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Abstract

Purpose: Brain-computer interface (BCI) techniques may provide computer access for 

individuals with severe physical impairments. However, the relatively hidden nature of BCI 

control obscures how BCI systems work behind the scenes, making it difficult to understand how 
electroencephalography (EEG) records the BCI related brain signals, what brain signals are 

recorded by EEG, and why these signals are targeted for BCI control. Furthermore, in the field of 

speech-language-hearing, signals targeted for BCI application have been of primary interest to 

clinicians and researchers in the area of augmentative and alternative communication (AAC). 

However, signals utilized for BCI control reflect sensory, cognitive and motor processes, which are 

of interest to a range of related disciplines including speech science.

Method: This tutorial was developed by a multidisciplinary team emphasizing primary and 

secondary BCI-AAC related signals of interest to speech-language-hearing.

Results: An overview of BCI-AAC related signals are provided discussing 1) how BCI signals 

are recorded via EEG, 2) what signals are targeted for non-invasive BCI control, including the 

P300, sensorimotor rhythms, steady state evoked potentials, contingent negative variation, and the 
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N400, and 3) why these signals are targeted. During tutorial creation, attention was given to help 

support EEG and BCI understanding for those without an engineering background.

Conclusion: Tutorials highlighting how BCI-AAC signals are elicited and recorded can help 

increase interest and familiarity with EEG and BCI techniques and provide a framework for 

understanding key principles behind BCI-AAC design and implementation.
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Electroencephalography (EEG) techniques non-invasively record brain activity at the level 

of the scalp via electrodes placed in a cap. The application of EEG techniques allows 

investigators to understand what happens in the brain when someone completes different 

tasks such as those related to movement, speech perception, language processing, and 

cognitive processes, in addition to exploring differences in brain activity demonstrated for 

those with varying physical, cognitive, and/or sensory impairments. One area of rapidly 

expanding EEG research focuses on building technologies around the recorded brain signals 

with the aim of providing computer control for those with severe physical impairments who 

may find current methods of computer access ineffective or inefficient. Currently, all 

computer access methods require some form of physical movement for access (e.g., eye 

movement for eye-gaze systems). However, brain-computer interface (BCI) technology 

seeks to translate the recorded brain activity into computer control, circumventing the 

necessity for an individual to possess a reliable form of motor movement for computer 

access. Consequently, BCI technology may serve as a computer access method, which 

allows individuals with severe physical impairments to utilize computer systems for varying 

applications such as augmentative and alternative communication (BCI-AAC) control (e.g., 

Brumberg, Pitt, Mantie-Kozlowski, & Burnison, 2018). Therefore, in the field of speech-

language-hearing, signals targeted for BCI application have been of primary interest to 

clinicians and researchers in the areas of AAC and assistive technology. Further, the signals 

utilized for BCI control are applicable to a range of fields related to speech-language-

hearing, including speech science to better understand the sensory, motor and cognitive 

processes of speech.

High technology techniques for AAC access such as eye-gaze can sometimes be complex for 

individuals who use AAC to understand (McCord, & Soto, 2004). However, as existing AAC 

access methods require some form of physical movement, it is possible to make basic 

associations between an action (e.g., eye movement or switch activation) and device control. 

In contrast, the relatively covert or hidden nature of BCI control obscures how these systems 

work for those who are not directly involved in BCI research and signal processing 

developments. Specifically, it may be unclear how EEG records the BCI related brain 

signals, what brain signals are being recorded by EEG, and why these signals are targeted 

for BCI control. Understanding the how, what, and why behind BCI is an important 

foundation for professionals looking to implement BCI technology and is necessary to 

comprehend how EEG signals are acquired and the rationales behind BCI designs that are 
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tailored to elicit a specific target EEG signal such as the P300 for BCI control. Furthermore, 

while there are resources reviewing BCI techniques (e.g., Wolpaw, Birbaumer, McFarland, 

Pfurtscheller & Vaughan, 2002; Brumberg, Pitt, Mantie-Kozlowski, & Burnison, 2018; 

Akcakaya et al., 2014), there are limited works available focused on educating clinical and 

research professionals, along with other BCI stakeholders (e.g., clients, family, and 

caregivers) about the preliminary processes governing how EEG signals are recorded, why a 

given signal is suitable for BCI use, and how this impacts interface design. These 

foundations may not be fully intuitive for individuals without a background in science, 

engineering or BCI development, impeding the involvement of clinical professionals and 

stakeholders in the BCI process. This lack of background knowledge in BCI processes may 

decrease stakeholders’ comfort and familiarity with high technology-based AAC and BCI 

applications, (e.g., Baxter, Enderby, Evans, & Judge, 2012; Blain-Moraes, Schaff, Gruis, 

Huggins, & Wren, 2012), possibly increasing their anxiety (Jeunet, 2016), and ultimately 

impeding the translation of BCI research into clinical practice by limiting stakeholder 

involvement. Therefore, by demystifying the processes behind BCI and EEG technology 

(Jeunet, 2016), this tutorial aims to provide an EEG and BCI overview regarding 1) how 

EEG records BCI related signals, 2) what EEG signals are targeted for BCI control and 

development, and 3) why these signals are targeted.

Methods

A multidisciplinary team including a BCI-AAC developer, a neuroscientist with experience 

in BCI development and EEG data collection and analyses, and three speech-language 

pathologists (two with experience in the clinical translation of BCI-AAC technology, and the 

other with experience in neuroscience and EEG-based research) identified foundational 

principles of EEG function. In addition, the multidisciplinary team identified major 

paradigms for discussion that include auditory and visually elicited EEG signals primarily 

used for direct BCI control (i.e., auditory and visual P300, steady state evoked potentials, 

sensorimotor modulations, and the contingent negative variation), along with a secondary 

signal, the N400, which to date has largely been utilized to improve P300-based BCI 

accuracy. Tutorial sections were informed via recent literature on EEG-based BCI research 

and experience, with an emphasis on research related to the field of speech-language-hearing 

and speech science. To outline the how, what, and why of BCI technology, the tutorial is 

split into two sections, with section 1 discussing how brain signals are recorded via EEG, 

and section 2 discussing what primary and secondary signals are being recorded, in addition 

to why these signals are targeted for BCI applications.

