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Summary

One of the most common brain tumors in children and adults is the glioma or astrocytoma. There 

are few effective therapies for these cancers, and patients with malignant glioma fare poorly, even 

after aggressive surgery, chemotherapy and radiation. Over the past decade, it is now appreciated 

that these tumors are comprised of numerous distinct neoplastic and non-neoplastic cell 

populations, which could each influence overall tumor biology and response to therapy. Among 

these non-cancerous cell types, monocytes (microglia and macrophages) predominate. In this 

review, we discuss the complex interactions involving microglia and macrophages relevant to 

glioma formation, progression, and response to therapy.

Introduction

The most common brain tumor arising in children and adults is the glioma (or astrocytoma). 

These tumors are classified by the World Health Organization according to histologic 

features, running the spectrum from low-grade (I and II) to high-grade (III and IV) gliomas. 

With the advent of molecular diagnostics, the nosology of adult glioma has changed [Louis 
et al., 2016], now incorporating the presence or absence of specific genetic (e.g., IDH1 and 

IDH2 mutations) and genomic (e.g., chromosome 1p/19q co-deletions) alterations. 

Similarly, pediatric diffuse gliomas are molecularly defined by mutations in histone H3 

genes (H3-K27M-mutant diffuse midline gliomas).

Glioma tissue is not only composed of cancer cells, but is also infiltrated by non-

transformed cells, predominantly resident microglia from the brain and circulating blood 

monocytes (macrophages), which comprise 30–50% of the cellular content of these tumors 

[Simmons et al., 2011]. Microglia are the brain resident immune cells, first described by Pio 

del Rio Hortega in 1919 [Sierra et al., 2016], and later reported by Wilder Penfield to 

infiltrate glioma tissue as cells with an amoeboid morphology, similar to microglia found in 

multiple sclerosis or Alzheimer disease tissue [Penfield, 1925].
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Microglia develop from primitive yolk sac myeloid precursors, and enter the brain during 

embryogenesis [Ginhoux et al., 2010] to mature into distinct populations of central nervous 

system (CNS) monocytes. Additionally, there may be other ontologies for brain microglia 

that reflect different waves of yolk sac hematopoiesis [De et al., 2018]. In contrast to 

resident microglia, macrophages most typically enter the brain in the context of pathology, 

either from the blood (bone marrow-derived macrophages) or through direct vascular 

channels that connect the skull bone marrow to the brain [Herisson et al., 2018].

Over the last decade, it has become clear that glioma associated microglia and infiltrated 

macrophages from the peripheral system (GAM) are not merely bystander or “reactive” 

immune system-like cells, but interact with numerous other cell types to actively influence 

brain tumor biology. However, there is still no consensus on the clinical significance of 

GAM infiltration relevant to patient outcome. In one study, there was a positive association 

between the numbers of CD68-, CD163- and CD206-positive GAM in the vital tumor core 

and prolonged overall survival of patients with IDH1R132H-non-mutant GBM [Zeiner et al., 
2018]. Similarly, others found that microglia density, as determined by Iba1 labelling, 

correlated with improved outcomes for patients with gliomas, whereas CD204 expression in 

GAM was associated with poorer survival [Sorensen et al., 2018]. In contrast, the expression 

of microglia/macrophage-related genes in adult and pediatric malignant gliomas of the 

mesenchymal subtype revealed a negative correlation between GAM accumulation and 

patient survival in adults, but not children [Engler et al., 2012]. While GAM enrichment is 

higher in the mesenchymal subtype of high-grade glioma relative to proneural or classical 

gliomas [Kaffes et al., 2019], the mechanisms underlying GAM-mediated patient survival 

remain to be determined.

GAM regulate glioma formation and progression

Numerous studies have revealed that GAM are critical for both low-grade and high-grade 

gliomagenesis and continued tumor growth. In experimental malignant (high-grade) glioma 

models, microglia depletion reduces glioma growth [Hambardzumyan et al., 2016] (Figure 

1). While the mechanisms underlying this pro-tumoral effect likely vary from tumor to 

tumor, numerous potential etiologies have been identified. In these studies, TGF-ß, stress-

inducible Protein (STI)-1, IL-6, IL-1ß and EGF are factors released from GAM, which each 

can promote tumor growth [Hambardzumyan et al., 2016]. Moreover, microglia, but not 

bone marrow-derived macrophages, induce platelet-derived growth factor receptor 

expression in a subset of tumor cells of mouse and human low and high-grade glioma. This 

receptor expression stimulates the migratory capacity of glioma cells, which accelerates 

tumor progression [Wallmann et al., 2018]. Similarly, GAM are the predominant source of 

the secreted form of osteopontin/SPP1, which suppresses glioma growth in some contexts 

[Szulzewsky et al., 2018] and reduces glioma cell apoptosis in other experimental settings [P 
Chen et al., 2019].

