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Abstract

High-throughput chemical screens typically use coarse assays such as cell survival, limiting what 

can be learned about mechanisms of action, off-target effects, and heterogeneous responses. Here, 

we introduce “sci-Plex,” which uses “nuclear hashing” to quantify global transcriptional responses 

to thousands of independent perturbations at single-cell resolution. As a proof of concept, we 

applied sci-Plex to screen three cancer cell lines exposed to 188 compounds. In total, we profiled 

~650,000 single-cell transcriptomes across ~5000 independent samples in one experiment. Our 
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results reveal substantial intercellular heterogeneity in response to specific compounds, 

commonalities in response to families of compounds, and insight into differential properties within 

families. In particular, our results with histone deacetylase inhibitors support the view that 

chromatin acts as an important reservoir of acetate in cancer cells.

High-throughput screens (HTSs) are a cornerstone of the pharmaceutical drug-discovery 

pipeline (1, 2). However, conventional HTSs have at least two major limitations. First, the 

readout of most are restricted to gross cellular phenotypes, e.g., proliferation (3, 4), 

morphology (5, 6), or a highly specific molecular readout (7, 8). Subtle changes in cell state 

or gene expression that might otherwise provide mechanistic insights or reveal off-target 

effects are routinely missed.

Second, even when HTSs are performed in conjunction with more comprehensive molecular 

phenotyping such as transcriptional profiling (9–12), a limitation of bulk assays is that even 

cells ostensibly of the same “type” can exhibit heterogeneous responses (13, 14). Such 

cellular heterogeneity can be highly relevant in vivo. For example, it remains largely 

unknown whether the rare subpopulations of cells that survive chemotherapeutics are doing 

so on the basis of their genetic background, epigenetic state, or some other aspect (15, 16).

In principle, single-cell transcriptome sequencing (scRNA-seq) represents a form of high-

content molecular phenotyping that could enable HTSs to overcome both limitations. 

However, the per-sample and per-cell costs of most scRNA-seq technologies remain high, 

precluding even modestly sized screens. Recently, several groups have developed “cellular 

hashing” methods, in which cells from different samples are molecularly labeled and mixed 

before scRNA-seq. However, current hashing approaches require relatively expensive 

reagents [e.g., antibodies (17) or chemically modified DNA oligos (18, 19)], use cell-type-

dependent protocols (20), and/or use scRNA-seq platforms with a high per-cell cost.

To enable cost-effective HTSs with scRNA-seq–based phenotyping, we describe a new 

sample labeling (hashing) strategy that relies on labeling nuclei with unmodified single-

stranded DNA oligos. Recent improvements in single-cell combinatorial indexing (sci-RNA-

seq3) have lowered the cost of scRNA-seq library preparation to <$0.01 per cell, with 

millions of cells profiled per experiment (21). Here, we combine nuclear hashing and sci-

RNA-seq into a single workflow for multiplex transcriptomics in a process called “sci-Plex.” 

As a proof of concept, we use sci-Plex to perform HTS on three cancer cell lines, profiling 

thousands of independent perturbations in a single experiment. We further explore how 

chemical transcriptomics at single-cell resolution can shed light on mechanisms of action. 

Most notably, we find that gene-regulatory changes consequent to treatment with histone 

deacetylase (HDAC) inhibitors are consistent with the model that they interfere with 

proliferation by restricting a cell’s ability to draw acetate from chromatin (22, 23).

Results

Nuclear hashing enables multisample sci-RNA-seq

Single-cell combinatorial indexing (sci-) methods use split-pool barcoding to specifically 

label the molecular contents of large numbers of single cells or nuclei (24). Samples can be 
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barcoded by these same indices, e.g., by placing each sample in its own well during reverse 

transcription in sci-RNA-seq (21, 25), but such enzymatic labeling at the scale of thousands 

of samples is operationally infeasible and cost prohibitive. To enable single-cell molecular 

profiling of a large number of independent samples within a single sci-experiment, we set 

out to develop a low-cost labeling procedure.

