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Abstract

Purpose: Response assessment of radiotherapy for the treatment of intrahepatic 

cholangiocarcinoma (IHCC) across longitudinal images is challenging due to anatomical changes. 

Advanced deformable image registration (DIR) techniques are required to correlate corresponding 

tissues across time. In this study, the accuracy of five commercially available DIR algorithms in 

four treatment planning systems (TPS) is investigated for the registration of planning images with 

post-treatment follow-up images for response assessment or re-treatment purposes.

Methods: Twenty-nine IHCC patients treated with hypofractionated radiotherapy and with pre-

treatment and post-treatment contrast-enhanced CT images were analyzed. Liver segmentations 

were semi-automatically generated on all CTs and the post-treatment CT was then registered to the 

pre-treatment CT using five commercially available algorithms (Demon’s, B-splines, salient 

feature-based, anatomically-constrained and finite element-based) in four TPSs. This was followed 

by an in-depth analysis of ten DIR strategies (plus global and liver-focused rigid registration) in 

one of the TPSs. Eight of the strategies were variants of the anatomically-constrained DIR while 

the two were based on a finite element-based biomechanical registration. The anatomically 

constrained techniques were combinations of: (1) initializations with the two rigid registrations; 

(2) two similarity metrics – correlation coefficient (CC) and mutual information (MI); and (3) with 

and without a controlling ROI (liver). The finite element-based techniques were initialized by the 

two rigid registrations. The accuracy of each registration was evaluated using target registration 

error (TRE) based on identified vessel bifurcations. The results were statistically analyzed with a 

one-way ANOVA and pairwise comparison tests. Stratified analysis was conducted on the inter-

TPS data (plus the liver-focused rigid registration) using treatment volume changes, slice 

thickness, time between scans and abnormal lab values as stratifying factors.

Results: The complex deformation observed following treatment resulted in average TRE 

exceeding the image voxel size for all techniques. For the inter-TPS comparison, the Demon’s 

Corresponding Author: Kristy K. Brock, 1400 Pressler Street, FCT14.4068, Houston, TX 77030, Phone: 713-794-4962, 
kkbrock@mdanderson.org. 

Conflict of Interest Statement
Kristy K. Brock reports a conflict of interest with RaySearch Laboratories, Stockholm, Sweden.

HHS Public Access
Author manuscript
Med Phys. Author manuscript; available in PMC 2021 April 01.

Published in final edited form as:
Med Phys. 2020 April ; 47(4): 1670–1679. doi:10.1002/mp.14029.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



algorithm had the lowest TRE, which was significantly superior to all the other algorithms. The 

respective mean (standard deviation) TRE (in mm) for the Demons’s, B-splines, salient feature-

based, anatomically-constrained and finite element-based algorithms were 4.6 (2.0), 7.4 (2.7), 7.2 

(2.6), 6.3 (2.3) and 7.5 (4.0). In the follow-up comparison of the anatomically-constrained DIR, 

the strategy with liver-focused rigid registration initialization, CC as similarity metric and liver as 

a controlling ROI had the lowest mean TRE – 6.0 (2.0). The maximum TRE for all techniques 

exceeded 10 mm. Selection of DIR strategy was found to be a statistically significant factor for 

registration accuracy. Tumor volume change had a significant effect on TRE for finite element- 

based registration and B-splines DIR. Time between scans had a substantial effect on TRE for all 

registrations but was only significant for liver-focused rigid, finite element-based and salient 

feature-based DIRs.

