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Single-cell genome sequencing of individual archaeal and bacterial cells is a vital
approach to decipher the genetic makeup of uncultured microorganisms. With this
review, we describe single-cell genome analysis with a focus on the unique properties of
single-cell sequence data and with emphasis on quality assessment and assurance.

Introduction
The planet’s biological diversity is overwhelmingly microbial. However, much of this diversity has
evaded detection through traditional microbiological approaches, largely as a result of our inability to
cultivate most microorganisms in a laboratory setting. Since the development of molecular-based,
cultivation-independent tools, we have witnessed a burst in the detection of previously elusive micro-
bial taxa. This was initially driven by the widespread adoption of high-throughput 16S rRNA gene
sequencing where studies now span ecological gradients [1] and, in some cases, cross-biome compari-
sons [2,3]. However, 16S rRNA gene PCR-based surveys are limited due to constraints inherent to
single-gene surveys. In many instances, single-gene surveys would have missed entire clades [4,5].
More recently, the genomes of novel phylogenetic groups have been uncovered with single-cell [6–8]
and metagenomic sequencing techniques [4,9].
Single-cell genomics (Figure 1) and metagenomics are two techniques that provide access to micro-

bial genomes without the requirement of cultivation. Sequencing all DNA from a bulk sample, also
known as metagenomics, has become a powerful technique where hundreds and sometimes thousands
of genomes can be extracted from an individual environmental sample [9]. Alternatively, single-cell
genomics has more recently emerged as an approach that provides genomic information for an indi-
vidual cell [10–12]. This simplifies some of the challenges associated with metagenome assembly and
provides a direct link between the genome and any additional cellular DNA, such as phages or plas-
mids (Figure 2). For example, single-cell genomics has uniquely linked viruses with their host cells in
uncultivated clades of bacteria [13,14] and revealed organismal interactions in protists by associating
single-cell protist DNA with intracellular bacterial and ssDNA viral sequences [15].
While the preparation of single-cell genomes, or ‘single amplified genomes’ (SAGs), is technically

challenging, advances in isolation techniques, sequencing technologies and bioinformatics capabilities
have greatly increased throughput and data quality. The analysis of SAG sequence data typically
includes the following discrete steps: quality assurance of raw reads, genome assembly using a
single-cell-specific assembler, automated and/or manual contaminant identification and removal,
annotation, genome quality inspection and categorization according to the minimum information
about a single amplified genome (MISAG) standards [16], and database submission (Figure 1). These
individual steps can be assembled into a semi-automated workflow.
In this review, we focus on the unique properties of single-cell sequence data, make recommenda-

tions for data handling, including raw data quality control, suggest SAG specific assembly tools,
discuss important contamination identification and removal procedures, and finally, review standards
for reporting and submission of SAGs to the public repositories.
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Properties of single-cell sequence data
The generation of single-cell genome sequences includes the following major steps: sample preservation and
preparation, single-cell isolation, cell lysis, whole genome amplification (WGA), library preparation, sequencing
and data analysis [10–12,17] (Figure 1). Given the extremely low yield of DNA from a single microbial cell
(∼1–6 fg) [18], laboratory cleanliness needs to be one of the main considerations when preparing single cells
for sequencing. The target DNA should be free of contaminating DNA molecules, as even the most minuscule
amount of contaminant DNA will co-amplify during the WGA step and will be difficult to remove since single-
cell assemblers now include low coverage regions. Although WGA can be a source of contaminant DNA, this
step is essential because libraries cannot yet be prepared with DNA from a single cell [19]. Alternative methods
for WGA have been under rapid development over the last several years [20–22], yet multiple displacement
amplification (MDA) [23] remains the most commonly used and dependable method for WGA for bacteria
and archaea. However, biases typical of MDA include high coverage variation [24], the production of chimeric
sequences [25] and a shift in overall GC content [26]. It is largely these biases that contribute to the down-
stream challenges associated with the analysis of single-cell genomic data.

Quality assurance of single-cell sequence data
Genomes produced from single cells comprise distinct challenges due to the chimeric, biased and potentially
contaminated nature of the underlying data, as discussed above. SAG sequence data thus require thorough
quality control and specialized data handling.

Read-level quality assessment
Assessing the quality of a single-cell genomic dataset typically begins with a cleanup step prior to assembly.
Such read-level quality assessment includes read trimming, quality filtering and read-based contamination iden-
tification and removal (Figure 1). For example, adapters are removed and reads are filtered to include only
those reads above a specific base call quality score. Reads should also be checked against a microbial contamin-
ant database specific to the laboratory where the SAGs were generated, in addition to genomes for microbial
organisms that have been identified as common contaminants in the literature, such as Pseudomonas, Delftia

Figure 1. A schematic representation of the single-cell workflow with a focus on the analysis following sequencing.

