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Abstract

Mitochondrial DNA (mtDNA) — which is well known for its role in oxidative phosphorylation 

and maternally inherited mitochondrial diseases — is increasingly recognized as an agonist of the 

innate immune system that influences antimicrobial responses and inflammatory pathology. On 

entering the cytoplasm, extracellular space or circulation, mtDNA can engage multiple pattern-

recognition receptors in cell-type- and context-dependent manners to trigger pro-inflammatory and 

type I interferon responses. Here, we review the expanding research field of mtDNA in innate 

immune responses to highlight new mechanistic insights and discuss the physiological and 

pathological relevance of this exciting area of mitochondrial biology.

Mitochondria are ubiquitous eukaryotic organelles that originated from an ancient α-

proteobacterium more than 2 billion years ago. They have a unique, double-membrane 

structure and are central sites of metabolism with cell- and tissue-specific morphology, 

dynamics and function1. Mitochondria have maintained DNA (mitochondrial DNA 

(mtDNA)) (BOX 1; FIG. 1), which encodes essential protein subunits of the oxidative 

phosphorylation system. This consists of the electron transport chain (ETC; complexes I–IV) 

and ATP synthase (complex V)2, which drive mitochondrial respiration and ATP production. 

Mitochondria have many other functions in cells, which include myriad anabolic and 

catabolic pathways, regulation of apoptosis and calcium homeostasis, and reactive oxygen 

species (ROS) signalling3. More recently, mitochondria have been demonstrated to have 

various roles in host immune responses. For example, they orchestrate signalling and 

effector functions to boost immune cell activation and antimicrobial defence, and trigger 

inflammation in response to cell and tissue damage4,5.

Since our efforts in 2011 to document the many roles for mitochondria in the innate immune 

system, there has been rapid growth in understanding how mitochondrial constituents, which 

are normally obscured from host pattern-recognition receptors (PRRs), trigger innate 

immune responses when exposed during cellular stress, infection or injury4. These so-called 
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mitochondrial alarmins or damage-associated molecular patterns (DAMPs) stimulate the 

innate immune system by multiple routes and are implicated in a growing list of 

inflammatory diseases. Although a summation of these advances is not the aim of this 

article, we direct readers to several comprehensive reviews that broadly characterize the 

roles of mitochondria and mitochondrial DAMPs in mammalian immune responses and 

human diseases5,6. Because much of the growth in this field has centred on mtDNA, this 

Review characterizes the expanding roles for mtDNA as an endogenous trigger of both pro-

inflammatory and type I interferon (IFN) responses. We discuss the detection of mtDNA by 

host PRRs, focusing largely on mechanisms that depend on Toll-like receptors (TLRs), 

NOD-like receptors (NLRs) and IFN stimulatory DNA receptors, and we detail recent 

efforts to reveal how mtDNA is exposed in the cytoplasm or extracellular space during stress 

and discuss the relevance of these processes to human disease.

Unique features of mtDNA

There are several unique features of mtDNA that are relevant to our discussion of its role in 

innate immune responses and inflammation. First, mtDNA is a small, double-stranded 

circular molecule that encodes 13 oxidative phosphorylation mRNAs as well as tRNAs and 

ribosomal RNAs that are needed for their translation in the mitochondrial matrix (BOX 1; 

FIG. 1). The remaining ~1,200 mitochondrial proteins are nuclear gene products that are 

imported into the organelle, including those needed for expression and maintenance of 

mtDNA7,8. Second, hundreds to thousands of mtDNA copies are present in each cell, and 

mtDNA copy number is regulated basally by cell-specific mechanisms and in response to 

various intrinsic and environmental stresses8. In many cells and tissues, mtDNA occurs in 

quantities that seem to be in excess of what is needed to sustain oxidative phosphorylation, 

which suggests that there are other evolutionary pressures for maintaining a high cellular 

mtDNA copy number, perhaps related to mitochondrial signalling and/or immune functions. 

Third, in addition to harbouring remnants of bacterial nucleic acid sequences, mtDNA is 

methylated in a different way from nuclear DNA, making it appear more like ‘foreign’ than 

‘self’DNA (FIG. 1). There remains some uncertainty about the precise degree of CpG 

methylation in mammalian mtDNA: some reports have recorded none at all, whereas others 

have found a small, possibly regulated amount9–17. Recent studies indicate that isoforms of 

known nuclear DNA methyltransferases (DNMT1 and DNMT3b) are localized to 

mitochondria, which supports the notion that there is indeed some CpG mtDNA methylation 

in mammals12,13. There is also some evidence for non-CpG cytosine methylation and 

cytosine hydroxymethylation, the latter perhaps supported by the presence of Tet family 

demethylases in mitochondria12,13,18,19. It remains an open question whether other forms of 

DNA methylation — such as N6-adenine methylation, a common modification in bacteria 

and archaea that was recently discovered in mammalian nuclear DNA — occur in mtDNA20. 

However, although the molecular details of mtDNA methylation are clearly important to 

resolve, recognition of mtDNA by PRRs would probably occur regardless of whether 

methylation is zero, low or present in unique patterns. Fourth, owing to its oxidative 

environment and unique repertoire of DNA repair mechanisms, mtDNA might exhibit 

persistent, stereotypical oxidative damage modifications or mutagenic signatures that are 

immunostimulatory. Thus, mtDNA represents a source of endogenous ligands for DNA-
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sensing PRRs, and mtDNA is increasingly regarded as a mitochondrial DAMP and trigger of 

‘hidden-self’ recognition. Last, during the process of mtDNA transcription and replication, 

many unique nucleic acid species with immunostimulatory potential are generated, such as 

long, double-stranded RNA, uncapped mRNAs and RNA-DNA hybrids (BOX 1; FIG. 1). 

This supports the idea that mitochondrial membrane integrity is an important barrier against 

self-derived innate immune activation in healthy cells and tissues.

Although it is often stated that mtDNA is prone to damage owing to its lack of packaging by 

histones and inefficient DNA repair mechanisms, such statements are somewhat misleading. 