In contrast to their malignant counterparts, low-grade gliomas predominate in children and 

harbor a paucity of genetic mutations. These tumors arise either sporadically, caused 

frequently by genomic alterations involving the BRAF kinase gene (KIAA1549:BRAF 
fusion) [Pfister et al., 2008] [J Yu et al., 2009], or in the setting of the Neurofibromatosis 
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type 1 (NF1) cancer predisposition syndrome [Listernick et al., 1989]. Importantly, Nf1 loss 

or BRAF fusion is usually not sufficient for glioma formation in rodents, unless coupled 

with supportive growth factors from the tumor microenvironment. In this regard, Nf1 loss 

[Larribere et al., 2015] or KIAA1549:BRAF expression [Jacob et al., 2011] in numerous cell 

types induces cellular senescence, which requires stromal signals to overcome and lead to 

neoplasia.

To explore the role of these permissive stromal signals, studies using Nf1 genetically 

engineered mouse strains that develop optic glioma, the signature brain tumor seen in 

children with NF1, have uncovered essential roles for microglia in glioma formation and 

maintenance. First, optic glioma formation is delayed in mice with reduced expression of the 

key receptor involved in directed microglia migration (CX3CR1) [Pong et al., 2013a]. 

Second, optic glioma growth in vivo is attenuated following treatment with either 

minocycline (crude microglia inhibitor) [Daginakatte and Gutmann, 2007] [Pan et al., 
2017b] or JNK inhibitors (targeting the signalling pathway hyperactivated in Nf1-mutant 

microglia) [Daginakatte et al., 2008]. Third, RNA sequencing of murine Nf1 optic glioma-

associated microglia demonstrated that these GAM secrete CCL5, which is a potent growth 

factor for glioma cells [Solga et al., 2015]. Treatment of Nf1 optic glioma-bearing mice with 

a neutralizing CCL5 antibody dramatically attenuated tumor growth in vivo. Consistent with 

the idea that high-grade gliomas gain some measure of stromal independence, malignant 

gliomas harboring NF1 mutations express CCL5, establishing an autocrine loop for 

mesenchymal glioblastoma survival [Pan et al., 2017a]. The requirement for microglia and 

microglia-produced Ccl5 is further underscored by studies in which murine Nf1 optic 

glioma stem cells are implanted into mice. While wild-type mice support the formation of 

glioma-like lesions following transplantation [Y H Chen et al., 2015], no tumors form in 

mice lacking the two chemokine receptors that direct monocyte migration (Cx3cr1 and 

Ccr2) or in mice deficient in Ccl5 expression [Pan et al., 2018] [Guo et al., 2019]. While less 

well studied, KIAA1549:BRAF-expressing low-grade gliomas are also dependent on 

monocytes in the tumor microenvironment, such that gliomas fail to form following the 

transplantation of murine KIAA1549:BRAF-expressing neural stem cells in Ccr2-deficient 

mice [R Chen et al., 2019].

Glioma cells attract/recruit GAM

There are a variety of glioma-derived factors that can function as chemoattractants for GAM, 

including CCL2, CX3CL1, SDF-1, CSF-1, GM-CSF, LOX and potentially EGF [Roesch et 
al., 2018]. This directed monocyte recruitment occurs through the establishment of 

chemokine gradients that attract monocytes to the evolving tumor bed (Figure 2). Studies 

employing Ccr2 and Cx3cr1 reporter mice have revealed that two of the most important 

chemoattractants are Ccl2 and Cx3cl1, which traditionally have been thought to drive 

directional migration of macrophages and microglia, respectively. In this regard, Ccl2 is 

produced by low-grade glioma stem cells expressing the KIAA1549:BRAF genomic 

alteration, leading to monocyte attraction [R Chen et al., 2019], whereas NF1 mutation in 

both low-grade and high-grade gliomas attracts microglia through Cx3cl1 [Z Chen et al., 
2017] [Guo et al., 2019]. Similarly, in experimental glioblastoma models, Ccl2 is produced 

by the tumor cells, which attract macrophages [Platten et al., 2003], such that Ccl2/Ccr2 
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inhibition prolongs mouse survival [Z Chen et al., 2017] [Hutter et al., 2019]. While there 

are few studies that specifically focused on chemokine networks responsible for monocyte 

attraction, other molecules are also likely involved in recruiting monocytes to the tumor 