Left panels with blue background represent the production of single-cell genomes, while the rest of the workflow relates specifically to the analysis

of single-cell sequence data going from raw reads to public database submission. The bottom row of analysis boxes refers to the steps that are

considered mandatory to any single-cell analysis pipeline, while the top row can be considered context-dependent. For example, if multiplexing was

not performed, poolmate decontamination is not necessary (Library Quality Control). However, in nearly all cases, an SAG will benefit from

contamination screening (Assembly Quality Control), as even the cleanest SAGs may contain a few contaminating contigs, and if not, this step can

serve as validation of a clean SAG that is nearly ready for submission to the public databases.
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[31] and skin-associated bacteria such as Propionibacterium, Streptococcus and Staphylococcus [32]. It is good
practice to map reads against human, dog and cat databases. Tools for read-based decontamination include
DeconSeq [33] and modules from the BBTools bioinformatics package (https://sourceforge.net/projects/bbmap/).
These tools can map reads against a sequence database of common contaminants and then remove the
resulting hits from the dataset.
As discussed above, MDA leads to highly uneven coverage. Variability in coverage can be normalized, which

is beneficial to assemblers, as normalization decreases runtime and memory requirements. However, the nor-
malization step is becoming increasingly unnecessary as single-cell-specific assemblers are now publicly avail-
able, such as SPAdes [28] and IDBA-UD [30]. These assembly algorithms make use of multiple coverage
cutoffs as opposed to a single coverage threshold, resulting in the inclusion of a larger fraction of the data
when compared with traditional assemblers. These approaches avoid reconstructing a string of k-mers with
static read coverage thresholds; SPADes uses k-bimmers to build a topology of coverage and lengths before
assigning a sequence, and IDBA-UD iteratively adjusts coverage thresholds. In addition, the use of reads from
either end of a chimera is enabled without direct linkage.

Assessment of poolmate cross-contamination
The quality control described above does not take into account multiplex sequencing of single-cell genomes on
high-throughput platforms. Depending on the capacity of the sequencing facility, SAG library preparation can
take place in multi-welled plates, generating barcoded libraries for multiplexed sequencing of library pools.
Multiplexing samples, specifically biased MDA’d samples, for sequencing on the Illumina platform, however,
can cause significant ‘bleed over’ between poolmates. For example, Sinha et al. [34] showed that 5–10% of reads
can be assigned to the wrong sample based on low levels of index-free primers present in the multiplexed pool,
when using the HiSeq platform. More stringent library cleanup procedures, the use of dual indexes [35] and
quality filtering [36] are all methods that can reduce this effect. Poolmate cross-contamination should also be
detected during sequence analysis, since even a low fraction of cross-talk between multiplexed libraries (i.e.
0.01%) can have large effects on the assembly, an effect of the unevenness of amplification coverage of WGA
methods like MDA. To assess poolmate cross-bleeding, it is good practice to map the reads of a given library
to all assemblies across a plate, in an all-vs-all fashion. CrossBlock is a module available in the BBTools soft-
ware package (https://sourceforge.net/projects/bbmap/) that performs this type of analysis. The program com-
pares the coverage of contigs from one library to the coverage of all other libraries in a pool. However, this
approach is only applicable when library pools contain different organisms, as highly similar organisms would
produce a high fraction of false positives, which would be flagged as contaminants. To our knowledge, this is
the only currently available tool specifically designed for this analysis, though other similar approaches have
been performed: for example, searching the contigs of a genome against all other genomes in the pool using
blastn and removing those contigs that match above user-defined identity and length thresholds [37].

Contig-level quality assurance
Following assembly, small contigs are removed, as these are more likely to contain assembly errors. At the U.S.
Department of Energy’s Joint Genome Institute, contigs <2 kb in length are removed from all SAG datasets.
After removal of small contigs, screening for additional contaminating contigs originating from organismal
DNA not representative of the target cell is typically performed (Figure 2). Identification and removal of con-
taminants following assembly can be performed with many currently available semi-automated and automated
tools. Generally, assembly-based contaminant screening tools scan for outlying features of an SAG, including
unusual 16S rRNA genes and protein-coding genes, abnormal k-mer frequencies and/or variation in GC
content (Figure 2). These features can be identified interactively within the IMG interface [38] (tutorial avail-
able here: https://img.jgi.doe.gov/er/doc/SingleCellDataDecontamination.pdf ) and within the recently developed
analysis and visualization platform, Anvi’o [39]. Both tools provide interactive platforms, facilitating the
removal of contaminating contigs from an assembly based on outlying genomic signatures. Anvi’o and another
recently developed software package, CheckM, estimate genome completeness and contamination based on the
presence of single-copy marker genes. ProDeGe [40] and acdc [41] are additional tools that perform automated
contamination screens returning separate fasta files for clean and contaminant contigs. These tools can be used
in combination with tools like CheckM and Anvi’o, especially on large sets of SAGs where manual curation is
challenging. As such, automated screening methods can be performed on SAGs with high contamination esti-
mates, then checked for completeness and contamination using CheckM and/or Anvi’o, followed by additional
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rounds of cleanup if necessary. Figure 2 displays a schematic of a target SAG (blue) that is contaminated with
contigs derived from another cell (red) (panel A), the same SAG following contaminant removal (panel B) and
a different target SAG (blue) exhibiting features that could be flagged as contamination (panel C) (i.e. false
positives). The situation depicted in Figure 2C can happen when an SAG contains rRNA genes with variable
nucleotide composition and/or an integrated phage that is embedded within a contig that contains regions of
deviating tetramer composition (Figure 2C). Because all automated methods produce false positives and nega-
tives, we highly recommend manual evaluation of all SAGs prior to making biological inferences and submit-
ting to the public databases.