In fact, mtDNA is not ‘naked’, but rather packaged into protein–DNA complexes called 

nucleoids8. The mtDNA-binding protein transcription factor A, mitochondrial (TFAM) — 

which was originally identified as a transcriptional activator for mtDNA promoters in 

humans and mice — is a major component that initiates and drives mtDNA packaging and 

overall nucleoid structure8,21. The TFAM concentration in cells and tissues, as well as its 

mtDNA-binding density, is likely to be regulated to enable different modes of packaging and 

precise regulation of mtDNA transcription22. Packaging by TFAM probably insulates 

mtDNA from oxidative damage to a certain degree — a mode of protection that is 

augmented by robust mitochondrial base-excision repair pathways to cope with oxidative 

and other non-bulky base damage. Thus, mammalian mtDNA is not devoid of protective or 

repair mechanisms. However, mtDNA repair pathways are not as extensive as those available 

for nuclear DNA, as mitochondria lack nucleotide excision repair and some other pathways 

that are active in the nucleus23–25. As such, the steady-state amount of cellular mtDNA 

damage is a balance between the number of insults endured in the oxidative environment of 

the mitochondrial matrix and/or imparted by environmental stress and the efficiency of 

mtDNA repair. These properties of mtDNA are relevant to this Review because the degree of 

packaging and oxidation of mtDNA have both been implicated in mtDNA-dependent innate 

immune signalling. Last, in a similar way to other high-mobility-group box proteins, TFAM 

possesses immunomodulatory potential, reinforcing the notion that mtDNA and its 

associated molecules serve as agonists of the innate immune system26,27.

mtDNA in pro-inflammatory responses

Collins et al.28 were the first to report the immunostimulatory potential of mtDNA in 2004; 

they found that mtDNA elicited secretion of tumour necrosis factor (TNF) when added to 

mouse splenocytes and induced arthritis when injected into the joints of mice. Since then, a 

number of other studies have substantiated these early observations and shown that mtDNA 

can directly engage PRRs of the innate immune system to enhance pro-inflammatory 

responses4 (TABLE 1). In this section, we discuss the detection of mtDNA by TLR9 and 

cytosolic inflammasomes, highlighting mechanistic aspects, open questions and disease 

relevance.

mtDNA as a pro-inflammatory TLR9 agonist.

TLR9 was the first TLR that was shown to sense nucleic acids, and it recognizes 

hypomethylated CpG motifs in DNA in the endolysosomal compartment29. TLR9 signalling 

proceeds through the adaptor myeloid differentiation primary response protein 88 (MYD88), 
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which activates mitogen-activated protein kinases (MAPKs) and nuclear factor-κB (NF-κB) 

to trigger inflammatory responses, or through interferon regulatory factor 7 (IRF7) to 

enhance type I IFN responses in dendritic cells (DCs) or other immune cells. In 2010, two 

studies from the Hauser laboratory reported that CpG motifs from mtDNA could trigger 

TLR9 signalling to activate p38 and p42–44 MAPK activity, CXC-chemokine ligand 8 

secretion and neutrophil chemotaxis30,31. Furthermore, they reported the presence of 

circulating mtDNA in the plasma of trauma patients and other individuals with non-

infectious injury, thus implicating mtDNA as a DAMP. A large body of literature supports 

mtDNA as an endogenous TLR9 agonist (FIG. 2; TABLE 1), and circulating mtDNA has 

been implicated in the TLR9-dependent inflammatory pathology of diverse diseases such as 

rheumatoid arthritis, atherosclerosis, hypertension, acute liver injury and non-alcoholic 

steatohepatitis (TABLE 2). Circulating mtDNA seems to correlate with increased 

inflammatory phenotypes, which is also true for nuclear DNA, and there are potential 

limitations to the assays used to quantify mtDNA31 (BOX 2). It is therefore difficult to 

determine the relative contribution of circulating nuclear DNA versus mtDNA to 

inflammatory pathology, and thus further investigation is warranted in many cases.

Several reports have shown that inflammation and disease can be promoted not only by 

stimulation of TLR9 through an extracellular release mechanism but also by cell-

autonomous ligation of TLR9 by mtDNA. Oka et al.32 demonstrated that in DNase II-

deficient hearts, mtDNA is inefficiently degraded by autophagy and engages TLR9-mediated 

inflammatory responses in cardiomyocytes to induce myocarditis and dilated 

cardiomyopathy. Moreover, under hypoxic conditions, high-mobility-group protein B1 

(HMGB1) and mtDNA can form a complex in hepatocellular carcinoma cells and bind to 

TLR9 to enhance pro-tumorigenic signalling and inflammation33. This study did not 

delineate how mtDNA, which presumably enters the cytosol first, is trafficked into the 

endolysosomal compartment to engage TLR9. Autophagy is the most obvious route; 

however, other pathways may have a role. For example, mitochondria-derived vesicles 

(MDVs) — which have been recently shown to mediate the trafficking of mitochondrial 

proteins to endosomes to facilitate antigen presentation — could in principle introduce 

mtDNA into the endocytic machinery, where it could engage TLR9 (REFS 34,35). MDVs 

might also provide a direct route for the release of mtDNA into the cytoplasm (FIG. 2).

mtDNA as an inflammasome agonist.

Inflammasomes are multi-subunit, cytoplasmic protein complexes that consist of receptor 

and sensor molecules, the adaptor protein ASC and the inflammatory cysteine protease 

caspase 1. Four receptors have been shown to form inflammasomes — including NOD, LRR 

and Pyrin domain-containing protein 1 (NLRP1), NLRP3, NLR family CARD domain-

containing protein 4 (NLRC4) and absent in melanoma 2 (AIM2) — all of which are 

activated by exogenous pathogen-associated molecular patterns (PAMPs) and/or endogenous 

DAMPs released during necrosis or cellular stress36. Receptor clustering promotes 

inflammasome complex assembly and caspase 1 activation, leading to processing of the 

cytokines pro-interleukin-1β (pro-IL-1β) and pro-IL-18 into mature, secreted forms. 

