

No 8 10

Antibiotics Use (pre-surgery)

Yes 14 11 0.45

No 8 10

Biliary Obstruction

Yes 12 10 0.64

No 10 11
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Polyclonal Rabbit Anti-Human CD3 DAKO Cat#AO452

Mouse anti-human CD8 Thermo Fisher Scientific Cat#MS-457-S

Mouse anti-human Granzyme B Leica Biosystems Cat#PA0291

Mouse anti-human FOXP3 BioLegend Cat#320102

Mouse anti-human CD68 DAKO Cat#M0876

Mouse anti-human CD66b BioLegend Cat#392902

Monoclonal Mouse Anti-Human Cytokeratin AE1/AE3 DAKO Cat#M351529-2

Rabbit Smooth Muscle Actin Polyclonal Antibody Thermo Fisher Scientific Cat#PA5-16697

Lipopolysaccharide Core, mAb WN1 222-5 HycultBiotech Cat#HM6011

Rat Anti-Mouse CD45 PerCP-Cy™5.5 BD Pharmingen™ Cat#550994

Rat Anti-Mouse CD4 PE-CF594 BD Horizon™ Cat#562285

Rat Anti-Mouse Foxp3 V450 BD Horizon™ Cat#561293

Rat Anti-Mouse Ly-6G PE BD Pharmingen™ Cat#551461

Rat Anti-Mouse IFN-γ PE BD Pharmingen™ Cat#554412

CD8a Monoclonal Antibody FITC eBioscience™ Cat#11-0087-41

InVivoMAb anti-mouse CD8α BioXcell Cat#BE0061

Bacterial and Virus Strains

Saccharopolyspora rectivirgula ATCC® Cat#33515TM

Biological Samples

Human Pancreatic cancer specimens (Discovery cohort) University of Texas MD 
Anderson Cancer Center 
Tissue Biobank

https://www.mdanderson.org

Human Pancreatic cancer specimens (Validation cohort) Johns Hopkins Hospital https://www.hopkinsmedicine.org/
the_johns_hopkins_hospital/index.html

Human Stool specimens University of Texas MD 
Anderson Cancer Center

https://www.mdanderson.org

Chemicals, Peptides, and Recombinant Proteins

Cleocin Phosphate (clyndamycin injection, USP 300mg/2ml Pfizer Cat#NDC0009-0870-26

Streptomycin for Injection, USP X-GEN Pharmaceuticals, Inc Cat#NDC 39822-0706-2

Critical Commercial Assays

OMNIgene GUT kit DNA Genotek Cat#OMR-200

QIAamp DNA FFPEQIAamp DNA FFPE Tissue Kit Qiagen Cat#56404

Opal Polymer HRP Ms Plus Rb, 1X, 50 mL PerkinElmer Cat#ARH1001EA

Bio-Plex Pro Mouse Chemokine Panel, 31-plex BIO-RAD Cat#12009159

Deposited Data

NCBI BioProject This paper Accession Number:PRJNA542615

Experimental Models: Cell Lines
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REAGENT or RESOURCE SOURCE IDENTIFIER

Murine pancreatic ductal adenocarcinoma cell lines This paper KPC,Derived from genetically 
engineered Pdx1-Cre, LSL-KrasG12D/+, 
LSLTrp53R172H/+ (“KPC”) mice

Experimental Models: Organisms/Strains

Mouse: C57BL/6NTac Taconic Bioscience B6-F

Oligonucleotides

16S 15F (Parada)-806R (Apprill), forward-barcoded: 
FWD:GTGYCAGCMGCCGCGGTAA; 
REV:GGACTACNVGGGTWTCTAAT

Integrated DNA technologies, 
IDT

515F-806R target the V4 region

Saccharo5 F AAGAGCTCGTAGGCGGTTTG Saccharo5 R 
GCATTTCACCGCTACACCAG

This paper N/A

Software and Algorithms

QIIME Caporaso et al., 2010a http://qiime.org/

FlowJo version 10 Tree Star Inc https://www.flowjo.com/solutions/flowjo

SAS 9.4 SAS, Cary, NC www.sas.com/en_us/software/sas9.html

S-Plus 8.0 TIBCO Software Inc www.tibco.com

Logistic regression combined with LASSO method Tibshirani et al., 1996 https://www.jstor.org/stable/2346178

LEfSe Segata et al., 2011 https://bioconda.github.io/recipes/lefse/
README.html

FDR algorithm Benjamini et al., 2001 N/A

R 3.4.3 This paper https://cran.r-project.org/bin/windows/
base/

GraphPad Prism 7 GraphPad Software www.graphpad.com
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