We noticed that single-stranded DNA (ssDNA) specifically stained the nuclei of 

permeabilized cells but not intact cells (Fig. 1A and fig. S1A). We therefore postulated that a 

polyadenylated ssDNA oligonucleotide could be used to label populations of nuclei in a 

manner compatible with sci-RNA-seq (Fig. 1B and fig. S1B). To test this concept, we 

performed a “barnyard” experiment. We separately seeded human (HEK293T) and mouse 

(NIH3T3) cells to 48 wells of a 96-well culture plate. We then performed nuclear lysis in the 

presence of 96 well-specific polyadenylated ssDNA oligos (“hash oligos”) and fixed the 

resulting nuclear suspensions with paraformaldehyde. Having labeled or “hashed” the nuclei 

with a molecular barcode, we pooled nuclei and performed a two-level sci-RNA-seq 

experiment. Because the hash oligos were polyadenylated, they had the potential to be 

combinatorially indexed identically to endogenous mRNAs. As intended, we recovered 

reads corresponding to both endogenous mRNAs [median 4740 unique molecular identifiers 

(UMIs) per cell] and hash oligos (median 270 UMIs per cell).

We devised a statistical framework to identity the hash oligos associated with each cell at a 

frequency exceeding background (table S1). We observed 99.1% concordance between 

species assignments on the basis of hash oligos versus endogenous cellular transcriptomes 

(Fig. 1C and fig. S1, C to F). Additionally, the association of hash oligos and nuclei was 

stable to a freeze–thaw cycle, highlighting the opportunity to label and store samples (Fig. 

1D and fig. S1, G and H). These results demonstrate that hash oligos stably label nuclei in a 

manner that is compatible with sci-RNA-seq.

In sci-experiments, “collisions” are instances in which two or more cells are labeled with the 

same combination of barcodes by chance (24). To evaluate hashing as a means of detecting 

doublets resulting from collisions, we varied the number of nuclei loaded per polymerase 

chain reaction well, resulting in a range of predicted collision rates (7 to 23%) that was well 

matched by observation (fig. S1I). Hash oligos facilitated the identification of the vast 

majority of interspecies doublets (95.5%) and otherwise undetectable within-species 

doublets (Fig. 1E and fig. S1, J and K).

sci-Plex enables multiplex chemical transcriptomics at single-cell resolution

We next evaluated whether nuclear hashing could enable chemical screens by labeling cells 

that had undergone a specific perturbation, followed by single-cell transcriptional profiling 

as a high-content phenotypic assay. We exposed A549, a human lung adenocarcinoma cell 

line, to one of four compounds: dexamethasone (a corticosteroid agonist), nutlin-3a (a p53-

Mdm2 antagonist), BMS-345541 (an inhibitor of nuclear factor κB–dependent 

transcription), or vorinostat [suberoylanilide hydroxamic acid (SAHA), an HDAC inhibitor], 

for 24 hours across seven doses in triplicate for a total of 84 drug–dose–replicate 

combinations and additional vehicle controls (Fig. 2A and fig. S2A). We labeled nuclei from 

each well and subjected them to sci-RNA-seq2 (fig. S2, B to D, and table S1).
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We used Monocle 3 (21) to visualize these data using Uniform Manifold Approximation and 

Projection (26) (UMAP) and Louvain community detection to identify compound-specific 

clusters of cells, which were distributed in a dose-dependent manner (Fig. 2, B and C, and 

fig. S2, E and F). To quantify the “population average” transcriptional response of A549 

cells to each of the four drugs, we modeled each gene’s expression as a function of dose 

through generalized linear regression. A total of 7561 genes were sensitive to at least one 

drug, and 3189 genes were differentially expressed in response to multiple drugs (fig. S3A 

and table S2). These included canonical targets of dexamethasone (Fig. 2D) and nutlin-3a 