Production of mitochondrial ROS (mROS), release of mitochondrial DAMPs and altered 

mitochondrial dynamics have been linked to inflammasome activation, although the exact 
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mechanisms by which mitochondria engage NLRP3 and other inflammasomes remain under 

investigation37.

Substantial evidence supports mtDNA as an endogenous agonist of inflammasomes (FIG. 2; 

TABLE 1). A 2010 report by Nakahira et al. was one of the first to link mtDNA to NLRP3 

inflammasome activation, showing that depletion of the autophagy proteins beclin 1 and 

LC3B in mouse bone marrow-derived macrophages (BMDMs) results in enhanced caspase 1 

activation and IL-1β and IL-18 secretion38. This response requires mROS as an upstream 

activator of NLRP3, which they proposed leads to increased mtDNA release into the 

cytoplasm to enhance IL-1β and/or IL-18 secretion. Interestingly, they also observed 

mtDNA release in wild-type BMDMs in response to ATP and lipopolysaccharide (LPS), but 

not to urate crystals. Moreover, cytosolic mtDNA was detected in beclin 1- and LC3B-

deficient cells, even in the absence of ATP and LPS stimulation, which suggests that mtDNA 

release selectively induces a subset of inflammasome agonists and is basally inhibited by 

autophagy. Last, Nakahira et al.38 demonstrated a role for AIM2 in caspase 1 activation 

downstream of mtDNA, showing that AIM2-deficient BMDMs secreted less IL-1β in 

response to mtDNA transfection than control BMDMs. Shortly thereafter, Shimada et al.39 

demonstrated that NLRP3 binds mtDNA and suggested that the requirement for mROS in 

this response is likely to be due to the preference of NLRP3 for oxidized mtDNA species. 

Their work suggests that NLRP3 might not promote mtDNA release per se, but instead 

stabilize it in the cytoplasm after release, although other reports have strengthened the notion 

that mitochondrial damage and mtDNA release are amplified by NLRP3 inflammasome 

activation40,41. Several other research groups have implicated mROS and oxidized mtDNA 

in NLRP3 inflammasome activation42,43, and Jabir et al.44 have recently provided evidence 

of mtDNA binding to NLRC4 complexes. Furthermore, several studies have shown that 

mtDNA-release-associated inflammasome activation is probably involved in several 

pathogenic states, including atherosclerosis, age-related macular degeneration, mevalonate 

kinase deficiency and certain bacterial infections (TABLE 2), which supports mtDNA as an 

inflammasome agonist with implications for disease43–46

Despite clear evidence of mtDNA involvement in inflammasome activation, many 

mechanistic questions remain. First, it is unclear how mtDNA enters the cytosol, and the 

specific sequences and structural features of these immunostimulatory molecules are 

unknown. Some data indicate that mtDNA sequences several hundred base pairs in length 

are released to activate inflammasomes39. This suggests that membrane damage and 

mitochondrial rupture is probably responsible for the activation, because although the gated 

release of mtDNA of this length is possible, it seems unlikely (FIG. 2). Second, the precise 

role of mROS in inflammasome activation is controversial47. Oxidation of mtDNA by 

mROS seems to be required, but ROS also have context-specific signalling and damaging 

roles, so activation of other ROS-mediated inflammatory pathways might explain some of 

the conflicting results3. Third, although complexes of NLRP3 and NLRC4 seem to bind to 

mtDNA or oxidized mtDNA in co-immunoprecipitation experiments, it is not clear whether 

the NLRs themselves bind directly or whether other factors are needed. Furthermore, the 

role of autophagy and/or mitophagy in limiting inflammasome activation by removing 

damaged mtDNA needs to be investigated further, as do the consequences of mitochondrial 

damage and mtDNA release upstream and downstream of inflammasome-dependent caspase 

West and Shadel Page 5

Nat Rev Immunol. Author manuscript; available in PMC 2020 June 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1 activation40,42. Last, more effort is needed to unravel the dynamic physical association of 

NLRs with mitochondria and how this imparts signalling specificity47,48.

mtDNA haplogroups and inflammatory disease.

Different human populations have acquired sequence polymorphisms in mtDNA that 

characterize maternally inherited genetic haplotypes. Clusters of these single-nucleotide 

polymorphisms (SNPs) define related mtDNA haplotypes, called haplogroups. Haplogroups 

have enabled tracking of global migrations of human populations, and there is substantial 

evidence that they are drivers of evolutionary adaptation and disease susceptibility49. In 

addition to these inherited SNPs, somatic mtDNA mutations accumulate with age. The 

involvement of mtDNA in innate immune responses begs the question of whether mtDNA 

haplotypes or somatic mtDNA mutations contribute to inflammatory pathology and/or the 

increase in chronic inflammation with age. Although more investigation into this area is 

certainly warranted, the concept has been supported by identifying that a mutation in the 

mtDNA-encoded cytochrome B gene correlates with NLRP3 inflammasome activation in 

people with fibromyalgia and that mtDNA haplotypes are associated with sepsis 

susceptibility and other inflammatory pathways and disorders in humans49–52. Therefore, we 

envision that inherited mtDNA SNPs or acquired somatic mtDNA mutations could influence 

inflammatory pathways directly by differentially affecting how mtDNA engages cytoplasmic 

PRRs and/or by imparting functional changes in mitochondria that could influence 

downstream inflammatory signalling events. These could include alterations in oxidative 

phosphorylation and/or mROS generation, which might result in heightened immune cell 

function on PRR ligation or pathogen infection.

mtDNA in type I interferon responses

In addition to triggering pro-inflammatory responses, recent reports have demonstrated that 

both cytosolic and extracellular mtDNA engage PRRs and trigger type I IFNs and 

interferon-stimulated gene (ISG) expression. Although some of the mechanistic details 

warrant clarification, the identification of mtDNA as a type I IFN-inducing DAMP raises 

important implications for understanding the pathobiology of infectious and non-infectious 

diseases involving both mitochondrial stress and type I IFN signatures53. In this section, we 

discuss the emerging concept that mtDNA serves as an agonist of membrane-bound and 

cytosolic PRRs regulating type I IFN responses such as those mediated by TLR9, cyclic 

GMP–AMP synthase (cGAS) and stimulator of interferon genes (STING) (TABLE 1).