Conclusions: This study demonstrates the limitations of commercially available DIR techniques 

in treatment planning systems for alignment of longitudinal images of liver cancer presenting 

complex anatomical changes including local hypertrophy and fibrosis/necrosis. DIR in this setting 

should be used with caution and careful evaluation.
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INTRODUCTION

Intrahepatic cholangiocarcinoma (a bile-duct cancer, IHCC) is a rare form of liver cancer 

that affects about 500 patients in the US every year1. Its incidence however, has seen an 

increase in the past decade2,3. The disease is considered incurable unless complete resection 

is possible; however, only 15% of the tumors are operable4. In such cases, chemotherapy and 

radiation therapy (RT), particularly stereotactic body radiotherapy (SBRT) and 

hypofractionated RT, are used to extend survival and improve quality of life5. Functional 

imaging has been investigated to better understand the normal tissue changes in the liver 

after RT6. These images are acquired serially over several months during and after the 

completion of RT. It is important to accurately align the planning CT scan with the delivered 

dose to the follow-up images to understand the dose-response relationship in order to 

optimize the delivery of radiation to reduce liver damage. In addition, multiple courses of 

radiation therapy may be required if additional tumors develop in the liver7. Therefore, it is 

also important to understand the cumulative dose to the normal liver, most often done by 

mapping the previously administered dose to the subsequent treatment plans. Unfortunately, 

dose accumulation in a deformable organ such as the liver can be quite challenging. Simple 

rigid registration does not achieve a sufficient level of accuracy when volumetric changes 

and large patient motion occurs8. Studies have demonstrated the large volumetric response 

of the liver six weeks post-radiation therapy, including hypertrophy and fibrosis9,10.

One of the first studies to compare deformable image registration (DIR) techniques for pre- 

and post-RT liver cancer was conducted by Fukumitsu et al.11. The study compared 

commercially available DIR techniques in two treatment planning systems, MIM Maestro 

(MIM Software Inc., Cleveland, OH, USA) and Velocity (Velocity Medical Solutions, 
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Atlanta, GA, USA). Mean fiducial registration errors in both TPSs were found to be about 1 

cm (standard deviation 1 cm) for CT with slice thickness of 0.5 cm. A parallel study 

compared rigid and DIR for registering pre- and post-RT liver CTs using MIM Maestro12. 

Fiducial registration errors of 1.1 (0.7) cm and 0.7 (0.8) cm were reported (slice thickness 

0.5 cm). In cases tumor resection, where large sections of the liver are not removed, similar 

issues of volumetric changes arise when deciding upon subsequent treatment plans. Hence, 

DIR of pre and post-surgery liver CTs is a related problem. Gunay et al. proposed a DIR for 

this application that reported a mean target registration error of 0.6 (0.5) cm for slice 

thicknesses between 0.1 and 0.2 cm13.

The goal of this work is to compute the accuracy of DIR algorithms available in four 

commercial treatment planning systems (TPS) and assess their clinical usability for IHCC 

treatment. We also analyze various treatment-related factors that may affect the accuracy of 

particular registration methods. This is followed by an in-depth analysis with the DIR 

parameters in one of the TPSs where five different techniques including intensity-based, 

biomechanical model-based, and region of interest-driven DIRs are compared.

METHODS

Patients

Twenty-nine patients with IHCC treated with RT at The University of Texas MD Anderson 

Cancer Center between 2001 and 2016 were retrospectively evaluated under an institutional 

review board approved study. For each case, a contrast-enhanced CT scan was obtained prior 

to radiation therapy (RT) and after the completion of RT (mean follow-up time 12 weeks, 

range 4–31 weeks). The image resolution for the pre-treatment CT images was between 0.66 

and 0.98 mm in-plane with a slice thickness of 2.5 mm (n = 25 cases) or 5.0 mm (n = 4 

cases). The tumors on both the pre- and post-RT CT images were contoured manually by a 

non-radiologist scientist (DE) and reviewed and approved by a radiation oncologist (EJK). 

Demographic (age and gender) data and three liver-related laboratory traits (aspartate 

aminotransferase [AST], alanine aminotransferase [ALT] and cancer antigen CA19–9) were 

extracted from the electronic health records database. These characteristics are summarized 

in Table 1.