How EEG Signals are Recorded

To understand the utility of BCI for AAC applications, it is important to gain a fundamental 

knowledge about why EEG is used for BCI-AAC applications, along with an understanding 

of how the EEG system records the targeted BCI signals. Therefore, in the following section, 

we will outline the basic foundations necessary for understanding the use of EEG in a BCI-

AAC context, including the suitability of EEG for BCI-AAC applications, a description of 

the EEG system, and the underlying brain activity the system records.
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EEG for BCI Primer

In contrast to invasive brain recording methods such as electrocorticography, which require 

invasive surgery for the electrode array to be placed on or within the brains cortex (e.g., 

Brumberg & Guenther 2010), EEG non-invasively measures brain activity at the scalp via 

electrodes placed in a cap, which the individual wears during EEG recordings. Therefore, 

while EEG provides decreased signal to noise ratios in comparison to invasive methods (e.g., 

Brumberg & Guenther 2010), it provides a practical alternative to record brain signals used 

for BCI-AAC control without requiring invasive surgery. A primary reason EEG is used for 

BCI control is due to its high temporal resolution, which allows for the measurement of 

brain activity from one millisecond to the next. As many aspects of attention and perception 

appear to operate on a scale of tens of milliseconds, this high temporal resolution allows a 

range of neurological signals to be identified in the EEG signal, which may be used for BCI-

AAC control such as the P300, steady state evoked potentials, and those involved in motor 

processes (e.g., Brumberg, Pitt, Mantie-Kozlowski, & Burnison, 2018; Akcakaya et al., 

2014). These varied brain signals can be elicited via paradigms that do not require overt 

physical movements, making them ideal candidates for communication device control for 

those without functional motor movements, or those who find precise movements (e.g., eye 

movements) highly fatiguing.

Traditionally, brain signals used in BCI-AAC applications utilize EEG systems with silver 

chloride or tin electrodes, which require the application of electrolyte to provide a 

conductive path between the scalp and the recording electrode, lowering electrical 

impedance. Different BCI-AAC systems utilize varied numbers of electrodes depending on 

the specific BCI system, and the targeted signal. Research-based BCI applications may use 

64 electrode locations or more (e.g., Brumberg, Burnison & Pitt, 2016). However, more 

commercial BCI systems, may use less electrode locations (e.g., 8 electrode locations; 

Guger et al., 2009) to limit set up burdens. To understand the brain areas involved in the 

generation of BCI signals (e.g., visual, auditory, sensorimotor), it is important to understand 

the basic foundations of how electrode locations are identified. Furthermore, the electrode 

location of primary interest for a target BCI signal may influence BCI-AAC assessment 

criterion, as visually elicited BCI signals such as the visual P300, and steady state visually 

evoked response are commonly recorded on posterior recording electrodes (e.g., P, O and PO 

locations; Combaz et al., 2013), which may be impeded by wheel chairs headrest (e.g., Pitt 

& Brumberg, 2018a). EEG electrode locations are traditionally identified using the 10–20 

system, which describes different electrode recording locations by using numbers and letters 

to identify the electrodes adjacent brain areas, and lateralization. Regarding underlying brain 

areas, electrodes identified with the letter F are located over frontal areas of the brain, C; 

over central areas, T; over temporal areas, P; over parietal areas, and O; over occipital areas 

at the back of the head. Even numbered electrode locations indicate right side lateralization, 

odd numbers left side, and Z or zero refers to electrodes placed along the midline (e.g., 

Teplan, 2002). For instance, electrode locations CZ, C3, and C4 refer to the centrally located 

sensorimotor areas of the brain found over midline (CZ), left lateral (C3) and right lateral 

(C4) locations, for a full review of the 10–20 and other placement systems, see Jurcak, 

Tsuzuki & Dan (2007).
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Ultimately, the EEG techniques described above, measures the summed electrical activity of 

thousands to millions of neurons. When neurons in the brain communicate, they release 

neurotransmitters across the space between them called the synapse. The neurotransmitter 

released from the presynaptic neuron then bind with receptors on the other side of the 

synapse, which are known as postsynaptic receptors. The released neurotransmitter that 

binds to these postsynaptic receptors located on the neuron’s dendrites will either result in 

post-synaptic inhibition or excitation. An action potential will be generated with sufficient 

excitation propagating the signal along the axon to other neurons. The electrical activity 

associated with individual action potentials are not sufficient for observation using scalp 

EEG, but the voltages of the postsynaptic potentials of cortical pyramidal cells, when 

summed together during synchronous firing, become large enough to be recorded by EEG.

What Brain Signals are Recorded by EEG, and Why They are Targeted for BCI-AAC Control

A variety of EEG paradigms are used to elicit brain signals related to BCI control and 

development, and each targeted signal is related to different sensory, cognitive, motor and 

language processes, each having its own application to BCI. The following section provides 

a review of primary signal used for direct BCI-AAC control (i.e., auditory and visual P300, 

steady state evoked potentials, sensorimotor modulations, and the contingent negative 

variation), along with a secondary signal, the N400, which to date has largely been utilized 

to improve P300-based BCI accuracy. Further, to inform BCI-AAC assessment, fundamental 

factors influencing signal production and BCI performance will be noted. A diagram 

highlighting different brain signals and how they are utilized for BCI control is provided in 

figure 1. In greater detail, stage 1 of figure 1, reflects the EEG recording of brain signals via 

the EEG electrodes placed in a fabric cap, as described in the How portion of this tutorial. 

Stage 2 reflects the second portion of this tutorial, outlining what primary signals utilized for 

BCI control including steady state evoked potentials (top line of the EEG output), P300 

(second line of the EEG output), and sensorimotor rhythm (bottom line of the EEG output). 

Stage 3 then reflects the final tutorial portion, outlining why the primary BCI signals are 

targeted for communication device control (e.g., the interface item associated with the 

occurrence of the P300 may be identified for selection), along with examples of graphical 

interfaces for BCI-AAC. The N400 is not directly included in this figure since its primary 

role in BCI to date is to support increased performance for grid-based P300 BCI devices.