Intracellular mtDNA engages the cGAS–STING axis.

The cGAS–STING signalling axis has emerged as a crucial regulator of type I IFN 

responses to both exogenous and endogenous DNA53–55 (FIG. 3a). The enzyme cGAS 

detects cytoplasmic DNA and generates the cyclic dinucleotide cGAMP, which serves as a 

second messenger that binds to and activates STING56. Activated STING engages TANK-

binding kinase 1 (TBK1), which phosphorylates interferon regulatory factor 3 (IRF3) to 

promote its homodimerization and translocation to the nucleus, where it induces expression 

of IFNβ and ISGs. Several research groups have demonstrated that cGAS functions as the 

predominant sensor of viral and bacterial DNA in the cytoplasm of infected cells56–60. In 
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addition, cGAS–STING signalling plays a vital part in orchestrating type I IFN and 

inflammatory responses to self DNA, driving pathology in type I interferonopathies, such as 

Aicardi–Goutières syndrome, as well as regulating inflammatory responses in the tumour 

microenvironment53,55,61–64. Although most endogenous ligands for cGAS are presumed to 

originate from nuclear DNA, several lines of evidence now suggest that mtDNA also serves 

as a cell-intrinsic cGAS ligand in certain contexts (FIG. 3a).

White et al.65 and Rongvaux et al.66 showed that mtDNA released during BCL-2-like 

protein 4 (BAX)- and BCL-2 homologous antagonist/killer (BAK)-mediated apoptosis can 

engage cGAS–STING–IRF3 signalling and trigger type I IFN responses and expression of 

ISGs. In the absence of caspase 9 or of both caspase 3 and caspase 7, mtDNA activates 

cGAS to enhance type I IFN responses and ISG expression, suggesting that the apoptotic 

caspase cascade functions to suppress cell-intrinsic, mtDNA-dependent type I IFN responses 

during programmed cell death. Using immunoprecipitation assays, White et al.65 reported 

that cGAS binds indiscriminately to mtDNA after permeabilization of the mitochondrial 

outer membrane by BAX and BAK. This indicates that the entire mitochondrial genome is 

exposed during apoptosis, which raises interesting questions regarding the mechanisms of 

release and the possible accessibility of cGAS to inner mitochondrial compartments during 

mitochondrial permeabilization.

Activation of the mitochondrial permeability transition (MPT) pore is associated with 

release of linear mtDNA fragments up to 700 bp in length; thus, under certain 

circumstances, it is possible that MPT is responsible for the liberation of mtDNA fragments 

during apoptosis and/or mitochondrial stress67,68. In agreement with an MPT-dependent 

mechanism of mtDNA release, the vaccine adjuvant chitosan stimulates mitochondrial 

stress, production of mROS and accumulation of cytosolic DNA to activate cGAS–STING 

signalling and type I IFN responses in DCs69. Although this report does not definitively 

demonstrate that mtDNA is the activating cGAS ligand, type I IFN and ISG expression 

induced by chitosan exposure was inhibited by the addition of cyclosporin A, a compound 

that was previously shown to block MPT and the release of fragmented mtDNA from 

isolated mitochondria in vitro68 (FIG. 3a). However, these findings must be interpreted 

carefully as cyclosporin A can directly inhibit PRR and NF-κB signalling and thus its 

modulation of type I IFN responses in this system could be independent of alterations to 

mitochondrial permeability70,71. The hypothesized role of the MPT pore as a direct conduit 

for mtDNA release has been challenged recently and certainly requires more investigation72. 

The mitochondrial ATP synthase seems to be a major component of the MPT pore, and 

might even be the actual pore73–75. Interestingly, TrwB, a member of the conserved FtsK/

SpoIIIE family of bacterial DNA transporters, is a DNA-dependent F1-ATPase that is 

involved in transfer of DNA between bacteria during conjugation76,77. TrwB is structurally 

related to mitochondrial F1-ATPase, and in light of findings that implicate mitochondrial 

ATP synthase in MPT and MPT in mtDNA release, it is intriguing to consider that regulated 

mtDNA release might be an evolutionary vestige of the bacterial origin of this organelle. 

Future studies should clarify the role of MPT in mtDNA release and, perhaps more 

importantly, define the mtDNA species that uniquely engage cGAS over other DNA sensors.
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Our recent work also provides support for mtDNA-dependent activation of the cGAS–

STING pathway (FIG. 3a). We found that cells and tissues from TFAM heterozygous (Tfam
+/−) mice — which have altered nucleoid morphology, presumably due to altered mtDNA 

packaging — exhibit increased expression of ISGs and antiviral factors and are markedly 

resistant to viral infection78. The antiviral ‘priming’ phenotype in Tfam+/− cells is driven by 

constitutive cGAS–STING–TBKl signalling to IRF3 and depends on the presence of 

abnormal nucleoid structures and the stress that they impart. Treatment of Tfam+/− cells with 

dideoxycytosine — which specifically inhibits mtDNA replication and promotes mtDNA 

depletion — markedly decreased ISG expression and viral resistance, thus implicating 

mtDNA-dependent cGAS activation in this genetic background. Moreover, we observed 

enrichment of specific mtDNA fragments in the cytosol of TFAM-deficient fibroblasts and 

macrophages. That is, we found that mtDNA sequences corresponding to the D-loop 

regulatory region (BOX 1) were more prevalent in the cytoplasm of Tfam+/− cells. It is thus 

tempting to speculate that specific sequences derived from this three-stranded region of 

mtDNA (BOX 1) might resist nuclease degradation and/or bind with higher affinity to 

cGAS, thus rendering them more immunostimulatory. Moreover, mtDNA, and perhaps the 

D-loop region in particular, is closely associated with the inner mitochondrial membrane and 

inner–outer membrane contact sites, and thus this region of mtDNA may be more readily 

released during mitochondrial membrane breakage, fission or fusion79–81. It is also 

noteworthy that the 7S DNA strand that forms the D-loop is constantly made and degraded, 

which may be relevant to its role in innate immune or mitochondrial stress signalling82. 