Liver Segmentation

A pre-trained fully convolutional neural network, the DeepLab v3 plus network14, was 

adapted for rapid segmentation of the liver. A skip-layer architecture, similar to that found in 

the ‘U-net’ design15, was implemented to improve efficiency and consistency of the liver 

segmentation. Details of this segmentation validation can be found in Anderson et al16. Once 

segmented, the contours were evaluated by a non-radiologist scientist (GC) experienced in 

liver image analysis and edited when necessary. The pre- and post-treatment volumes for the 

liver and the tumor along with the time between scans were calculated and are presented in 

Table 2.
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Deformable Image Registration Methods

The post-treatment image was registered to the pre-treatment image using five DIR 

techniques available in four TPSs. The TPSs used in this study were: Velocity (v3.0, 

Velocity Medical Solutions, Atlanta, GA, USA), Pinnacle (v9.10, Philips, Madison, 

Wisconsin, USA), Eclipse (v13.6, Varian Medical Systems, Palo Alto, CA, USA) and 

RayStation (v7.99, RaySearch Laboratories, Stockholm, Sweden). Velocity uses an 

intensity-based B-spline multipass algorithm17 with mutual information (Matte’s 

formulation) as the similarity metric. Pinnacle uses the salient feature-based registration 

(SFBR) algorithm for DIR18,19. This is a landmark-based registration where distinctive 

features are automatically extracted from each image based on a similarity metric (cross 

correlation, normalized mutual information or local correlation). Eclipse implements an 

accelerated version20 of the Demon’s algorithm21. The options for similarity are mutual 

information, cross correlation and pattern intensity. RayStation has two DIR algorithms: 

Anatomically constrained deformation algorithm (ANACONDA)22 and a finite element-

based biomechanical DIR – Morfeus23. ANACONDA employs a hybrid approach that 

combines intensity data and contours of anatomical regions. The optimization problem 

accounts for image similarity (correlation coefficient or mutual information), regularization 

of the deformation and alignment of optional structures of interest. Morfeus is a finite 

element model (FEM) based DIR technique where boundary conditions are determined on 

the surface of the structure and then used in a finite element analysis solver to estimate the 

deformation of the internal structures based on linear elastic material properties.

Comparison between Treatment Planning Systems

All the DIRs across systems were initialized by a rigid registration available within the 

corresponding TPS. The rigid registrations were monitored and manually edited if necessary 

by non-radiologist scientists (MMM for Velocity, AS for the other systems). For Pinnacle 

and Eclipse, a focus region was determined by a bounding box computed from the liver 

contours plus a one-centimeter margin. For Velocity, though the liver contours were not used 

directly, a bounding box containing the liver was manually created as a focus region. 

ANACONDA used the liver contours as a controlling ROI. For Morfeus, a triangular mesh 

was generated using the contours of the liver, which was then used for FEM-based DIR. The 

similarity metrics used in the various algorithms were mutual information (Velocity and 

Eclipse), cross-correlation (Pinnacle) and correlation coefficient (RayStation - 

ANACONDA).

Comparison within a Treatment Planning System

Due to Raystation’s greater flexibility in adjusting for parameters, a follow-up intra-TPS 

comparison was conducted using different DIR strategies. Eight of the strategies were 

variants of ANACONDA. In this study, ANACONDA was performed with two different 

rigid registration initializations: global and liver-focused; two different intensity similarity 

measures: correlation coefficient (CC) and mutual information (MI); and with and without 

using the liver as a controlling structure. The other parameters for ANACONDA along with 

the values used were: controlling-ROI weight (0.5), Gaussian smoothing standard deviation 

– initial (20 mm), final (3.3 mm) and initial/final grid regularization weight (400). Two 
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strategies involved the implementation of Morfeus in RayStation – using the two rigid 

registration initializations. For Morfeus, a triangular mesh with edge length of 6 mm and 

smoothing radius of 1 mm was generated from the liver contours. The elastic properties of 

the liver included a Young’s modulus of 1000 Pa and a Poisson’s ratio of 0.48. The two rigid 

registrations also served as data points for comparisons.