[Dijksterhuis et al., 2015] [Brandenburg et al., 2016].

Moreover, emerging evidence supports the view that microglia and macrophages colonize 

different regions of malignant gliomas, such that macrophages appear to be recruited early 

during tumorigenesis and occupy perivascular regions [Z Chen et al., 2017]. However, 

conflicting data exist regarding the major monocyte population in these tumors, with some 

studies reporting a microglia predominance [Hutter et al., 2019] and others demonstrating 

that infiltrating macrophages represent the majority of the GAM population [Z Chen et al., 
2017] [K Yu et al., 2019]. These differences could reflect specific experimental mouse 

model systems (RCAS model versus GL261 or T387 cell lines) used in each of these 

studies, suggesting that variations in GAM populations may be differentially dictated by the 

molecular properties of the glioma.

Support for potential mutation-specific effects on GAM recruitment comes from two studies: 

First, murine high-grade gliomas harboring a mutant IDH1 allele exhibited reduced 

macrophage and microglia infiltration, which correlated with lower levels of chemokine 

expression (e.g., CCL2, CXCL2) [Amankulor et al., 2017]. Moreover, the IDH1/2-mediated 

accumulation of the oncometabolite 2-hydroxyglutarate reduced the expression of pro-

inflammatory chemokines [Han et al., 2019]. Second, differences in microglia recruitment 

were observed in mice genetically engineered to develop low-grade gliomas with distinct 

patient-derived germline NF1 gene mutations and cooperating genetic alterations (e.g., 

heterozygous Pten loss) through the elaboration of chemokines [Guo et al., 2019]. These 

findings suggest that variations in the GAM composition of gliomas could be dictated by 

types of immune chemoattractant molecules produced by cancer cells with different 

mutations.

GAM acquire unique phenotypes in the setting of glioma

Once GAM are recruited to the glioma milieu, they adopt new cellular and molecular 

identities that reflect the enactment of epigenetic or transcriptional programs that create 

monocyte populations critical for glioma homeostasis and progression. To identify these 

GAM transcriptional programs, two mouse glioma models, inoculated GL261 cells and the 

RCAS transgenic system, have been used to compare the expression profiles of glioma-

associated microglia/macrophages and naive control cells. Not surprisingly, these profiles do 

not correspond to the M1/M2 classification scheme often used to describe macrophages/

microglia in homeostatic or pro-inflammatory settings. Two genes were increased in GAM, 

Gpnmb and Spp1, which have also been described in other specialized microglia populations 

(e.g., disease-associated microglia [DAM] and proliferative region-associated microglia 

[PAM]), and were associated with poor prognosis in human GBM [Szulzewsky et al., 2015]. 

Work in many laboratories, using different microglia isolation methods and RNA analysis 

platforms have identified other GAM-specific markers; however, no marker has been 

discovered to date that uniquely distinguishes GAM from other microglia populations.
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While microglia are the professional phagocytes of the CNS, in the setting of glioma, they 

do not attack or phagocytose glioma cells. This may reflect increased expression of the anti-

phagocytic (“don’t eat me”) surface protein CD47 that binds to its cognate receptor SIRPα 
on phagocytic cells to inhibit its phagocytic activity. In this regard, anti-CD47 antibody 

treatment induces microglial tumor phagocytosis in a glioblastoma xenograft model and 

reduced tumor expansion [Hutter et al., 2019]. A similar effect of a humanized anti-CD47 

antibody was found on five aggressive and etiologically distinct pediatric brain tumors: 

group 3 medulloblastoma (primary and metastatic), atypical teratoid rhabdoid tumor, 

primitive neuroectodermal tumor, pediatric glioblastoma, and diffuse intrinsic pontine 

glioma [Gholamin et al., 2017]. Moreover, in glioma patients, CD47 expression inversely 

correlated with histopathologic grading (low-grade versus high-grade glioma), and high 

levels of CD47 were associated with lower overall survival rates [F Li et al., 2018].