Although our work does not reveal the precise mechanism by which mtDNA fragments are 

liberated from mitochondria, Tfam+/− cells have elongated mitochondria and the ISG 

response is dampened by knockdown of mitofusin 1 (MFN1), suggesting that altered 

mitochondrial morphology or dynamics also contributes to mtDNA release. Altogether, our 

findings further support the idea that mitochondrial stress can liberate cytosolic mtDNA that 

serves as an endogenous cGAS ligand.

The physiological relevance of cGAS activation in Tfam+/− mice is not completely clear, but 

our results suggest that mtDNA stress may contribute to innate immune activation and type I 

IFN responses in various pathological states, from infectious diseases to cancer, 

neurodegeneration and other mitochondria-related illnesses. With regard to pathogen-

mediated mtDNA stress, we and others have shown that cellular infection by herpes simplex 

virus 1 (HSV-1) and HSV-2 causes mtDNA stress and a swift decline in mtDNA copy 

number78,83,84. A mutant HSV-1 strain lacking the gene responsible for mtDNA targeting is 

less efficient at triggering antiviral responses and ISG expression, possibly suggesting that 

cellular monitoring of mtDNA homeostasis is an evolutionarily beneficial mechanism that 

cooperates with canonical sensing of viral nucleic acids to fully engage antiviral innate 

immunity78,85. Conversely, host type I IFN responses can enhance the pathogenesis of 

certain microorganisms, such as Mycobacterium tuberculosis, and tuberculosis infection 

triggers both cGAS–STING signalling and mitochondrial stress57,59,86–88. These findings 

raise the interesting possibility that mitochondrial damage and mtDNA release may be a 

strategy used by M. tuberculosis or other microorganisms to boost cGAS activation, increase 

type I IFN responses and enhance intracellular survival (FIG. 3a).
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Extracellular mtDNA in type I IFN responses.

In addition to an intracellular role for mtDNA in triggering type I IFN responses, mtDNA 

released from activated neutrophils can engage either the cGAS–STING pathway or the 

endosomal TLR9 pathway on neighbouring immune cells89–91 (FIG. 3b; TABLE 1). 

Neutrophil extracellular trap (NET) formation — a process implicated in bacterial clearance 

and sterile inflammatory diseases such as systemic lupus erythematosus (SLE) — results in 

cell death and extrusion of neutrophil DNA and/or protein complexes into the extracellular 

space. NETs have recently been shown to contain mtDNA, thus raising the possibility that 

extracellular mtDNA could contribute to type I IFN-mediated pathology observed in 

individuals with SLE89,92. Consistent with this hypothesis, Lood et al.90 have shown that 

triggering of neutrophils by ribonucleoprotein-containing immune complexes (RNP-ICs) 

increases mROS generation and mitochondrial translocation to the cellular surface to support 

the formation of NETs that are enriched in oxidized mtDNA. The degree of oxidation of 

NET DNA is a crucial determinant of its immunostimulatory potential. The expression of 

type I IFNs and pro-inflammatory cytokines by human peripheral blood mononuclear cells 

and splenic cells is potentiated by oxidation, and lupus-like disease is reduced in mice 

treated with mROS scavengers. Interestingly, the response to mtDNA-enriched NETs 

requires STING but not TLR9–MYD88, indicating a crucial role for cGAS in this 

response90. It is unclear how RNP-IC stimulation increases mROS production to oxidize 

mtDNA, although one possibility may involve TLR7 activation of a signalling cascade 

dependent on MYD88, TNF receptor-associated factor 6 (TRAF6) and evolutionarily 

conserved signalling intermediate in Toll pathway, mitochondrial (ECSIT), which has been 

shown to trigger mROS production from oxidative phosphorylation complex I93.

Oxidized mtDNA has also been shown to engage TLR9 on plasmacytoid DCs (pDCs)94, and 

Caielli et al.91 further implicated the release of oxidized mtDNA from neutrophils as a driver 

of TLR9-dependent IFNα secretion by pDCs. They showed that neutrophils constitutively 

extrude mtDNA–TFAM complexes (and selectively extrude other mitochondrial cargo) into 

the extracellular space as a result of an attenuated mitophagy pathway, although they argue 

that MDVs normally direct oxidized mtDNA to lysosomes for degradation91. However, this 

process is disrupted in neutrophils taken from individuals with SLE in a way that leads to 

extrusion of extracellular oxidized mtDNA–TFAM complexes91. These complexes then 

activate the receptor for advanced glycosylation end products (RAGE; also known as 

ACER)- and TLR9-dependent production of IFNα from pDCs to increase SLE pathology 

(FIG. 3b). Although these observations raise the interesting possibility of neutrophil-specific 

mechanisms for mitophagy and mtDNA turnover, the mechanisms governing vesicular 

trafficking and packaging of oxidized mtDNA remain unclear. Nonetheless, these reports 

strongly implicate extracellular mtDNA in the inflammatory and type I IFN-mediated 

pathology of SLE and perhaps other autoimmune diseases (TABLE 2).

Conclusion and future perspectives

Mitochondria are multifaceted organelles that are key hubs of cellular metabolism and 

signalling, but increasingly they are also being documented as important participants in 

innate immune responses to pathogens and cellular damage. Mitochondria not only house 
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machinery that is necessary for antiviral and inflammasome signalling but are also important 

sources of endogenous DAMPs. Specific characteristics of mtDNA, such as its relative 

hypomethylation, unique structural features and heightened susceptibility to oxidative 

damage, make it a potent DAMP that activates TLR9, NLRs, cGAS and perhaps other innate 

sensors to trigger pro-inflammatory processes and type I IFN responses.