Primary Signals related to BCI-AAC control

Auditory and visual P300 event-related potential.—The P300 event-related potential 

(ERP) is a very popular signal targeted for BCI-AAC control due to its relatively large 

amplitude and ability to be elicited through auditory, visual and tactile sensory modalities 

(e.g., Guger et al., 2009). Event related potentials (ERPs) are small voltage changes recorded 

by EEG over time, which are generated in response to specific events or stimuli (e.g., onset 

of a visual or auditory stimulus; Luck, 2014). Increased ERP deflections in the EEG signal, 

either positive or negative, are associated with increased neural activity, with decreased 

latency representing a shorter time for allocation of associated cortical resources (e.g., 

Polich et al., 1983). As with most ERPs, the P300 signal name reflects the polarity and 

timing of the EEG voltage deflection after the initial stimulus onset or event. Specifically, 

the P300 is a positive going deflection in the EEG signal reaching its peak amplitude at 
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latency of approximately 300 ms (figure 2), though its latency may vary from around 250–

500 ms depending upon factors such as an individual’s age, stimulus modality (i.e., auditory, 

visual, and tactile presentations), and other task conditions (Polich, 2007).

The P300 ERP continues to receive a lot of attention in the EEG literature since its discovery 

by Sutton, Braren, Zubin, & John (1965), and is elicited through tasks which require 

conscious discrimination of a target stimulus. Fully, the P300 is commonly elicited through 

an oddball presentation paradigm. During an oddball presentation paradigm, the individual 

is presented with a series of stimuli that include a frequently appearing ‘background’ 

stimulus intermixed with infrequent or novel stimulus known as the ‘oddball’ (e.g., Donchin 

et al., 1978). For instance, an individual may be required to listen for a less frequent high-

pitched tone that occurs in a repeating train of more frequent, low pitched, standard tones, or 

count the number of times a target grid item is visually highlighted, amongst illumination of 

all other grid items. Through this paradigm, a P300 ERP occurs following identification of 

each high tone or target grid item presentation, with P300 amplitude increasing as the 

probability of identifying the target decreases (e.g., Duncan‐Johnson & Donchin, 1977). 

Decreasing the probability of target stimulus presentation to increase P300 amplitudes create 

a tradeoff in experimental designs however, as fewer rare/target stimuli will be presented in a 

given experimental time window. Therefore, stimulus probability must be balanced with 

obtaining sufficient target trials for the P300 ERP to be resolved over background noise.

The neural mechanisms governing P300 production are thought to reflect information 

processing, the allocation of attentional resources, and memory access or encoding during 

context updating (e.g., Donchin & Coles, 1988; Polich, 2007). In more detail, during the 

oddball paradigm, the early subcomponent of the P300 ERP (also known as the P3a) is 

thought to reflect attention driven processes that, along with memory access, help 

discriminate whether the current stimulus is different (novel) in comparison to the ones 

preceding it. If the stimulus is found to be different, the ‘full’ P300 ERP is produced, due to 

revision of the individual’s underlying mental representation and memory storage eliciting 

the later P3b subcomponent (e.g., Donchin, 1981; Polich, 2007). How the P300 signal 

specifically reflects these attention and memory related processes is still somewhat unclear, 

but the P300 may represent the inhibition of extraneous mental activity to facilitate 

enhancement of task related cognitive processes (see Polich, 2007 for review).

Why is the P300 targeted for BCI control?—For BCI applications, the P300 interface 

is designed to elicit the P300 via the oddball paradigm using either a serial or grid-based 

presentation. For example, to access a grid-based P300 BCI system (e.g., Donchin, Spencer, 

& Wijesinghe, 2000), the individual decides on the communication item they wish to select 

before the presentation begins. The undesired items serve as the frequent stimulus, and the 

desired item as novel/infrequent stimulus. The P300 display then randomly highlights all 

grid items (e.g., by turning them from grey to white or a color; e.g., Ikegami, Takano, Saeki, 

& Kansaku, 2011), while the individual focuses their attention on the target item they wish 

to select (e.g., Donchin et al., 2000). When the desired item is presented, a larger P300 is 

elicited in comparison to the other stimuli, and after a few presentations of each grid item, 

the averaged ERP for each stimulus are compared. The BCI then identifies the item 

associated with the largest P300 occurrence and selects that communication item. In contrast 
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to the grid layout, items may also be presented in a rapid serial visual presentation format 

(e.g., Oken et al., 2014) where communication items are presented one-at-a-time in a 

randomized fashion from a single visual-field (e.g., central). The utilization of overt 

attention strategy where the individual focus their gaze on the item they wish to select has 

been shown to increase P300-based BCI outcomes in contrast to a covert attention strategy, 

where an individual focus on an item in their periphery (Brunner et al., 2010). Therefore, the 

rapid serial visual presentation paradigm is ideal for individuals with oculomotor difficulties 

who may struggle to attend to a desired stimulus placed in a grid format (e.g., Pitt & 

Brumberg, 2018a), as items can be placed according to oculomotor abilities. P300-based 

BCI interfaces are designed to elicit the maximum P300 amplitude and shortest latency for 

the stimulus of choice by manipulating fundamentals of the oddball paradigm such as matrix 

size and interstimulus interval (e.g., Sellers, Krusienski, McFarland, Vaughan, & Wolpaw, 

2006), and presentation rate (McFarland, Sarnacki, Townsend, Vaughan, & Wolpaw, 2011). 

The time needed to select the appropriate letter may also be reduced by utilizing language 

models to guide stimuli presentation (e.g., Oken et al., 2014). It is also of relevance to 

interface design to understand ERP amplitudes are very small (i.e., microvolts) and thus are 

easily obscured in the EEG signal by noise from varying sources such as electrical 

interference and muscle movements (e.g., Luck, 2014; Fisch, 2000). Therefore, to improve 

the signal to noise ratio, the oddball target and frequent stimulus are commonly presented on 

multiple occasions, with each item in the grid being flashed more than once before the BCI 

makes a selection. Thus, it is the amplitude and latency of the averaged ERP waveform that 

is used by the BCI to assess the neural P300 response. While an increased number of trials 

improves the quality of the P300 recordings, the time it takes for the BCI to make an item 

selection is increased, slowing overall communication rate.