Parameter Optimization

Continuing with the detailed analysis of ANACONDA within RayStation, we performed an 

optimization for the parameters mentioned above. For ANACONDA, the following 

combination of parameters were tested:

Rigid registrations: global and liver-focused

Similarity measure: correlation coefficient and mutual information

ROI weight: 0.4, 0.6 and 0.9

Initial Gaussian filter standard deviation: 16 mm, 20 mm and 24 mm

Initial/final grid regularization weight: 320, 400 and 480

The final Gaussian filter standard deviation was dependent on the grid regularization weight: 

2 mm for 320, 3 mm for 400 and 4 mm for 480. Hence, 108 sets of parameters were tested 

for registration accuracy of ANACONDA.

Performance Evaluation

In all three of the above comparisons (comparison between TPSs, comparison within a TPS 

and parameter optimization), target registration error (TRE) was used for evaluating 

registration accuracy24. Five anatomical landmarks (vessel bifurcations) were identified in 

both pre- and post-treatment images. The TRE is the mean distance between corresponding 

points on the reference image and the deformed target image. The bifurcations were marked 

by an experienced medical physicist (KKB). This marking was completely independent of 

the liver contouring and statistical analysis described below.

An example of a pre-RT and post-RT image is shown in Figure 1. Contours for the liver and 

the tumor are shown. Two of the points used for the TRE evaluation are also marked.

Statistical Analysis

For both the inter-TPS and intra-TPS comparisons, the TREs for the registration methods 

were analyzed for statistical differences with a Kruskal-Wallis ANOVA (analysis of 

variance). This was followed by pairwise ANOVAs to test for significant differences 

between any pair of registration methods. For the intra-TPS comparison, the analysis was 

carried out in two parts based on the type of rigid registration used. For the parameter 

optimization, a multi-factor ANOVA was used to test the statistical significance of each 

parameter within the registration process.

Stratified statistical analyses were conducted on the inter-TPS data (plus the liver-focused 

rigid registration in RayStation for comparison) by grouping the patients by tumor and liver 

volume changes, time duration between scans, CT slice thickness and lab test abnormalities. 
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Large tumor volume change was defined as >30% change from pre-treatment volume while 

the corresponding threshold for large liver volume change was 10%. It is hypothesized that 

large changes in tumor and liver volume may lead to lower registration accuracy. This is 

something to be particularly aware of in Morfeus, where no boundary condition is placed on 

the tumor. A thick CT slice criterion was applied for patients imaged with a slice thickness 

of 5 mm. While it is expected that thicker slices will lead to higher TREs, the effect may be 

challenging to quantify in the present study because only four such patients were analyzed. 

A large time duration between scans was defined to be greater than the mean duration of 115 

days. It is hypothesized that the larger the time duration, the more complex changes in the 

liver will occur. This may not be captured in total liver volume change as hypertrophy and 

necrosis/fibrosis may offset for a neutral overall change in liver volume, but still lead to 

complexities in deformation. Similarly, it is hypothesized that abnormal laboratory test 

results may indicate complexities in deformation. For any pair of stratifying trait (e.g. 

abnormal ALT, large liver volume change) and registration method, a one-way Kruskal-

Wallis ANOVA was performed with the stratifying trait status as the factor. For all statistical 

analyses, the threshold for statistical significance was 0.05.

RESULTS

The baseline and treatment-related characteristics of the cohort of patients with IHCC are 

described in Table 1 and 2 respectively. Age was calculated in completed years at the start of 

RT.