The evidence that immunostimulatory mtDNA can enter the cytoplasm, the extracellular 

space and even the circulation, is robust, and it is perhaps straightforward to envision how 

damaged or dying cells may release mtDNA into the extracellular milieu. However, 

regulated and non-necrotic mtDNA release mechanisms have also been suggested, and 

therefore additional studies are warranted to clarify the physiological and pathological 

relevance of these pathways. For example, depletion of the mitochondrial fusion machinery 

can decrease antiviral signalling and mtDNA stress-induced ISG expression, suggesting that 

altered mitochondrial membrane fusion may promote the release of mtDNA and perhaps 

other DAMPs4,78. In addition, the intersection of autophagy and mitophagy pathways and 

mtDNA release should be examined more closely. It is possible that incomplete 

mitochondrial degradation by these pathways leads to mtDNA fragmentation and 

cytoplasmic release, and substantial evidence supports the notion that macroautophagy is the 

predominant mechanism for preventing cytoplasmic mtDNA accumulation38,42. Last, 

several reports suggest that mtDNA release is controlled by various mitochondrial pores or 

associated regulatory proteins such as the MPT pore, the voltage-dependent anion channel, 

hexokinase, BAX and BAK38,65,66,95. However, so far, no definitive genetic or biochemical 

experiments have demonstrated the direct release of mtDNA by a mitochondrial pore. 

Moreover, many of the proteins implicated thus far primarily regulate mitochondrial outer 

membrane permeability, which in isolation does not provide a complete route for mtDNA to 

transit from the matrix to the cytoplasm72. Hopefully, genetic studies coupled with super-

resolution, live-cell imaging modalities will clarify the open mechanistic questions regarding 

gated mtDNA release.

It is also curious why mtDNA release does not uniformly activate both pro-inflammatory 

and type I IFN responses. Cytosolic mtDNA accumulation after activation of BAX and BAK 

or mtDNA stress preferentially activates cGAS-STING signalling and type I IFN responses, 

with no observed or reported effects on inflammasome activation, IL-1β production or pro-

inflammatory cytokine expression65,66,78. This is somewhat surprising, as extra-

mitochondrial mtDNA should be accessible to bind to NLRP3 or AIM2, and could also enter 

the endolysosomal compartment through autophagy to engage TLR9. It is therefore likely 

that unique aspects of mtDNA, such as its length, conformation, sequence, degree of 

oxidation or the precise location of its release, govern its differential agonist activities. More 

research is required to define the unique mechanisms by which mtDNA engages each of 

these sensors, and these efforts will be key to understanding how mtDNA activates specific 

inflammatory profiles in various disease contexts.

Aberrant innate immune responses are being implicated in an ever-growing list of 

pathologies, including autoimmune disease, metabolic syndrome, neurodegeneration and 

cancer. Mitochondrial dysfunction and/or damage is a shared feature in nearly all of these 

diseases, as well as in ageing, and thus it is interesting to speculate that the release of 
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mitochondrial constituents may be a common factor in the propagation, and perhaps 

initiation, of the inflammatory pathology of these conditions. Following the emergence of 

mtDNA as an important mitochondrial DAMP (TABLES 1,2), future work to unravel the 

mechanistic aspects of mtDNA release, sensing and resulting inflammatory pathology will 

have broad implications for understanding the mitochondrial aetiology of human disease and 

ageing, perhaps leading to new avenues for therapeutic intervention to improve human 

health.
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Glossary

Pattern-recognition receptors
(PRRs). Evolutionarily conserved receptors of the innate immune system that detect foreign 

viral, bacterial and/or fungal constituents, as well as endogenous molecules released from 

injured cells and tissues

Damage-associated molecular patterns
(DAMPs). Molecules that are exposed or released by injured, necrotic or dying cells and are 

recognized by pattern-recognition receptors

Nucleoids
Functional mitochondrial DNA packaging complexes in the mitochondrial matrix that 

consist of one or more mitochondrial DNA genomes and associated proteins

Transcription factor A, mitochondrial
(TFAM). A dual high-mobility-group box protein in mitochondria that promotes packaging 

of mitochondrial DNA and regulates transcription from mitochondrial DNA promoters

Inflammasomes
Multi-protein complexes that activate caspase 1 to induce processing of pro-interleukin-1β 
and pro-interleukin-18 into mature and secreted forms

Haplogroups
Clusters of single-nucleotide polymorphisms in mitochondrial DNA that define inherited 

lineages

Cyclic GMP–AMP synthase
(cGAS). A cytosolic DNA sensor that catalyses the production of the second messenger 

cyclic GMP–AMP (cGAMP) on binding to DNA

Stimulator of interferon genes
(STING). An endoplasmic reticulum-resident adaptor protein that binds to cyclic GMP–

AMP (cGAMP) to trigger type I interferon production
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Aicardi–Goutières syndrome
A disease in which mutations in the cytosolic enzyme 3 repair exonuclease 1 (TREX1)or 

other nucleases lead to the intracellular accumulation of endogenous nucleic acids, 

triggering chronic type I interferon responses that cause debilitating autoinflammatory and 

neurodegenerative pathology

D-loop
A stable three-stranded DNA structure in mammalian mitochondrial DNA that is caused by 

premature termination of replication

Systemic lupus erythematosus
(SLE). A chronic autoimmune disease that is linked to aberrant type I interferon responses in 

which autoantibodies specific for DNA, RNA or proteins ass.’sciated with nucleic acids 

form immune complexes that accumulate in multiple tissues to cause pathology
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Box 1 |

Expression and replication of mitochondrial DNA

The nucleotide sequence of human mitochondrial DNA (mtDNA) was determined in 

1981; it is a circular molecule of 16,569 bp, which encodes 37 genes2. The 13 mRNAs 

direct synthesis of an essential subset of oxidative phosphorylation complex subunits by 

dedicated ribosomes in the mitochondrial matrix. The two ribosomal RNA components 

(12S and 16S) and the requisite 22 tRNAs are encoded by mtDNA, whereas all additional 

proteins needed for mitochondrial transcription, translation and mtDNA replication are 

the products of nuclear genes and are co- or post-translationally imported into the 

organelle. A major regulatory site of mtDNA (called the D-loop region) harbours the 

promoters for transcription (the heavy-strand promoter (HSP) and the light-strand 

promoter (LSP)) and is the origin of heavy-strand replication (OH) and other conserved 

cis-acting elements96 (see the figure).