(Fig. 2E). Gene ontology analysis of differentially expressed genes revealed the involvement 

of drug-specific pathways (e.g., hormone signaling for dexamethasone; p53 signaling for 

nutlin-3a; fig. S3B). Additionally, we evaluated whether the number of cells recovered at 

each concentration could be used to infer toxicity akin to traditional screens. After fitting a 

response curve to the recovered cellular counts, we inferred a “viability score” from sci-Plex 

data, a metric that was concordant with “gold standard” measurements (Fig. 2F and fig. S2, 

G to I).

sci-Plex scales to thousands of samples and enables HTS

To assess how sci-Plex scales for HTS, we performed a screen of 188 compounds targeting a 

diverse range of enzymes and molecular pathways (Fig. 3A). Half of this panel was chosen 

to target transcriptional and epigenetic regulators. The other half was chosen to sample 

diverse mechanisms of action. We exposed three well-characterized human cancer cell lines, 

A549 (lung adenocarcinoma), K562 (chronic myelogenous leukemia), and MCF7 

(mammary adenocarcinoma), to each of these 188 compounds at four doses (10 nM, 100 

nM, 1 μM, and 10 μM) in duplicate, randomizing compounds and doses across well 

positions in replicate culture plates (table S3). These conditions, together with vehicle 

controls, accounted for 4608 of 4992 independently treated cell populations in this 

experiment. After treatment, we lysed cells to expose nuclei, hashed them with a specific 

combination of two oligos (fig. S4A), and performed sci-RNA-seq3 (21). After sequencing 

and filtering based on hash purity (fig. S4, B to F), we obtained transcriptomes for 649,340 

single cells, with median mRNA UMI counts of 1271,1071, and 2407 for A549, K562, and 

MCF7, respectively (fig. S5A). The aggregate expression profiles for each cell type were 

highly concordant between replicate wells (Pearson correlation = 0.99) (fig. S5B).

Visualizing sci-RNA-seq profiles separately for each cell line revealed compound-specific 

transcriptional responses and patterns that were common to multiple compounds. For each 

of the cell lines, UMAP projected most cells into a central mass, flanked by smaller clusters 

(Fig. 3B). These smaller clusters were largely composed of cells treated with compounds 

from only one or two compound classes (figs. S6 and S7, A to C). For example, A549 cells 

treated with triamcinolone acetonide, a synthetic glucocorticoid receptor agonist, were 

markedly enriched in one such small cluster, comprising 95% of its cells [Fisher’s exact test, 

false discovery rate (FDR) < 1%; fig. S7, D and E]. Although many drugs were associated 

with a seemingly homogeneous transcriptional response, we also identified cases in which 

distinct transcriptional states were induced by the same drug. For example, in A549, the 

microtubule-stabilizing compounds epothilone A and epothilone B were associated with 

three such focal enrichments, each composed of cells from both compounds at all four doses 
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(fig. S7, F and G). The cells in each focus were distinct from one another, but 

transcriptionally similar to other treatments: a recently identified microtubule destabilizer, 

rigosertib (27); the SETD8 inhibitor UNC0397; or untreated proliferating cells (fig. S7H).

We next assessed the effects of each drug on the “population average” transcriptome of each 

cell line. In total, 6238 genes were differentially expressed in a dose-dependent manner in at 

least one cell line (FDR < 5%; fig. S8 and tables S4 and S5). Bulk RNA-seq measurements 

collected for five compounds across four doses and vehicle agreed with averaged gene 

expression values and estimated effect sizes across identically treated single cells, although 

correlations between small effect sizes were diminished (fig. S9). Moreover, sci-Plex dose-

dependent effect profiles correlated with compound-matched L1000 measurements (11) (fig. 

S10).

Genes associated with the cell cycle were highly variable across individual cells, and many 

drugs reduced the fraction of cells that expressed proliferation marker genes (figs. S11 and 

S12). In principle, scRNA-seq should be able to distinguish shifts in the proportion of cells 

in distinct transcriptional states from gene-regulatory changes within those states. By 

contrast, bulk transcriptome profiling would confound these two signals (fig. S13A) (14). 