Figure 2 shows a representative slice for the five registration algorithms within the four TPSs 

using a translucent fusion of the pre and post-treatment images. A box and whisker plot for 

the accuracy of these algorithms is shown in Figure 3 and a corresponding summary is 

provided in Table 3. The accelerated Demon’s algorithm in Eclipse had the best average 

performance (mean TRE 4.6±2.0 mm). The performances of DIRs in Pinnacle SFBR, 

Velocity B-spline and RayStation Morfeus were very similar (mean TREs between 7.2 and 

7.7 mm) while Raystation ANACONDA was comparatively superior (mean TRE 6.0 mm

±2.0 mm). The Kruskal-Walis ANOVA showed registration algorithm to be a statistically 

significant factor with p<0.01. The pairwise ANOVAs showed the Eclipse DIR to be 

significantly superior to all four methods (p<0.01) while the other methods did not differ 

significantly from each other.

A summary for the intra-TPS comparison is provided in Table 4. As expected, the rigid 

registrations had the lowest performance, though there was a substantial improvement from 

the global to the liver-focused registration (mean TREs 9.1±3.5 mm and 8.4±3.1 mm 

respectively). Consequently, there were improvements in ANACONDA when using the 

liver-focused rigid registrations. The improvements were greater for the strategies that did 

not use liver contours as controlling ROIs (mean differences of 1.2 mm and 0.8 mm with CC 

and MI, respectively) as opposed to the strategies that used the liver as a controlling ROI 

(0.3 mm with both CC and MI). Among all DIR techniques, the ANACODA initialized by 

liver-focused rigid registration with CC as similarity metric and liver as the controlling ROI 

had the best overall performance (mean TRE 6.0±2.0 mm), while the ANACODA initialized 

by global rigid registration with CC as similarity metric and no controlling ROI performed 
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the worst (mean TRE 8.6±3.5 mm). The choice of rigid registration had negligible impact on 

Morfeus (limited to round-off differences). Morfeus had a substantially higher standard 

deviation than the other DIR techniques.

The Kruskal-Wallis ANOVA comparing all six registration strategies with global rigid 

registration showed registration technique to be statistically significant (p = 0.005). The 

subsequent pairwise one-way ANOVAs demonstrated that the rigid registration performed 

significantly worse than all DIR techniques besides ANACONDA with CC (p-values 

between 0.001 and 0.033). The strategies with the lowest mean TREs – ANACONDA with 

liver as controlling ROI and CC/MI as similarity metric – performed significantly better than 

ANACONDA with CC and no controlling ROI (p = 0.009 and 0.011, respectively). No other 

pairs of DIR registration techniques were statistically different in terms of registration 

accuracy.

The corresponding analysis with the liver-focused rigid registration yielded similar results 

but less pairs with significant differences. Registration technique was still statistically 

significant (p = 0.008). However, the only pairs significantly different involved rigid 

registration and (i) ANACONDA with CC and liver as controlling ROI (p = 0.004), (ii) 

ANACONDA with MI and no controlling ROI (p = 0.006), and (iii) ANACONDA with MI 

and liver as controlling ROI (p = 0.003).

For the parameter optimization of ANACONDA the mean TREs of all 108 parameter sets 

were between 5.8 and 7.0 mm. The multifactor ANOVA found the choices of rigid 

registration (global and liver-focused) and similarity metric (CC and MI) to be statistically 

significant factors (p< 0.01) for ANACONDA registration accuracy. The peak performance 

(5.8 mm) was attained for the parameters: MI as similarity metric, ROI weight of 0.9, initial 

Gaussian filter standard deviation of 24 mm and grid regularization weight of 400.

The summary of the stratified analysis by lab tests and treatment-related features is shown in 

Table 5. High tumor volume change was associated with significantly poorer performance of 

Raystation Morfeus and Velocity B-spline (p=0.048 and 0.004). This is illustrated in Figure 

4(a) that plots TREs for each registration method as a function of the tumor volume change. 

A quadratic least-square trend line is also shown. While Morfeus shows a distinctive 

parabolic shape with higher TREs away from the vertex, Velocity B-spline shows a 

monotonic decrease.