Expression begins with transcription of almost full-length primary transcripts (both 

mtDNA strands), which are then processed into the mature mRNA, ribosomal RNA and 

tRNA species by various RNase enzymes. During the asymmetric mode of mtDNA 

replication, transcripts from the LSP are used as primers for leading-strand replication, 

the 3’ ends of which are generated by transcription termination and/or specific RNA 

processing events downstream of the LSP and extended by mtDNA polymerase γ (Pol 

γ). After DNA synthesis begins, Pol γ is efficiently stalled or terminated ~1 kb 

downstream and the nascent DNA remains stably bound to the template, forming a stable 

three-stranded D-loop structure — a hallmark of mammalian mtDNA, the precise 

biological relevance of which still remains a mystery2,96. A productive replication event 

requires synthesis past the 3’ end of the D-loop and then priming of the lagging strand, 

which occurs at multiple sites. One major site is called OL (origin of light-strand 

replication), which is located ~12 kb away from OH, and hence leading and lagging 

strand replication can occur asynchronously, with large stretches of single-stranded DNA 

(ssDNA) and RNA–DNA hybrids (shown in red) persisting as intermediates in the 

process. Other models of mtDNA replication (for example, the ‘bootlace’ model) have 

also been proposed97.

In addition to the immunostimulatory aspects of the mtDNA molecule itself, transcription 

and replication of mtDNA involves the formation of unique nucleic acid species that may 

also engage host nucleic acid sensors. We propose that ssDNA, RNA–DNA hybrids and 

perhaps other higher-order nucleic acid structures derived from mtDNA, such as 

triplexes, R-loops and four-way junctions (not shown), may be detected by cyclic GMP–

AMP synthase (cGAS) or other pattern-recognition receptors (PRRs) of the innate 

immune system.
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Box 2 |

Experimental and interpretive issues when analysing mitochondrial DNA

There has been an explosion of interest in mitochondrial DNA (mtDNA) as an 

immunostimulatory and pro-inflammatory agent, and here we summarize some important 

experimental considerations when studying mtDNA. First, PCR is commonly used to 

detect and quantify cytosolic or circulating, cell-free mtDNA. It should be noted that 

mtDNA has been transferred to the nucleus many times during evolution, and hence there 

are hundreds of mtDNA sequences resident in mammalian genomes, some of which are 

close to full length98. Without proper controls for nuclear contamination, these so-called 

nuclear mitochondrial sequences (NUMTs) will be amplified by PCR using mtDNA-

specific primers and can lead to false-positive results seemingly demonstrating that 

mtDNA has been released into the cytoplasm or into circulation. NUMTs are often 

mutated, and therefore, in the absence of controls to eliminate nuclear contamination, can 

also lead to similar false conclusions that mtDNA mutations are involved in a given 

process. Second, it is well-accepted that the release of mtDNA into the cytoplasm can 

activate nucleic acid sensors such as Toll-like receptor 9 (TLR9) and cyclic GMP–AMP 

synthase (cGAS). However, it should be noted that release per se has never been 

demonstrated in a real-time assay. Release can only be surmised if highly purified 

cytoplasmic fractions are generated that are devoid of nuclear (that is, NUMT) 

contamination. The use of multiplexed mtDNA probes to ensure that the amplification of 

all probes scales equally can help to circumvent these issues, as can the use of specific 

primers or methods designed to avoid NUMT contamination as described99–101. Even 

this approach has the caveat that mitochondria can be preferentially broken during 

preparation, and various experimental manipulations could lead to fragile mitochondria 

that rupture more readily during fractionation when compared with controls. Either of 

these scenarios can lead to the false conclusion that mtDNA is released into the 

cytoplasm from the organelle itself in vivo.

To circumvent these issues, many investigators have turned to using compounds such as 

dideoxycytosine or ethidium bromide, which inhibit mtDNA replication and deplete 

mtDNA, or have used cells that are completely devoid of mtDNA (rho0 cells) to more 

conclusively implicate mtDNA in the responses of interest. Although these are valid 

approaches, they too are not without caveats. For example, ethidium bromide is an 

intercalating agent that also binds to RNA and DNA in the cytoplasm, which, in 

principle, could directly influence the stability or detection of any nucleic acid, 

mitochondrial or nuclear, by host pattern-recognition receptors. In addition, most rho0 

lines are derived from immortalized cancer cells and are products of strong selection for 

cells that can survive this harsh metabolic challenge, possibly resulting in populations 

with adaptive nuclear mutations and/or dramatically altered innate immune responses. 

Furthermore, rho0 cells, and those treated with mtDNA-depleting compounds for long 

periods, are devoid of not only mtDNA but also all mtDNA-derived RNA and protein 

species. These cells are deficient in oxidative phosphorylation and hence have completely 

altered cellular metabolism, ATP production and mitochondrial reactive oxygen species 

profiles. Thus, using rho0 conditions alone to conclude that a given phenotype is due 
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specifically to the absence of mtDNA is tenuous. Despite these caveats, mtDNA can be 

confidently implicated in innate immune responses by pursuing the proper controls and 

gathering multiple lines of evidence. However, better techniques to detect mtDNA in situ 
and visualize mtDNA release in real time are needed.
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Figure 1 |. Immunostimulatory features of mitochondrial DNA and related species.
The circular mitochondrial DNA (mtDNA) of mammals is depicted with nucleic acid 

species generated during transcription and replication (BOX 1). Transcription of mtDNA 

involves the divergent light-strand promoter (LSP) and heavy-strand promoters (HSPs), 

which are shown at the top with the direction of transcription indicated by arrows. The two 

polycistronic primary transcripts from each strand are shown in red. Because almost the 

entire genome is transcribed in both directions, there is ample opportunity for double-

stranded RNA (dsRNA) to be formed, as depicted at the bottom, which could engage 

retinoic acid-inducible gene I protein (RIG-I; also known as DDX58) or melanoma 

differentiation-associated protein 5 (MDA5; also known as IFIH1) and trigger mitochondrial 

antiviral signalling protein (MAVS). Replication of mtDNA initiates downstream of the LSP, 

but is paused or terminated frequently, forming a stable ~1 kb nascent DNA strand that 

remains associated with the template and displaces the non-template strand. This forms the 

hallmark three-stranded D-loop structure of mammalian mtDNA, and may be the source of 

cytosolic DNA that activates cyclic GMP–AMP synthase (cGAS). Other potentially unique 

features of mtDNA and mtDNA-encoded proteins are indicated, as are the innate immune 

sensors that we postulate might sense these unique features. rRNA, ribosomal RNA; TLR9, 

Toll-like receptor 9.