To date, visual and auditory P300 BCI systems have received the most attention, with 

visually-based devices currently involved in home use by individuals with ALS (e.g., 

Wolpaw et al., 2018), and a recent meta-analysis of BCI performance accuracies for 

individuals with ALS revealed the pooled accuracy of visually-based P300 BCI devices 

across fifteen studies was 72.94%, with a 95% confidence interval ranging from 64.26% to 

81.62% (Marchetti & Priftis, 2015). Further, a recent longitudinal investigation by Wolpaw 

et al., (2018) demonstrated successful use of a visual P300 BCI system for individuals with 

ALS with 14 participants, from an original cohort of 39, progressing to independent at home 

BCI use, with 7/8 of the remaining participants electing to keep the BCI for continued use at 

the end of the 18 month study period. However, it should be noted that only five people 

withdrew from the study due to limitations in the BCI system or preferences for another 

device, with the primary reason for withdrawal being changes in health-related factors. 

Auditory-based P300 devices are a less frequently utilized form of BCI technology in 

comparison to their visual counterparts, and therefore performances for individuals with 

neuromotor disorders is less clear. Nevertheless, initial performance may be decreased for 

auditory-based P300 devices in comparison to their visual counterparts, due to difficulties 

with auditory attention, and an increased cognitive load associated with mapping of the grid-

based system into the auditory domain (e.g., translating rows and columns of the visual grid 

into a number system; Kübler et al., 2009). However, the effects of long term BCI training 

on auditory P300 BCI performance requires further investigation. It is also clinically relevant 
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to note that BCI performance accuracies for individuals with neuromotor impairments are 

variable for P300 devices, as with other BCI techniques, and an individual’s unique profile 

can influence BCI outcomes (e.g., Fried-Oken, Mooney, Peters, & Oken, 2013; Pitt & 

Brumberg, 2018a). For instance, improved P300 BCI performance is associated with 

unimpaired selective attention and working memory skills, along with positioning factors 

that helps ensure posterior recording electrodes are unimpeded. Therefore, similar to 

existing AAC procedures, an individual’s unique current and future profile and environment 

should be considered in BCI assessment (see Pitt & Brumberg, 2018a for a review).

Auditory and visual evoked potentials.—Similar to the P300, steady state evoked 

potentials allow for computer access via sensory stimulation. However, in contrast to the 

P300 which reflects voltage changes over time, steady state evoked potential-based BCI 

control is achieved via evaluation of task-related frequency components in the EEG signal. 

More specifically, steady state visual evoked potentials (SSVEPs) utilize rhythmic brain 

oscillations that are modulated by a driving visual stimulus repeating at a fixed rate, such as 

a flickering light or strobing icon (e.g., Regan, 1966). During SSVEP paradigms the 

individual attends to a constant SSVEP stimuli, which causes synchronous neural firing that 

follows the presentation rate of the visual stimulus (Horwitz et al., 2017). This synchronous 

firing produces a robust response with stable amplitude and phase over time (Regan, 1966). 

The SSVEP is periodic in nature, with stimulation frequencies commonly between 8–30 Hz. 

For example, in a SSVEP paradigm where multiple stimuli are presented simultaneously, at 

different stimulation frequencies, the stimulation frequency that the individual is attending 

induces a greater magnitude of neural synchrony (Muüller-Putz, Scherer, Brauneis, & 

Pfurtscheller, 2005). This synchronous neural firing increases the energy present in the target 

frequency band, when evaluated via a time-frequency analysis, along with increasing its 

temporal resolution (Lin, Zhang, Wu, & Gao, 2007) in comparison to the other non-target 

stimuli over posterior recording electrodes. The different stimuli are typically presented at 

different locations in the visual field to allow for discrete attention to one stimulus/

frequency.

Paralleling the SSVEP, the auditory steady state response (ASSR) is an auditory evoked 

potential in response to periodically presented auditory stimuli such as a string of clicks, or 

amplitude-modulated tones between 20 Hz to 100 Hz (Cohen, Rickards & Clark, 1991; Hill, 

& Schölkopf, 2012). The ASSR can be localized to primary and secondary auditory cortex 

(Liégeois-Chauvel, Lorenzi, Trébuchon, Régis, & Chauvel, 2004), with rhythmic brain 

oscillations in auditory cortex being modulated by the frequency of the driving input 

stimulus.

Why are visual and auditory steady state evoked potentials targeted for BCI 
control?—While BCI applications of the ASSR are still in the early stages, SSVEP has an 

established history for BCI application due to its high signal to noise ratio (Srinivasan, Bibi, 

& Nunez, 2006). For instance, in four choice SSVEP display, item one may flicker at 8 Hz, 

item two at 9 Hz, item three at 10 Hz, and item four at 11 Hz. In this SSVEP paradigm, the 

frequency of the item associated with the target demonstrates increased neural synchrony 

and temporal correlation in the EEG signal in comparison to the non-target items. Therefore, 
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the BCI decoding algorithm selects the target item by identifying the stimuli associated with 

the largest magnitude of response during the trial. With the SSVEP Shuffle Speller (Higger 

et al., 2017) the individual selects different boxes of letters, each flickering at their own 

specific frequency. Through a language model, selections are made until the individual has 

only one letter is left to select. Furthermore, SSVEP-based BCIs can allow access to 

graphical interfaces presenting a large array of items for selection such as a full keyboard 

layout with 30 selection options (e.g., Hwang et al., 2012). In the full keyboard paradigm, 

each letter and symbol flickers at a slightly different rate (e.g., letter A flickers at 7 Hz, B at 

7.8 Hz, through Z, at 6 Hz) with the most similar stimulation frequencies (e.g., 7 and 7.1 Hz) 

being spread across the keyboard display to avoid overlap of adjacent stimulus frequencies.