A large time duration between scans was associated with higher TREs for all registration 

methods. Statistical significance was achieved for rigid registration, Raystation Morfeus and 

Pinnacle SFBR (p-values 0.014, 0.012 and 0.048, respectively). The other registration 

methods also recorded substantial differences. Figure 4(b) shows the correlation between the 

time duration between scans and the TRE for each registration method. Linear least-square 

trend lines are shown alongside. While most of the registrations show small increases in 

TREs with time between scans, the increase is particularly striking for Morfeus and to a 

lesser extent for rigid registration and Pinnacle. None of the other factors (lab abnormalities, 

liver volume change and slice thickness) led to significant differences in any of registration 

methods. All these associations are further discussed below.
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DISCUSSION

The analysis presented above is supported by the mechanisms of the algorithms used. 

Focusing on the liver at the rigid registration stage substantially improved the performance 

of the ANCONDA strategies that did not involve the liver at the DIR stage. The inclusion of 

the liver for rigid registration for these strategies levelled the field as compared to the 

ANACONDA strategies that used the liver as a controlling ROI and led to fewer statistically 

significant pairs. A large tumor volume change resulted in significantly poor performance of 

Morfeus as the tumor boundary conditions were not modeled. In fact, the overall 

performance of Morfeus was affected by a major outlier (TRE >20 mm). This patient had by 

far had the highest percentage change in liver volume (~79%). Morfeus was also unaffected 

by the choice of rigid registration since its implementation in RayStation performs an 

internal realignment.

This study highlights the limitations associated with currently available DIR algorithms to 

handle complex deformations that include volumetric changes. The TPSs used in this study 

encompass a wide variety of DIR algorithms developed over a period of time from b-splines 

in the early 2000s to recent ones such as ANACONDA (2015). All DIR algorithms and 

strategies tested achieved relatively poor accuracy with mean TREs exceeding voxel 

thickness and maximum TREs greater than 1 cm. Among these, the best performance was 

obtained in Eclipse (mean TRE 4.6 mm), but even this was nearly double the average slice 

thickness (2.8 mm). The low performance can partly be attributed to the limitations 

associated with the flexibility of the registration algorithms on TPSs. Three of the four TPSs 

(other than RayStation) have limited scope in altering registration parameters, but even 

different parameterizations of an algorithm (ANACONDA) failed to improve the 

performance significantly. While more recent state-of-the art DIR algorithms such as 

GIFTed Demon’s, and DIS-CO,25,26 and advanced boundary conditions in biomechanical 

models8 may be able to provide some improvements, the full integration of new algorithms 

into existing TPSs is a lengthy process.

In addition limitations associated with TPSs, the challenge of this task is the major factor for 

suboptimal performance. The liver is a large organ and undergoes large anatomical changes 

after radiation therapy. Such challenges have provided similar conclusions in previous 

studies that encompass a variety of applications27–30. One of the limitations of our study – 

the low number of points used for TRE calculations, was a result of these challenges. It took 

an experienced medical physicist about twenty minutes to mark the five points in each 

image. Adding additional points would not only be time consuming but increase the 

uncertainty of the TREs as the chances of incorrect markings would increase for non-

obvious markers. Due to the focus of this paper on DIR of the liver, structures outside the 

liver were not considered. However, in applications such as dose accumulation, alignment of 

surrounding structures (especially bone) may also be important. An optimization scheme 

that performs DIR within the liver and simultaneous rigid registration of the surrounding 

bone structures can be one way of addressing this.
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CONCLUSIONS

In this study, a comparison of a range of commercially available image registration 

algorithms was performed on 29 planning and follow-up image pairs from patients with 

intrahepatic cholangiocarcinoma. Due to the complexity of deformations within the liver, 

simpler techniques such as rigid and intensity-based registrations had severe limitations. 