Genome quality reporting
To avoid making biological inferences with contaminated SAGs, it is critical to confirm and report SAG quality
before performing comparative genome analysis. Reporting SAG quality also informs other researchers that
retrieve SAG data from public databases for their own analyses. For quality reporting, we suggest following the
MISAG standards [16]. These are simple standards that require a minimal set of mandatory genome quality
criteria such as the reporting of basic metadata, assembly statistics, and genome completeness and contamin-
ation estimates. Additional mandatory reporting standards include fields specific to laboratory production (e.g.
cell isolation, cell lysis and WGA), taxonomic identification of SAGs, identification of ribosomal RNA genes
and software used for assembly and contamination detection and removal. We strongly suggest following these
guidelines, as the criteria outlined in MISAG will be valuable for future comparative genomic studies as users
of public databases can filter genomes based on the genome quality required of a particular downstream
analysis.

Figure 2. Tetranucleotide principle component analysis (top) and GC content analysis (bottom) of target SAGs (blue)

alongside additional contaminating sequence (red) and integrated phage sequences (green).

Target SAG containing contamination (A); target SAG where contamination was removed (B); target SAG with an outlying rRNA

gene and an integrated phage (C). (C) Chromosomal elements such as the highly conserved rRNA genes (blue outlying points)

often have tetranucleotide frequencies that differ from the main genome. Integrated phage genes can also appear as outlying

points with distinct nucleotide composition and unique taxonomy (green outlying points). Each point in the plot represents

fragments of contigs that split into 5000 bp fragments. Colored points (top panel) and bars (bottom panel) represent contigs

that can be taxonomically classified, whereas white points or bars represent contigs with no taxonomic assignment.
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Downstream single-cell genomic analysis
Once a single-cell genome is curated, it can be analyzed together with additional genomic sequences to place it
into a larger evolutionary, ecological and functional context. For example, phylogenetically informative genes
such as the 16S rRNA gene and sets of conserved protein-coding marker genes have been used to assess intra-
and inter-phylum-level relationships of microbial dark matter lineages [7,42]. When closely related isolate
genomes are unavailable, SAGs can be used as reference genomes to recruit metagenomic reads for quantifying
abundance patterns across temporal and spatial gradients [7,43–45]. SAGs have further shown utility in the
analysis of recombination frequencies in bacterial populations, such as freshwater bacteria of the SAR11 clade
[46] and for the determination of the overall genetic heterogeneity within discrete populations in honey bee gut
symbionts [47] and wild Prochlorococcus [48]. Unlike MAGs, single-cell datasets are particularly powerful in
linking phage sequences to their host [13,14] (represented schematically in Figure 2C) or deciphering eukaryote
multipartite associations [15]. As such, single-cell sequence data offer a broad array of downstream analyses,
depending on the research questions to be addressed.

Conclusion
Single-cell sequencing of individual bacterial and archaeal cells is becoming an important tool available to the
microbiologist as single-cell sequencing is highly complementary to other approaches including traditional
culture-based approaches and metagenomic sequencing. Single-cell sequencing has demonstrated its utility
across disciplines including microbial ecology, evolutionary biology, agriculture and medicine. With this review,
we provide suggestions for single-cell analysis workflows going from raw sequence data to the submission of
single-cell genomes to public databases. As technical advancements continue and bioinformatic tools are
refined, our ability to resolve whole microbial communities down to the genetic differences defining individual
strains will improve and, undoubtedly, benefit from the production and analysis of DNA sequences originating
from an individual cell.

Summary
• Single-cell genome sequencing has become an important complement to metagenomics,

facilitating the direct extraction of genomes from environmental samples in the absence of cul-
tivation, yet requiring amplification of the DNA.

• Due to the unique nature of the resulting single cell sequence data, it is of value to outline
recommendations for the analysis of single-cell genomes, specifically describing a start to
finish pipeline, from the assessment of read and contig quality to database submission.

• Thoughtful consideration and execution of each step in a single-cell genome analysis pipeline
is critically important for the reporting and deposition of single-cell genomes to the public
databases.

Abbreviations
MDA, multiple displacement amplification; MISAG, minimum information about a single amplified genome;
SAGs, single amplified genomes; WGA, whole genome amplification.
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