For ASSR-based BCIs, individuals are instructed to attend to a specific frequency tagged 

sound stream coming from a specific location (Kim et al., 2011). Similar to the SSVEP, the 

sound stream to which the individual is attending can be identified by the BCI algorithm 

through increased ASSR frequency amplitude, resulting in item selection. For instance, Hill 

et al., (2014) investigated ASSR-based BCI paradigm for making yes and no selections, 

utilizing auditory attention to one of two amplitude modulated ‘beeping’ sound streams of 

768 Hz to the right ear, and 512 Hz to the left ear.

Recent studies are beginning to support the feasibility SSVEP use by individual with 

neuromotor disorders (e.g., Hwang et al., 2017), with reported performance accuracies such 

as ≥70% (Combaz et al., 2013), and 76.99% (Hwang et al., 2017). However, SSVEP-based 

BCI performance is variable (e.g., 18.75% to 73% for individuals with various neuromotor 

disorders; Brumberg, Nguyen, Pitt, & Lorenz, 2018) and is influenced by an individual’s 

unique profile. Similar to P300-based BCIs, SSVEP performance is supported by factors 

such as individual’s oculomotor strengths, which allows for utilization of overt attention 

strategies (Brumberg, Nguyen, Pitt, & Lorenz, 2018; Peters et al., 2018). However, SSVEP 

items may be arranged to support oculomotor strengths to improve BCI accuracy (e.g., 

Brumberg, Nguyen, Pitt, & Lorenz, 2018). Further, positioning factors, such as pressure 

from a wheelchair headrest, and uncontrolled neck and muscle movements may impede 

posterior electrode recordings, which decreases SSVEP BCI performance below the 

aforementioned levels (Daly et al., 2013). Finally, in addition to cognitive factors such as 

attention, due to the rapidly flickering stimuli, an individual’s history of seizures is an 

important consideration when considering SSVEP-based BCI use (e.g., Pitt & Brumberg, 

2018b). In comparison to SSVEP, ASSR devices are an emerging BCI technique. Therefore, 

the utility of ASSR-based BCIs for individuals with neuromotor disorders is currently 

unclear, but under investigation.

Sensorimotor modulations.—Similar to the steady state evoked potentials such as the 

SSVEP, sensorimotor-based BCI control is obtained through time frequency analysis of the 

energy levels present in different frequency bands. However, in comparison to influencing 

the synchrony of neural oscillation through external sensory stimulation (e.g., a flickering 

stimuli), sensorimotor oscillations are modulated by tasks such as physical or imagined 

movements, during which an individual mentally recreates an action without physical 

execution. Brain oscillations or rhythms refer to the repetitive, synchronous, electrical 

activity generated by neurons. When the brain is relaxed or at rest it is described as being in 
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an idling state, and in this state, a large number of neurons produce synchronized rhythmic 

activity between ~8–12 Hz to possibly govern inhibitory and excitatory cortical processes to 

manage energy use (e.g., Pfurtscheller et al., 2006, 1999; Pfurtscheller & Neuper, 2009; 

Neuper & Pfurtscheller, 2001). However, when an individual becomes engaged in 

processing cognitive, sensory and/or motor-based information, synchronized ~8–12 Hz 

neuronal synchrony decreases, as neurons begin firing at different rates to accomplish the 

given task. Therefore, tasks such as an physical or imagined movement, and cognitive tasks 

such as word association, and arithmetic (e.g., mental subtraction; Friedrich, Scherer, & 

Neuper, 2012) may be used to modulate the energy levels (i.e., power) of different frequency 

bands within the EEG signal including, alpha (~8–12 Hz), which is called mu when 

measured over sensorimotor areas (Kuhlman, 1978), beta (~18–26 Hz), and gamma (> 

35Hz). In more detail, each rhythm is identified by its own scalp location and frequency 

range, and when the brain is relaxed or at rest synchronous neural firing causes an increase 

in alpha band power known as event-related synchronization (ERS; figure 3). However, a 

time-frequency analysis reveals that when neuronal activity becomes desynchronized due to 

task related engagement of cortical areas, a decrease in alpha band power is noted in the 

EEG signal. When this neuronal desynchronization occurs following an event (e.g., 

presentation of an external stimulus prompting motor (imagery) task performance), it is 

known as event-related desynchronization (ERD; Pfurtscheller & Da Silva, 1999; see figure 

3).

The focus of sensorimotor-based BCI research has focused on providing BCI control via 

imagined actions, as imagined movements engage primary sensorimotor areas of the brain 

associated with neuromuscular function in a manner similar to physical movement (e.g., 

Pfurtscheller & Da Silva, 1999; Neuper, Scherer, Reiner & Pfurtscheller, 2005). However, a 

variety of tasks may potentially be utilized to produce general alpha desynchronization 

including cognitive tasks such as word association, and mental subtraction (Friedrich, 

Scherer, & Neuper, 2012; Scherer al., 2015). Regarding the performance of physical and 

imagined movements, as the nervous systems is organized to provide contralateral motor 

control (i.e., a right-hand movement is controlled by hand motor areas in left hemisphere), 

electrodes over left sensorimotor cortex (e.g., C3) show increased desynchronization for 

right hand tasks, and right sided electrodes (e.g., C4) for left hand task. However, for tasks 

where motor control areas are located closer to the brain’s midline (e.g., foot motor areas), a 

more central sensorimotor modulation is noted (e.g., Pfurtscheller, Brunner, Schlögl, & Da 

Silva, 2006). Sensorimotor desynchronization associated with task performance does not 

occur in isolation however and is accompanied by synchronization of cortical areas that are 

not directly involved in task completion (Suffczynski, 1999). For example, during right hand 

motor imagery an ipsilateral synchronization (ERS) is present in the EEG signal in 

conjunction with the contralateral desynchronization (e.g., Pfurtscheller & Neuper, 1997). 

Furthermore, during feet or tongue imagery, mu-band power increases over hand motor 

areas (Pfurtscheller et al., 2006).

Why are sensorimotor modulations targeted for BCI control?—For some 

individuals the sensorimotor rhythm may not be recordable via EEG (e.g., Blankertz et al., 

2010), possibly due to anatomical variability in the shape and position of motor cortex (e.g., 
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Morash, Bai, Furlani, Lin & Hallet, 2008). However, when present, since changes in the 

sensorimotor rhythms during performance of imagined movements parelleles that of 

physical execution, they are a viable target to provide BCI control as no physical motor 

skills are required for sensorimotor-based access to communication. In a BCI context, 

changes in the sensorimotor rhythm can be detected by the BCI during a single trial 

containing physical or imagined movements and translated into computer control to access a 

range of BCI paradigms. These paradigms are not reliant upon visual presentation paradigms 

that incorporate flashing stimuli such as the P300 and SSVEP. For instance, neuronal 

desynchronization can be detected by the BCI when an individual’s imagines performing an 

action following highlighting of a communication item they want to select. The presence of 

this event-related desynchronization can trigger the BCI to make a selection, similar to 

switch access during scanning-based AAC paradigms (Scherer al., 2015; Friedrich et al., 