How microglia become reprogrammed in the setting of glioma remains to be fully 

elucidated. One family of receptors expressed on microglia may play an instructive role in 

the establishment of these new functional states. Toll-like receptors (TLR) were initially 

recognized as pathogen sensors, but it is now appreciated that they can also be activated by 

endogenous ligands. TLR2 expression is increased in GAM [Hu et al., 2015], such that 

mouse GL261 glioma cells implanted into the brains of Tlr2 knockout mice have smaller 

tumors and enhanced survival. This TLR2-dependency is partially mediated by increased 

production of a membrane-residing protease (MMP14) essential for activating MMP2 and 

promoting malignant glioma invasion [Vinnakota et al., 2013]. In addition to MMP14, TLR2 

signaling also triggers the release of MMP9 from microglia, which serves as an additional 

factor for degrading the extracellular matrix to promote glioma invasion and growth [Hu et 
al., 2014]. TLR2 signaling is also involved in the interaction of GAM with T cells. As such, 

TLR2-mediated growth glioma is reduced using TLR2 blocking antibodies [Hu et al., 2015]. 

Beyond its role in glioma growth, TLR2 activation may also function to facilitate glioma 

immune evasion through reduced MHC class II molecule expression and reduced CD4+ T 

cells activation [J Qian et al., 2018].

In addition to TLR2, TLR4 is also important for regulating microglial IL-6 secretion, a 

mitogen for glioma stem cells. Analysis of human glioma tissue confirmed that GAM are the 

major source of IL-6 in gliomas [a Dzaye et al., 2016]. One of the endogenous ligands for 

TLR4 is the cell adhesion molecule, tenascin C. In tumors with genetically reduced tenascin 

C expression, microglia acquire a more amoeboid morphology and increased expression of 

MHCII molecules [Xia et al., 2016], similar to that observed with TLR2 silencing.

Finally, monocytes likely receive instructive cues from other cell types. One of these cell 

types is the T lymphocyte. Using a low-grade glioma stem cell transplantation system, 

glioma-like lesions did not form in mice with impaired T cell function [Pan et al., 2018]. 

These T cells, found in small abundance in both human and mouse NF1-mutant tumors, 

secrete paracrine factors important for inducing microglia to express CCL5 and drive glioma 

growth. Understanding how these T cells are recruited to the tumor, how they are activated, 

and the mechanisms that underlie their induction of microglia represent opportunities to 

dissect other immunologic determinants that underlie glioma formation and maintenance.
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Experimental model systems to study glioma-microglia interactions

Current available platforms to examine the interactions between monocytes and glioma cells 

involve co-culture systems and organotypic systems, as well as small and large animal 

models. In addition to several genetically engineered mouse models (for review see 

[Gargiulo, 2018], large animal platforms involving pigs and dogs have been utilized. 

Spontaneously occurring low-and high-grade gliomas have been observed in dogs, but a 

systematic study of GAM in these tumors has not been performed [Bentley et al., 2017]. 

Similarly, swine engineered with a patient germline NF1 gene mutation develop low-grade 

optic gliomas, as observed in their human counterparts; however, little is known about the 

role of GAM populations in these tumors [Isakson et al., 2018]. Moreover, human glioma 

cell lines can be injected into the brains of immunosuppressed pigs as xenograft models 

[Selek et al., 2014] [Khoshnevis et al., 2017], but the use of immunocompromised animals 

limits a full analysis of GAM contributions due to secondary defects in microglia function 

[Pan et al., 2018].

In vitro culture assays have been employed for many years, typically involving established 

glioma cell lines (e.g., mouse GL261 or human U87 high-grade glioma cells) and freshly 

isolated microglia or the BV2 microglia-like cell line [S Muller et al., 2017] [Gu et al., 
2017]. These platforms in vitro are well suited to determine defined functions of defined cell 

types, such as quantifying chemoattraction by tumor cells or microglia-induced glioma 

growth and migratory properties, but have only limited value in determining the interactions 

of these cell types in the natural context of a glioma tissue.