Advanced techniques with greater flexibility can provide an acceptable alternative in some 

cases. However, significant errors often exist, especially when large liver and tumor volume 

changes are noted. As repeat treatment for patients continues to be developed, requiring the 

mapping of dose, and functional imaging advances are made, requiring correlation with 

delivered dose, improvements in DIR algorithm in this area are needed.
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Figure 1: 
Pre- and post-treatment images for a patient. The liver and tumor are contoured in blue and 

red, respectively. Contours for the pre-treatment image are in solid lines while those for the 

post-treatment image are in dotted lines. Two of the points (vessel bifurcations) for the TRE 

calculation are also marked in yellow.
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Figure 2: 
Demonstration of the liver registrations of in four TPSs: (a) Eclipse – Demon’s (b) 

RayStation - ANACONDA (c) RayStation - Morfeus (d) Velocity – B-spline (e) Pinnacle - 

SFBR. The pre- and post-treatment CT images are shown in different color maps, 

respectively. The liver contoured on the pre-RT image is marked in solid blue in all the 

images. The deformed post-treatment contours are shown for RayStation (dotted) and 

Eclipse (yellow). For Pinnacle and Velocity there was no option of viewing the deformed 

post-treatment contours in the fused DIR rendering.
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Figure 3: 
Box and whisker plot for the performance of the five registration algorithms within the four 

treatment planning systems (summarized in Table 3). For each registration method, the 

central red line denotes the median. The blue box is the interquartile range (IQR). The 

whisker length is defined as 1.5 times the IQR beyond its extremities. The actual whisker is 

drawn up to the furthest data point that is still within the whisker length. Data points that are 

beyond the whisker length are considered outliers and marked individually.
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Figure 4: 
The TRE plotted as a function of the (a) liver volume change and (b) time duration between 

images for liver-focused rigid registration and the five DIRs across four TPSs. The quadratic 

least-square fits for each registration method is also shown.
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Table 1:

Baseline characteristics of the twenty-nine patients with intrahepatic cholangiocarcinoma included in this 

study. Abnormal cases refer to lab values outside clinically defined normal ranges.

Gender (#)

 Male 14

 Female 15

Age (years)

 Mean (Standard Deviation) 62.10 (9.95)

 Range 32 – 79

 Seniors (>65 years) 13

AST (international units/L)

 Mean (Standard Deviation) 49.14 (35.72)

 Range 20 – 213

 Abnormal cases 16

ALT (international units/L)

 Mean (Standard Deviation) 42.00 (37.28)

 Range 12 – 177

 Abnormal cases 9

Cancer Antigen 19–9 (units/ml)

 Mean (Standard Deviation) 240.08 (1040.32)

 Range 1.00 – 4716.00

 Abnormal cases 12

AST (Aspartate Aminotransferase); ALT (Alanine Aminotransferase)
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Table 2:

Treatment-related characteristics of the twenty-nine patients with intrahepatic cholangiocarcinoma included in 

this study

Follow-up time between pre- and post-treatment scans (days)

 Mean (Standard Deviation) 115 (37)

 Range 32–217

Pre-treatment tumor volume (cm3)

 Mean (Standard Deviation) 140.21 (112.99)

 Range 20.53 – 481.97

Post-treatment tumor volume (cm3)

 Mean (Standard Deviation) 108.63 (99.12)

 Range 13.37 – 396.59

Post-treatment tumor volume change

 Actual change - Mean (Std. Dev.) (cm3) −31.58 (49.59)

 Actual change - Range (cm3) −176.36 – 43.63

 Percentage change - Mean (Std. Dev.) −19.16 (32.34)

 Percentage change - Range −68.82 – 78.59

 Large change (>30%) (#) 10

 Volume increased (#) 7

 Volume decreased (#) 22

Pre-treatment liver volume (cm3)

 Mean (Standard Deviation) 1746.67 (360.34)

 Range 1256.81 – 2713.68

Post-treatment liver volume (cm3)

 Mean (Standard Deviation) 1708.50 (365.40)

 Range 1207.04 – 2696.61

Post-treatment liver volume change

 Actual change - Mean (Std. Dev.) (cm3) −38.17 (151.86)