We therefore tested for dose-dependent differential expression on subsets of cells 

corresponding to the same drug but expressing high versus low levels of proliferation marker 

genes (fig. S13B). Correlation between the dose-dependent effects on the two fractions of 

each cell type varied across drug classes (fig. S13C), with some frankly discordant effects 

for individual compounds (fig. S13D). Viability analysis performed as in the pilot 

experiment revealed that after drug exposure at the highest dose, only 52 (27%) compounds 

caused a decrease in viability of 50% or more (Fig. 3C and fig. S5C). Among the drugs that 

reduced viability, we observed a higher sensitivity of K562 to the Src and Abl inhibitor 

bosutinib (Fig. 3C), a result that we confirmed by cell counting (fig. S14A). This result is 

consistent with K562 cells harboring a constitutively active BCR-ABL fusion kinase (28) 

and an observed increased sensitivity of hematopoietic and lymphoid cancer cell lines to Abl 

inhibitors (29) (fig. S14B).

To assess whether each compound elicited similar responses across the three cell lines, we 

clustered compounds using the effect sizes for dose-dependent genes as loadings in each cell 

line (figs. S15 to S18). Joint analysis of the three cell lines revealed common and cell-type–

specific responses to different compounds (figs. S19 and S20). For example, trametinib, a 

mitogen-activated protein kinase kinase (MEK) inhibitor, induced a transcriptionally distinct 

response in MCF7 cells. Inspection of UMAP projections revealed trametinib-treated MCF7 

cells interspersed among vehicle controls, reflecting limited effects. By contrast, trametinib-

treated A549 and K562 cells, which harbor activating KRAS and ABL mutations (30), 

respectively, were tightly clustered, consistent with a strong, specific transcriptional 

response to inhibition of MEK signaling by trametenib (Fig. 3D). Further, we observed that 

these A549 and K562 cells appeared proximal to clusters enriched with inhibitors of HSP90, 

a key chaperone for protein folding (Fig. 3D). This observation was corroborated by 

concordant changes in HSP90AA1 expression in trametinib-treated cells (Fig. 3E). Analysis 

of Connectivity Map data (11,12) revealed further evidence that MEK inhibitors do indeed 

induce highly similar gene expression signatures to HSP90 perturbations (fig. S14C), 
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especially in A549 but not in MCF7 (fig. S14, D and E). These results are concordant with 

previous observations of the regulation of HSP90AA1 downstream of MEK signaling (31) 

and suggest that similarity in single-cell transcriptomes treated with distinct compounds can 

highlight drugs that target convergent molecular pathways.

Inference of chemical and mechanistic properties of HDAC inhibitors

For each of the three cell lines, the most prominent compound response was composed of 

cells treated with one of 17 HDAC inhibitors (Fig. 3B, dark blue, and table S6). To assess 

the similarity of the dose–response trajectories between cell lines, we aligned HDAC-treated 

cells and vehicle-treated cells from all three cell lines using a mutual-nearest neighbor 

(MNN) matching approach (32) to produce a consensus HDAC inhibitor trajectory, which 

we call “pseudodose” [analogous to “pseudotime” (33)] (Fig. 4A and fig. S21). We observed 

that some HDAC inhibitors induced homogeneous responses, with nearly all cells localized 

to a relatively narrow range of the HDAC inhibitor trajectory at each dose (e.g., pracinostat 

in A549), whereas other drugs induced much greater cellular heterogeneity (Fig. 4B and fig. 

S22).

Such heterogeneity could be explained by cells executing a defined transcriptional program 

asynchronously, with the dose of drug that the cells are exposed to modulating the rates of 

their progression through it. To test this hypothesis, we sequenced the transcriptomes of 

64,440 A549 cells that were treated for 72 hours with one of 48 compounds, including many 

of the HDAC inhibitors from the large sci-Plex screen. Upon accounting for confluency-

dependent cell-cycle effects and MNN alignment (figs. S23 and S24), the coembedded 

UMAP projection revealed new focal concentrations of cells at 72 hours that were not 

evident at the 24-hour time point, e.g., SRT1024 (fig. S25). However, for the majority of 

HDAC inhibitors tested, we did not observe that cells at a given dose moved farther along an 

aligned HDAC trajectory at 72 hours (fig. S26). This suggests that the dose of many HDAC 

inhibitors governs the magnitude of a cell’s response rather than its rate of progression and 

that any observed heterogeneity cannot be attributed solely to asynchrony (fig. S26).