An intermediate model between in vivo and cell culture is represented by the organotypic 

brain slice model, in which rodent glioma cells are introduced into rodent brain slices. This 

allows for direct visualization of microglia/tumor interactions using fluorescent protein-

expressing tumor cells and transgenic mice with microglia-restricted expression of different 

fluorescent proteins [Bayerl et al., 2016] [Ghoochani et al., 2016] [Resende et al., 2016]. 

Further refinements of these platforms enable the analysis of microglia and tumor motility 

using induced models of glioma, rather than using established cell lines [Juliano et al., 
2018].

A newer experimental platform is the zebrafish larval brain. The optically transparent 

zebrafish larva allows for real-time visualizations of the interactions between implanted 

mammalian (even human) glioma cells and genetically labelled GAM [Astell and Sieger, 
2017] [Yan et al., 2019]. Using the Irf8−/− zebrafish mutant, which lacks microglia, the 

contribution of microglia to the tumor growth has been explored [Hamilton et al., 2016]. 

While the current xenotransplantation models have employed established human 

glioblastoma cell lines, future modifications may incorporate reporter fish in which gliomas 

are induced by specific cancer-causing genetic alterations [Chia et al., 2018] [Jung et al., 
2013], thus providing a more physiologic context in which to examine the glioma 

ecosystem. This model may have good potential as an important tool for drug screening and 

the development of future immunotherapeutic approaches that target microglia.

While these vertebrate models have been very instructive, they do not fully recapitulate their 

human counterparts. In addition to structural and lifespan differences between rodents and 
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people, the human brain contains more white matter relative to the mouse brain. For this 

reason, the generation of human cerebral organoids from induced pluripotent stem cells 

(iPSCs) has recently been developed as a proxy for the human brain [X Qian et al., 2019], 

allowing for the implantation of patient-derived glioma stem cells [Linkous et al., 2019] 

[Hubert et al., 2016]. Alternatively, brain tumors can be generated by genomic editing. For 

example, CRISPR/CAS9 insertion of an oncogenic RAS allele into the TP53 locus in human 

iPSCs was used to generate high-grade gliomas following transplantation into 

immunodeficient animals [Ogawa et al., 2018]. These humanized systems facilitate a close 

examination of the interactions between glioma cells and the non-neoplastic cells in the 

human brain.

Outlook

Unfortunately to date, the clinical application of these basic science advances has been 

modest. In this regard, numerous strategies aimed at silencing GAM function has not 

translated well to human clinical trials. For example, the tetracycline analog, minocycline, 

which blocks microglia activation and reduces glioma expansion in experimental glioma 

mouse models of both high-grade [Markovic et al., 2011] and low-grade [Daginakatte and 
Gutmann, 2007; Toonen et al., 2017] glioma, has led to three clinical trials with no clear 

clinical benefit (NCT01580969, NCT02272270, NCT02770378). Similarly, PLX3397-

induced depletion of microglia attenuates malignant glioma growth in mice [Pyonteck et al., 
2013]; however, no efficacy was observed in human clinical trials [NCT01349036], despite 

good patient tolerability and adequate blood-brain-barrier penetration [Butowski et al., 
2016]. Finally, antibody targeting of microglial TLRs reduces high-grade glioma growth in a 

mouse brain tumor slice model [Hu et al., 2015] and exhibits good safety and tolerability 

profiles in healthy subjects [Reilly et al., 2013], but has not progressed further in clinical 

trials for glioma.

While targeting microglia and macrophages represents a novel and potentially efficacious 

therapeutic approach, it is possible that adaptive changes in the tumor ecosystem will occur, 

creating a treatment-induced whack-a-mole scenario. In this regard, microglia can be 

reprogrammed by radiation [Monje et al., 2002] [Allen et al., 2014] [Monje et al., 2003] 

and/or chemotherapy [Gibson et al., 2019] to create new functional states, with different 

abilities to promote tumor growth. Similarly, hypoxia in necrotic areas of high-grade 

gliomas harbor high levels of extracellular ATP, which could act on microglia expressing 

purinergic receptors to increase cell motility, phagocytic activity and cytokine release 

[Kettenmann et al., 2011]. Moreover, it is possible that immunotherapies, like chimeric 

antigen receptor T cell therapy, will similarly alter microglia dynamics to establish new 

functional states. For this reason, it becomes exceeding important to understand the complex 

relationships established between GAM and the other cell types in the tumor in order to 

develop treatments that disrupt these interactions that support glioma maintenance (Figure 

3).