2009). Furthermore, when prompted, an individual can imagine performing a specific action 

(e.g., imagined right or left-hand movements) to select different groups of letters until a 

single item remains for selection (e.g., Obermaier, Muller, & Pfurtscheller 2003). Changes in 

the sensorimotor rhythm can also be interpreted by the BCI in real-time to provide cursor 

like computer control (e.g., Wolpaw & McFarland, 2004) in which imagining different 

movements results in changes in cursor position. This cursor control method could therefore 

allow access to a range of paradigms including selection of letters or words placed in 

different onscreen locations (e.g., Vaughan et al., 2006; Kübler, et al., 2005). Extending the 

idea of cursor control to speech processing, cursor-based BCI paradigms may be used to 

provide real-time control of a 2D formant speech synthesizer (Brumberg, Pitt, & Burnison, 

2018; Brumberg & Pitt, 2019). It should also be considered, that in addition to motor actions 

and imagery different tasks such as mental subtraction, word association, mental rotation can 

create levels of desynchronization detectable by the EEG and may therefore have utility for 

BCI control. For example, while further research is still needed, a task other than motor 

imagery may yield BCI success for an individual with a lesion impairing motor cortex 

following stroke (see Friedrich et al., 2012 for a review).

Pooled sensorimotor BCI accuracies are reported as 70.04% across four studies with a 95% 

confidence interval ranging from 52.22% to 87.85%. However, these results need to be 

interpreted in light of participant heterogeneity, and differences in BCI design across studies 

(Marchetti & Priftis, 2015). Furthermore, while initial performances for sensorimotor BCIs 

utilizing auditory feedback may be associated with decreased initial BCI performances, with 

training, they may begin to approximate the performance levels of their visual counterparts 

(Nijboer et al., 2008). Regarding individual profile variability, Kasahara et al., (2012) found 

the desynchronization was dampened for individuals with ALS, especially for those with 

increased bulbar involvement. Therefore, the magnitude of the desynchronization used for 

BCI control may not be solely dependent upon the number or activation of surviving neural 

cells but by additional factors such as individuals’ ability to recall a motor action from 

memory, level of fatigue, and ability to concentrate. Therefore, in addition to 

neurophysiological measures such as amplitude of the sensorimotor rhythm (Blankertz et al., 

2010), sensorimotor BCI performance may be impacted by a range of cognitive (e.g., 

attention; Geronimo, Simmons, & Schiff, 2016), psychological (e.g., motivation and 

confidence levels; Nijboer et al., 2010), and motor imagery (e.g., Neuper et al., 2005) related 
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factors. However, additional research is needed to identify the effects of longitudinal training 

on sensorimotor BCI performance (e.g., Daly et al., 2014).

The contingent negative variation.—Similar to the sensorimotor rhythms, physical 

motor abilities are not required for an individual to learn voluntary control of slow cortical 

potentials, such as the contingent negative variation (CNV) and Bereitschaftspotential, 

making them suitable for BCI application. In the context of BCI, voluntary control of slow 

cortical potentials can be learned through feedback in operant conditioning paradigms (e.g., 

the position of an onscreen cursor changes in relation to slow cortical potential amplitudes; 

Neumann & Birbaumer, 2003). The CNV is a slow cortical potential (<1 Hz; e.g., Brumberg, 

Pitt, Mantie-Kozlowski, & Burnison, 2018) that was first described by Walter, Cooper, 

Aldridge, McCallum, & Winter (1964) and is characterized as an EEG signal with a negative 

going amplitude associated with one’s degree of cortical arousal during attentional 

anticipation, response preparation, and information processing (e.g., Nagai et al., 2004; 

Segalowitz, & Davies, 2004; figure 4). The CNV contains both cognitive and motor 

components and is commonly elicited during go/no-go response paradigms during which the 

CNV increases in negativity between a warning cue (stimulus 1), and an imperative stimulus 

(stimulus 2), which prompts the participant to complete an action (e.g., to press a button). 

For instance, during a typical CNV paradigm the first stimulus will inform the participant if 

they will or will not perform a set action when the second stimulus is presented. During 

trials where the stimulus 1 prompts the participant to prepare to perform the action upon 

presentation of stimulus 2 (known as ‘go trials’), an increasing negative drift is present in the 

EEG signal prior to task onset in comparison to ‘no-go’ trials where stimulus 1 prompts the 

participant to remain at rest for the trial duration (e.g., Taylor, Gavin, & Davies, 2016). 

However, stimulus 1 may also serve as a general ‘prepare for action’ prompt, with stimulus 2 

instructing the participant to go or not to go. During response preparation between stimuli 1 

and 2, the CNV may be divided into two phases, an early orienting phase known as the O-

wave, and a later expectancy and preparation phase known as the E-wave (e.g., Taylor et al., 

2016; Brunner et al., 2015), both of which are influenced by cognitive and motor factors 

(e.g., Lukhanina, Burenok, Mel’nik, & Berezetskaya, 2006). Specifically, the O-wave is 

greatest at midline frontal electrodes and is associated with arousal and processing of 

stimulus characteristics such as intensity (e.g., Nagai et al., 2004) in addition to cognitive 

processes associated with categorical judgement (e.g., to ‘go’, or ‘no-go’; Cui et al., 2000), 

and task maintenance and rehearsal (Brunner et al., 2015). In contrast, the late E-wave is 

associated with task setting (i.e., planning how to respond to the second stimulus), and the 

degree of sustained attentional efforts (Brunner et al., 2015; Cui et al., 2000). Furthermore, 

the late CNV is thought to reflect motor preparation to a greater degree than the early stage 

(Nagai et al., 2004; Cui et al., 2000), being influenced by motor factors such as task 

complexity (Cui et al., 2000). For neurotypical adults, a range of brain areas associated with 

cognitive-sensory-motor processes are associated with CNV generation (e.g., Nagai et al., 

2004), with maturation of the frontal lobe attentional system as a possible contributing factor 

(Segalowitz & Davies, 2004) to why the CNV amplitudes increase in negativity during 

development and into young adulthood (Taylor et al., 2016; Segalowitz & Davies, 2004). 