Next, we assessed whether a given HDAC inhibitor’s target affinity explained its global 

transcriptional response to the compound. We used dose-response models to estimate each 

compound’s transcriptional median effective concentration (TC50), i.e., the concentration 

needed to drive a cell halfway across the HDAC inhibitor pseudodose trajectory (fig. S27A 

and table S6). To compare the transcriptionally derived measures of potency with the 

biochemical properties of each compound, we collected published median inhibitory 

concentration (IC50) values for each compound from in vitro assays performed on eight 

purified HDAC isoforms (table S7). With the exception of two relatively insoluble 

compounds, our calculated TC50 values increased as a function of compound IC50 values 

(Fig. 4C and fig. S27, B and C).

To assess the components of the HDAC inhibitor trajectory, we performed differential 

expression analysis using pseudodose as a continuous covariate. Of the 4308 genes that were 

significantly differentially expressed over this consensus trajectory, 2081 (48%) responded 

in a cell-type–dependent manner and 942 (22%) exhibited the same pattern in all three cell 

lines (fig. S28, A and B, and table S8). One prominent pattern shared by the three cell lines 
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was an enrichment for genes and pathways indicative of progression toward cell-cycle arrest 

(figs. S28C and S29, A and B). DNA content staining and flow cytometry confirmed that 

HDAC inhibition resulted in the accumulation of cells in the G2/M phase of the cell cycle 

(34) (fig. S29, C and D).

The shared response to HDAC inhibition included not only cell-cycle arrest but also the 

altered expression of genes involved in cellular metabolism (fig. S28C). Histone 

acetyltransferases and deacetylases regulate chromatin accessibility and transcription factor 

activity through the addition or removal of charged acetyl groups (35–37). Acetate, the 

product of HDAC class I-, II-, and IV-mediated histone deacetylation and a precursor to 

acetyl-coenzyme A (acetyl-CoA), is required for histone acetylation but also has important 

roles in metabolic homeostasis (23, 38, 39). Inhibition of nuclear deacetylation limits 

recycling of chromatin-bound acetyl groups for both catabolic and anabolic processes (39). 

Accordingly, we observed that HDAC inhibition led to sequestration of acetate in the form 

of markedly increased acetylated lysine levels after exposure to a 10 μM dose of the HDAC 

inhibitors pracinostat and abexinostat (fig. S30).

Upon further inspection of pseudodose-dependent genes, we observed that enzymes critical 

for cytoplasmic acetyl-CoA synthesis from either citrate (ACLY) or acetate (ACSS2) were 

up-regulated (Fig. 5A). Genes involved in cytoplasmic citrate homeostasis (GLS, IDH1, and 

ACO1), citrate cellular import (SLC13A3), and mitochondrial citrate production and export 

(CS, SLC25A1) were also up-regulated. Up-regulation of SIRT2, which deacetylates 

tubulin, was also observed in response to HDAC inhibition.

Together with increases in chromatin-bound acetate, these transcriptional responses suggest 

a metabolically consequential depletion of cellular acetyl-CoA reserves in HDAC-inhibited 

cells (Fig. 5B). To validate this further, we sought to shift the distribution of cells along the 

HDAC inhibitor trajectory by modulating cellular acetyl-CoA levels. We treated A549 and 

MCF7 cells with pracinostat in the presence and absence of acetyl-CoA precursors (acetate, 

pyruvate, or citrate) or inhibitors of enzymes (ACLY, ACSS2, or PDH) involved in 

replenishing acetyl-CoA pools. After treatment, cells were harvested and processed using 

sci-Plex and trajectories constructed for each cell line (figs. S31 and S32). In both A549 and 

MCF7 cells, acetate, pyruvate, and citrate supplementation was capable of blocking 

pracinostat-treated cells from reaching the end of the HDAC inhibitor trajectory (fig. S31, F, 

J, H, and L). In MCF7 cells, both ACLY and ACSS2 inhibition shitted cells farther along the 

HDAC inhibitor trajectory, although no such shift was observed in A549 (fig. S31, G, K, I, 

and M). Taken together, these results suggest that a major feature of the response of cells to 

HDAC inhibitors, and possibly their associated toxicity, is the induction of an acetyl-CoA-

deprived state.