Additionally, it is also vital to consider other factors that could influence microglia function, 

including brain location and patient sex. To this end, the incidence of malignant glioma is 

higher in males [Ostrom et al., 2018], but females generally have better overall survival 
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[Gittleman et al., 2018]. While these sexually dimorphic differences may reflect direct 

effects on cancer cells, it is equally possible that they act at the level of GAM. Emerging 

evidence from numerous laboratories have revealed differences in brain microglia gene 

expression and function in normal male and female mice [Guneykaya et al., 2018; Villa et 
al., 2018] [Thion et al., 2018], as well as between male and female mice in the setting of a 

diverse number of different brain diseases, including murine Nf1 optic glioma microglia-

induced neuronal damage and vision loss [Toonen et al., 2017]

Finally, the lack of robust GAM-specific markers has limited our ability to define the distinct 

contributions of microglia and macrophages to glioma biology. In most studies, CD45 

expression by FACS is used to distinguish microglia (CD45low) from peripheral 

macrophages (CD45high) [Badie and Schartner, 2000], leading to conflicting conclusions 

regarding the distribution of microglia and macrophages within gliomas. Moreover, 

microglia increase CD45 expression in the context of glioma [A Muller et al., 2015], 

whereas macrophages often express markers traditionally associated with microglia 

following integration into the cancer ecosystem, including downregulation of CD45 and 

upregulation of CX3CR1 expression [Pong et al., 2013b] [Z Chen et al., 2017]. These 

adaptations make it difficult to confidently ascribe unique functions to distinct monocyte 

populations [S Muller et al., 2017]. However, with the availability of more stably expressed 

markers and the use of spatial proteomics and single cell RNA sequencing strategies [Q Li et 
al., 2019] [Keren-Shaul et al., 2017] [Masuda et al., 2019], it should become possible to 

define the individual contributions of these monocyte populations to overall glioma biology 

[Haage et al., 2019] [Z Chen et al., 2017] [Bowman et al., 2016] [S Muller et al., 2017]. 

Understanding how distinct subpopulations of microglia/macrophages contribute to glioma 

pathobiology may also help to resolve conflicting reports in the literature regarding 

monocyte content and overall patient survival with glioma. Importantly, defining these 

different GAM species is necessary in order to design effective therapeutic approaches that 

selectively impair the monocyte populations most critical for tumor maintenance and 

progression.
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Figure 1. GAM increase glioma growth through the release of mitogens and invasion promoting 
factors.
Brain microglia and infiltrating peripheral macrophages (GAM) become reprogrammed to 

produce growth factors that increase glioma cell proliferation, attenuate glioma cell 

apoptosis, and promote tumor cell migration. In this fashion, GAM produce factors that 

enhance (IL-10, IL-6, IL-1, EGF, and CCL5) through binding to their cognate receptors 

(right). In addition, SPP1 has been reported to both increase (“+”) and inhibit (“−“) glioma 

cell growth. Moreover, GAM elaborate other factors that increase extracellular matrix 

(ECM) degradation and directly promote glioma cell invasion and motility (left).
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Figure 2. Glioma cells recruit and reprogram GAM through the elaboration of chemokines and 
other soluble factors.
Chemokines produced by glioma cells actively recruit resident microglia from the brain, as 

well as macrophages from the blood, through binding to their cognate receptors on GAM 

(right). In addition, glioma cells produce proteins that increase cytokine release (EGF, Let7, 

and Tenascin-C; TNC), phagocytosis (ATP), and matrix metalloprotease (MMP9, MMP14) 

expression (versican) (left).
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Figure 3. Microglia are reprogrammed by numerous cell types and conditions in the context of 
glioma.
As highly adaptive cells, GAM gene expression and function can be changed by glioma 

treatment (chemotherapy, radiation therapy), environmental stresses (hypoxia), interactions 

with other non-neoplastic cell types (e.g., astrocytes), and signals from the glioma cells 

themselves. Each of these modifications could alter the properties of GAM in ways that 

either promote or inhibit continued tumor growth or invasion.
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