Currently, the neural mechanisms underlying the CNV are still not fully understood (Nagai 

et al., 2004; Cui et al., 2000), and may vary with depending upon the task and stimulus 
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characteristics (Segalowitz & Davies, 2004). The contingent negative variation shares a 

close relationship with another negative going EEG potential indicting motor ‘readiness’ 

known as the Bereitschaftspotential (Deecke, Grözinger & Kornhuber, 1976). The 

Bereitschaftspotential is commonly studied during self-initiated movements (e.g., finger 

flexion and extension), which the individual performs at their own pace without external 

cues (e.g., Cui et al., 2000). Conversely, the CNV is time-locked to stimulus presentations, 

requiring increased levels of attention Nagai et al., 2004).

Why is the CNV targeted for BCI control?—Traditionally, cortical arousal associated 

with slow cortical potentials such as the CNV or Bereitschaftspotential are used for control 

of operant conditioning-based BCI devices (Neumann & Birbaumer, 2003). To control 

operant conditioning-based BCIs such as the Thought Translation Device (Kübler et al., 

1999; Birbaumer et al., 2000), the individual learns to voluntarily control their slow cortical 

potentials through feedback (e.g., of cursor movement). For example, in comparison to a 

baseline period, a negative going slow cortical potential amplitude during a single trial of 

active BCI control (reflecting increased cortical excitation) may move a cursor up, where a 

positive slow cortical potential amplitude (reflecting decreased cortical arousal), may move 

the cursor down (e.g., Wolpaw & Boulay, 2009; Kübler et al., 1999). Similar to 

sensorimotor-based BCIs, this cursor control mechanism may be used for communication 

output, or environmental control (Kübler et al., 1999; Neumann & Birbaumer, 2003). 

Furthermore, paralleling sensorimotor-based BCIs, mastery of slow cortical potential 

devices may take extended training times (e.g., Neumann & Birbaumer, 2003). Finally, 

while research is still in the early stages, the CNV may serve to provide switch-based access 

to commercial AAC scanning paradigms in which CNV occurrence prior to performance of 

an imagined movement triggering a BCI ‘switch’ selection of the currently highlighted icon 

during item scanning (Brumberg et al., 2016).

Across six studies the pooled classification accuracies of individuals with ALS for slow 

cortical potential-based BCI control was 72.94%, with a 95% confidence interval ranging 

from 67.32% to 83.36% (Marchetti & Priftis, 2015). Furthermore, single session BCI 

performance for an individual with advanced ALS was 62.2% when utilizing CNV-based 

access to a commercial AAC display (Brumberg, et al., 2016). Variability in BCI 

performance for slow cortical potential-based BCIs may be due in part to individual 

differences in CNV manifestation. For instance, for individuals with mild spastic cerebral 

the late CNV may be relatively preserved (Hakkarainen, Pirilä, Kaartinen, & Meere, 2012). 

However, individuals with spinal amyotrophic lateral sclerosis may present with CNV 

amplitudes that are increased (Hanagasi et al., 2002) or similar to neurotypical peers 

(Mannarelli et al., 2014), while individuals with bulbar amyotrophic lateral sclerosis may be 

more likely to present with decreased CNV amplitudes possibly due to cognitive 

impairments (Mannarelli et al., 2014).

Secondary Signal Related to BCI control

The N400 event-related potential.—As many studies evaluating the N400 ERP (figure 

5) are primarily language-based, it may be suprising to see it discussed in the context of 

BCI. However, the N400 can be elicited via pictures and is sensitive to congruency and 
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processing efforts, which may be useful in a BCI application. The N400 was originally 

characterized by Marta Kutas and Steven Hillyard in 1980 as a reaction to an unexpected 

and/or inappropriate word at the end of a sentence. Kutas and Hillyard’s (1980a; 1980b; 

1980c; 1982; 1983; 1984) initial series of experiments studied sentences which were 

grammatically correct with valid word endings, which were congruent control sentences 

such as “I shaved off my mustache and beard” in comparison to experimental sentences such 

as “I shaved off my mustache and eyebrows” (congruent and valid but low probability); “I 
shaved off my mustache and city (semantically anomalous)”; “I shaved off my mustache and 
[a pictorial representation]” (novel, uninterpretable); “I shaved off my mustache and 
BEARD” (congruent but physically unexpected with capital letters); “I shaved off my 
mustache and [line drawing of a beard]” (also congruent but physically unexpected); “I 
shaved off my mustache and [line drawing of a city]” (semantically anomalous and 

physically unexpected) (examples cited from Kutas & Federmeier, 2009). The N400 

waveform is thus defined as a slow, negative deflection below the pre stimulus baseline, 

occurring anywhere between 200 milliseconds and 600 milliseconds, and typically peaking 

around 400 milliseconds. The amplitude component of the N400 is more sensitive to 

stimulus change compared to its latency. The variation in N400 amplitude is called N400 
effect and a larger N400 amplitude is expected to semantically incongruent versus 

semantically congruent stimuli. This increase in N400 amplitude reflects the greater neural 

resources needed to process the incongruent stimulus (Kutas & Federmeier, 2011).

Since Kutas and Hillyard’s initial study, the N400 is shown to be sensitive to varied 

manipulations, including cloze probability (the number of possible sentence endings), 

sentence and discourse congruity, repetition, semantic priming, lexical association, 

concreteness and semantic richness, word frequency, orthographic neighborhood size, and 

several more. The N400 is especially sensitive to semantic processing and several linguistic 

and psycholinguistic accounts of how semantic context influences the N400 component 

during word processing have been proposed. For instance, Plante, Van Petten & Senkfor 

(2000) have shown that the N400 amplitude is smaller if the eliciting word is semantically 

related rather than unrelated to the preceding word, both in visual and auditory modalities. 

However, Neville, Coffey, Holcomb, & Tallal (1993) suggest that N400 amplitudes may vary 

depending upon the target word position within the sentence. Essentially, they showed that 

words earlier in the sentence elicited a larger N400 than later words because the later words 

can possibly benefit from the preceding context. N400 effects are seen in ERP components 

following the presentation of auditory and visual stimuli as well as by signs in American 

Sign Language (Neville, Coffey, Lawson, Fischer, Emmorey & Bellugi, 1997). Thus, it 

appears that the N400 is relatively independent of the sensory modality of the linguistic 

input. Overall, the current literature suggests that N400 reflects semantic/lexical processing 

of a given linguistic stimulus, and that the priming effects can be interpreted as evidence of 

variance or modulation in semantic processing (Mehta & Jerger, 2014).