Discussion

Here, we present sci-Plex, a massively multiplex platform for single-cell transcriptomics. 

sci-Plex uses chemical fixation to cost-effectively and irreversibly label nuclei with short, 

unmodified ssDNA oligos. In the proof-of-concept experiment described here, we applied 

sci-Plex to quantify the dose-dependent responses of cancer cells to 188 compounds through 

an assay that is both high content (global transcription) and high resolution (single cell). By 
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profiling several distinct cancer cell lines, we distinguished between shared and cell-line-

specific molecular responses to each compound.

sci-Plex offers some distinctive advantages over conventional HTS: it can distinguish a 

compound’s distinct effects on cellular subsets (including complex in vitro systems such as 

cellular reprogramming, organoids, and synthetic embryos); it can unmask heterogeneity in 

cellular response to a perturbation; and it can measure how drugs shift the relative 

proportions of transcriptionally distinct subsets of cells. Highlighting these features, our 

study provides insight into the mechanism of action of HDAC inhibitors. Specifically, we 

find that the main transcriptional responses to HDAC inhibitors involve cell-cycle arrest and 

marked shifts in genes related to acetyl-CoA metabolism. For some HDAC inhibitors, we 

observed clear heterogeneity in responses observed at the single-cell level. Although HDAC 

inhibition is conventionally thought to act through mechanisms directly involving chromatin 

regulation, our data support an alternative model, albeit not a mutually exclusive one, in 

which HDAC inhibitors impair growth and proliferation by interfering with a cancer cell’s 

ability to draw acetate from chromatin (22,23,39). As such, variation in cells’ acetate 

reservoirs is a potential explanation for their heterogeneous responses to HDAC inhibitors.

As the cost of single-cell sequencing continues to fall, the opportunities for leveraging sci-

Plex for basic and applied goals in biomedicine may be substantial. The proof-of-concept 

experiments described here, consisting of nearly 5000 independent treatments with 

transcriptional profiling of >100 single cells per treatment, can potentially be scaled toward 

a comprehensive, high-resolution atlas of cellular responses to pharmacologic perturbations 

(e.g., hundreds of cell lines or genetic backgrounds, thousands of compounds, multichannel 

single-cell profiling, etc.). The ease and low cost of oligo hashing, coupled with the 

flexibility and exponential scalability of single-cell combinatorial indexing, would facilitate 

this goal.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. sci-Plex uses polyadenylated single-stranded oligonucleotides to label nuclei, enabling cell 
hashing and doublet detection.
(A) Fluorescent images of permeabilized nuclei after incubation with DAPI (top) and an 

Alexa Fluor-647–conjugated single-stranded oligonucleotide (bottom). (B) Overview of sci-

Plex. Cells corresponding to different perturbations are lysed in-well, their nuclei labeled 

with well-specific “hash” oligos, followed by fixation, pooling, and sci-RNA-seq. (C) 

Scatter plot depicting the number of UMIs from single-cell transcriptomes derived from a 

mixture of hashed human HEK293T cells and murine NIH3T3 cells. Points are colored on 

the basis of hash oligo assignment. (D) Boxplot depicting the number of mRNA UMIs 

recovered per cell for fresh versus frozen human and mouse cell lines. (E) Scatter plot of 

overloading experiment; axes are as in (C). Identified hash oligo collisions (red) identify 

cellular collisions with high sensitivity.
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Fig. 2. sci-Plex enables multiplex chemical transcriptomics at single-cell resolution.
(A) Diagram depicting compounds and corresponding targets assayed within the pilot sci-