 Actual change - Range (cm3) −329.01 – 298.19

 Percentage change - Mean (Std. Dev.) −1.87 (9.03)

 Percentage change - Range −17.78 – 22.83

 Large change (>10%) (#) 8

 Volume increased (#) 12

 Volume decreased (#) 17
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Table 3:

Summary of registration accuracy (TREs) for the DIRs computed in the four TPSs

RayStation - 
ANACONDA

RayStation - 
Morfeus Pinnacle - SFBR Velocity - B-

splines
Eclipse - 
Demons

Mean TRE (mm) 6.0 7.7 7.2 7.4 4.6

Standard Deviation 
(mm) 2.0 3.9 2.6 2.6 2.0

Median TRE (mm) 6.3 6.8 6.6 7.8 4.2

Minimum (mm) 2.6 2.0 2.9 3.5 1.5

Maximum (mm) 10.9 21.7 14.5 12.5 10.2
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Table 4:

Summary of registration accuracy (TREs) for registrations performed in RayStation

Mean Std. Dev. Median Minimum Maximum

RIGID

Global 9.1 3.5 8.4 3.2 16.2

Liver-focused 8.4 3.1 7.6 3.6 17.3

ANACONDA

Initialization Similarity metric Control ROI

Global Rigid Registration

CC None 8.6 3.5 8.1 3.4 19.9

Liver 6.3 2.3 6.4 2.6 11.5

MI None 7.1 2.7 6.2 4.0 13.6

Liver 6.4 2.4 6.6 3.1 12.2

Liver-focused Rigid Registration

CC None 7.4 2.9 6.8 3.3 16.1

Liver 6.0 2.2 6.3 2.6 10.9

MI None 6.3 2.4 5.4 2.6 12.6

Liver 6.1 2.7 5.3 1.8 15.0

MORFEUS

Initialization

Global Rigid Registration 7.7 3.9 6.8 2.0 21.7

Liver-focused Rigid Registration 7.8 3.9 6.8 2.1 21.6

CC (Correlation Coefficient); MI (Mutual Information)
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Table 5:

TREs for the stratified analysis comparing the effect of treatment, imaging and lab-related factors on 

registration accuracy. For ANACONDA and Morfeus, the best performing strategies in Table 4 are presented 

here. Significant differences are italicized and the corresponding p-values are reported in the last row.

Registrations→ Stratifying 
trait↓

Rigid Raystation - 
ANACONDA

Raystation - 
Morfeus

Pinnacle - 
SFBR

Velocity - B-
spline

Eclipse - 
Demons

Tumor volume 
change >30% 9.8 6.5 10.4 7.93 9.3 5.2

<30% 7.7 5.8 6.3b 6.8 6.3e 4.3

Liver volume 
change >10% 9.9 6.0 7.5 7.9 7.4 4.2

<10% 7.8 6.0 7.8 7.0 7.3 4.7

Time between 
scans >115 d 10.1 7.2 10.1 8.6 8.5 5.5

<115 d 7.2a 5.2 6.1c 6.3d 6.6 4.0

CT Slice thickness 2.5 mm 8.3 5.8 7.4 7.1 7.4 4.3

5.0 mm 9.2 7.7 10.0 8.3 7.2 6.7

CA 19–9 Normal 8.9 6.2 8.5 7.8 6.8 4.8

High 7.7 5.8 6.7 6.4 8.1 4.4

ALT Normal 8.5 5.8 8.1 7.0 7.3 4.9

High 8.3 6.5 6.7 7.7 7.4 3.9

AST Normal 8.9 5.7 8.2 7.0 7.2 4.7

High 8.1 6.2 7.4 7.4 7.5 4.5

Significant p-values a0.014 b0.036 d0.049 e0.004

c0.012

AST (Aspartate Aminotransferase); ALT (Alanine Aminotransferase); CA 19–9 (Cancer Antigen 19–9)
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