The N400 has also been elicited in studies associated with attention (Mehta, Jerger, Jerger 

and Martin, 2009), and the N400 has utility for measuring the amount of cognitive load 

required for an individual during semantic memory retrieval. This is because the ability to 

process the information from target stimuli is highly dependent on one’s ability to recall 

previous relevant information from any of the multimodal channels such as images or 
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sounds. This difficulty, or cognitive load, is associated with memory representations and 

cues from previous content priming the meaningful probe stimulus (Federmeier and Kutas, 

2001; Lau et al., 2008; Van Petten and Luka, 2006). Therefore, when a difficult stimulus 

requires more effort to process, thus having more cognitive load, the N400’s amplitude 

deflection is larger than when it is easy.

Why is the N400 targeted for BCI control?—As the N400 is primarily produced by 

incongruency, in the absence of a motor response, future research may wish to explore the 

N400 and incongruency-based paradigms as the foundation for gaze-independent audio-

visual BCI systems (e.g., Xie et al, 2018). However, currently in the field of BCI the N400 is 

largely discussed in the context of supporting improved outcomes for P300-based BCI 

devices, and N400 elicitation directly influences how the visual displays for grid-based P300 

BCI devices are designed. Specifically, improved P300 BCI accuracy has focused on 

elicitation of the N400 ERP, alongside the P300, and elicitation of the N400 may contribute 

to improved P300-based BCI accuracies even if it possibly cancels out some of the P300 

ERP activity (Kaufmann, Schulz, Grünzinger & Kübler, 2011). The N400 is commonly 

elicited through the P300 ‘face flash’ paradigm during which all items within the P300 grid 

are highlighted by toggling between a picture of a face and the letter. In the face flash 

paradigm, the N400 may reflect similar components to the classical N400, as non-linguistic 

information can also elicit N400 activity through access of semantic memory (Eimer, 2000). 

However, whether the N400 in the face flash paradigm reflects face specific semantic 

memory processes and attentional factors involved in face identification (Eimer, 2000) or 

reflects more general responses to stimuli processing and P300 paradigm characteristics is 

unclear (e.g., Kellicut-Jones, & Sellers, 2018). Therefore, while the N400 is not currently a 

common signal that is directly decoded for BCI performance, individuals involved in the 

BCI-AAC process should remain aware of its utility and impact on P300-based BCI design. 

Further research is warranted to fully understand the role of the N400 in P300 paradigms for 

various populations.

Discussion and Conclusion

Non-Invasive EEG has high temporal resolution and, without the need for the invasive 

surgery, can be used to record brain signals in the absence of physical movement. Therefore, 

EEG methods are a viable option in recording brain activity underlying BCI-based access to 

communication. However, the process of how EEG captures the brain activity, and how this 

recorded neural activity is translated into BCI control can be opaque for those not involved 

in BCI research. A lack of understanding behind basic principles governing how BCIs 

function may decrease the comfort of stakeholders in implementing and using BCI 

technology to access communication. Therefore, this tutorial provided the basic foundations 

regarding how EEG signals are recorded, popular EEG signals targeted for BCI development 

and how these EEG signals are utilized for BCI applications to help facilitate interest and 

familiarity of EEG-based BCI-AAC techniques for a range of individuals, and ultimately 

support the translation of BCI-AAC into clinical practice. Based upon the information 

provided in this tutorial it is clear that BCIs do not read an individual’s ‘thoughts’, but 

instead translate brain activity related to cognitive-sensory-motor processes into device 
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control. This translation process is similar to existing AAC methods such as eye gaze, where 

a non-speech task (e.g., eye movements and fixations), are translated into item selections. A 

review of current levels of BCI performance was also provided, to help demonstrate recent 

advances in the field of BCI. However, while future work must continue to focus on the 

development of new decoding algorithms to increase BCI performances above those 

outlined in this tutorial, along with identifying how to decrease the high levels of workload 

associated with BCI use (e.g., Fager, Fried-Oken, Jakobs & Beukelman, 2019), it is 

important for researchers to remain aware of how BCI will ultimately be implemented in the 

clinical setting (Pitt, Brumberg, & Pitt, 2019), along with procedures providing at home and 

caregiver support (e.g., Wolpaw et al., 2018). Thus, to help account for possible BCI 

performance variations, and highlight how BCI is not a ‘one size fits all method’, cognitive-

sensory-motor, and medical (e.g., history of seizures) factors influencing BCI outcomes such 

were also described. However, while the foundations are laid for considering BCI in the 

context of existing clinical procedures such as feature matching (e.g., Pitt & Brumberg, 

2018a), much of the clinical groundwork for personalized BCI intervention remains unlaid, 

and further multidisciplinary research is needed to identify how person-centered factors 

influence BCI performance and develop clinical guidelines for BCI intervention (Pitt et al., 

2019). Therefore, it is hoped future work may build upon this tutorial to enhance 

multidisciplinary involvement in BCI-AAC by helping overcome procedural and language 

barriers between disciplines in efforts to ensure that BCI-AAC devices are developed and 

implemented with a maximally person-centered focus.
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Figure 1. 
A schematic outlining the basic stages of BCI operation, including how the BCI signal is 

recorded (stage 1), what signals are targeted for BCI control (stage 2), and why they are 

targeted for BCI control (stage 3), along with examples of different BCI control paradigms.
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Figure 2. 
The P300 event-related potential, during which a positive going EEG deflection is noted at 

approximately 300ms
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Figure 3. 
The sensorimotor rhythm recoded over the right hemisphere (electrode location C4) during 

imagined movement of the left hand. The larger peak denotes increased mu band power at 

rest (event-related synchronization), with the lower peak demonstrates event-related 

desynchronization during imagined task performance.

Pitt et al. Page 25

Perspect ASHA Spec Interest Groups. Author manuscript; available in PMC 2020 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
The contingent negative variation, showing a negative going EEG deflection prior to task 

onset.
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Figure 5. 
The N400 event related potential, characterized by a negative going EEG deflection is noted 

at approximately 400ms
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