Plex experiment. A549 lung adenocarcinoma cells were treated with either vehicle 

[dimethylsulfoxide (DMSO) or ethanol] or one of four compounds (BMS345541, 

dexamethasone, nutlin-3a, or SAHA). (B) UMAP embedding of chemically perturbed A549 

cells colored by drug treatment. (C) UMAP embedding of chemically perturbed A549 cells 

faceted by treatment with cells colored by dose. (D and E) Expression of a canonical (D) 

glucocorticoid receptor activated (ANGPTL4) and repressed (GDF15) target genes as a 

function of dexamethasone dose or (E) p53 target genes as a function of nutlin-3a dose. y-

axes indicate the percentage of cells with at least one read corresponding to the transcript. 

(F) Dose–response viability estimates for BMS345541-, dexamethasone-, nutlin-3a-, and 

SAHA-treated A549 cells on the basis of the relative number of cells recovered at each dose.
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Fig. 3. sci-Plex enables global transcriptional profiling of thousands of chemical perturbations in 
a single experiment.
(A) Schematic of the large-scale sci-Plex experiment (sci-RNA-seq3). A total of 188 small 

molecules were tested for their effects on A549, K562, and MCF7 human cell lines, each at 

four doses and in biological replicate, after 24 hours of treatment. The plate positions of 

doses and drugs were varied between replicates, and a median of 100 to 200 cells were 

recovered per condition. Colors demarcate cell line, compound pathway, and dose. (B) 

UMAP embeddings of A549, K562, and MCF7 cells in our screen with each cell colored by 

the pathway targeted by the compound to which a given cell was exposed. To facilitate 

visualization of significant molecular phenotypes, we added transparency to cells treated 
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with compound or dose combinations that did not appreciably alter the corresponding cells’ 

distribution in UMAP space compared with vehicle controls (Fisher’s exact test, FDR < 

1%). (C) Viability estimates obtained from hash-based counts of nuclei at each dose of 

selected compounds (bosutinib is highlighted in red text). Rows represent compound doses 

increasing from top to bottom, and columns represent individual compounds. Annotation bar 

at top depicts the broad cellular activity targeted by each compound. (D) UMAP embeddings 

highlighted by treatment with the MEK inhibitor trametinib (red), an HSP90 inhibitor 

(purple), or vehicle control (gray). (E) HSP90AA1 expression levels in cells exposed to 

increasing doses of trametinib. y-axes indicate the percentage of cells with at least one read 

corresponding to the transcript.

Srivatsan et al. Page 13

Science. Author manuscript; available in PMC 2020 June 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. HDAC inhibitor trajectory captures cellular heterogeneity in drug response and 
biochemical affinity.
(A) MNN alignment and UMAP embedding of transcriptional profiles of cells treated with 

one of 17 HDAC inhibitors. Pseudodose root is displayed as a red dot. (B) Ridge plots 

displaying the distribution of cells along pseudodose by dose shown for three HDAC 

inhibitors with varying biochemical affinities. (C) Relationship between TC50 and average 

log10(IC50) from in vitro measurements. Asterisks indicate compounds with a solubility 

<200 μM (in DMSO) that were not included in the fit.
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Fig. 5. HDAC inhibitors shared transcriptional response indicative of acetyl-CoA deprivation.
(A) Heatmap of row-centered and z-scaled gene expression depicting the up-regulation of 

pseudodose-dependent genes involved in cellular carbon metabolism. (B) Diagram of the 

roles of genes from (A) in cytoplasmic acetyl-CoA regulation. Red circles indicate acetyl 

groups. Enzymes are shown in gray. Transporters are shown in green (FA, fatty acid; Ac-

CoA, acetyl-CoA; C, citrate).

Srivatsan et al. Page 15

Science. Author manuscript; available in PMC 2020 June 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Results
	Nuclear hashing enables multisample sci-RNA-seq
	sci-Plex enables multiplex chemical transcriptomics at single-cell resolution
	sci-Plex scales to thousands of samples and enables HTS
	Inference of chemical and mechanistic properties of HDAC inhibitors
	Discussion

	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	Fig. 4.
	Fig. 5.