West and Shadel Page 22

Nat Rev Immunol. Author manuscript; available in PMC 2020 June 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2 |. Mitochondrial DNA in inflammasome activation and pro-inflammatory responses.
Event 1: tissue pathology and cellular damage trigger necrosis and/or mitochondrial stress, 

resulting in the release of mitochondrial DNA (mtDNA) or mtDNA-containing 

microparticles into the extracellular milieu. Event 2: mtDNA in the plasma engages 

intracellular Toll-like receptor 9 (TLR9)–myeloid differentiation primary response protein 

88 (MYD88)–nuclear factor-κB (NF-κB) signalling on circulating leukocytes, resulting in 

increased production of pro-inflammatory mediators, such as tumour necrosis factor (TNF), 

interleukin-6 (IL-6) and adhesion molecules. This enhances leukocyte differentiation and 

extravasation into tissues and causes inflammasome priming (signal 1) in tissue-resident 

cells. The NOD, LRR and Pyrin domain-containing protein 3 (NLRP3) inflammasome 
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(signal 2) in tissue-resident cells may also be activated by mtDNA, resulting in caspase 1-

mediated cleavage of IL-1β and IL-18 to further amplify inflammatory responses. Event 3: 

mtDNA that enters the endocytic pathway by endocytosis or through mitochondria-derived 

vesicles (MDVs) can engage TLR9 on tissue-resident macrophages, resulting in increased 

NF-κB signalling for pro-inflammatory gene expression (signal 1). Event 4: exposure to 

cellular stress, inflammasome agonists or intracellular bacteria can trigger mitochondrial 

damage and enhance production of mitochondrial reactive oxygen species (mROS), resulting 

in the release of oxidized mtDNA (OX-mtDNA) into the cytosol to trigger NLRP3-, NLR 

family CARD domain-containing protein 4 (NLRC4)- or absent in melanoma 2 (AIM2)-

dependent activation of caspase 1 (signal 2), which increases the processing and secretion of 

mature IL-1β and IL-18, further enhancing tissue inflammation and pathology (event 5). 

Event 6: increased expression of sequestosome 1 (SQSTM1; also known as p62) through 

NF-κB signalling increases mitophagy to clear damaged mitochondria and dampen 

inflammasome activation.
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Figure 3 |. Mitochondrial DNA instability and release in type I interferon responses.
a | Event 1: initiation of apoptosis results in the BCL-2-like protein 4 (BAX)- and BCL-2 

homologous antagonist/killer (BAK)-dependent release of mitochondrial DNA (mtDNA), 

which triggers cyclic GMP–AMP (cGAMP) synthase (cGAS) activation in the absence of 

apoptotic caspase 9 or both caspase 3 and caspase 7. Event 2: herpes simplex virus 1 

(HSV-1) infection and mitochondrial expression of the HSV-1 protein UL12.5, or decreased 

expression of transcription factor A, mitochondrial (TFAM), results in mtDNA instability 

and release of fragmented mtDNA into the cytosol to activate cGAS. Events 3 and 4: 
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exposure to the adjuvant chitosan, or infection with intracellular bacteria such as 

Mycobacterium tuberculosis, results in mitochondrial damage, increased levels of 

mitochondrial reactive oxygen species (mROS) and release of oxidized mtDNA (OX-

mtDNA) into the cytosol to engage cGAS. Cyclosporin A, an inhibitor of the mitochondrial 

permeability transition (MPT) pore, can decrease cGAS activation by chitosan. On cGAS 

activation, cGAMP triggers conformational changes of the endoplasmic reticulum-resident 

protein stimulator of interferon genes (STING), which engages TANK-binding kinase 1 

(TBK1) to activate interferon regulatory factor 3 (IRF3) and/or IRF7 to stimulate 

transcription of type I interferons (IFNs) and interferon-stimulated genes (ISGs). Type I 

IFNs can then activate the type I IFN receptor (IFNR) in an autocrine and/or paracrine 

manner to engage the interferon-stimulated gene factor 3 (ISGF3) complex, which consists 

of signal transducer and activator of transcription 1 (STAT1), STAT2 and IRF9. The ISGF3 

complex further enhances ISG expression by binding to interferon-stimulated response 

elements (ISREs) in the promoters of these genes. Event 5: damaged mitochondria targeted 

to mitophagy or mtDNA in mitochondria-derived vesicles (MDVs) may also engage Toll-

like receptor 9 (TLR9) in lysosomes if the mtDNA they contain is not completely degraded, 

resulting in engagement of the type I IFN response. b | Event 1: ribonucleoprotein-

containing immune complexes (RNP-ICs) are internalized by neutrophils, where they 

stimulate a TLR7-dependent increase in mROS production, which enhances mtDNA 

oxidation and mitochondrial re-localization to the plasma membrane. Event 2: neutrophil 

extracellular traps (NETs) containing OX-mtDNA can be taken up by neighbouring 

conventional dendritic cells (DCs) or plasmacytoid dendritic cells (pDCs), resulting in 

engagement of the cGAS–STING axis to increase expression of type I IFNs, ISGs and pro-

inflammatory cytokines. Event 3: in addition, TFAM–OX-mtDNA complexes can be 

endocytosed by DCs in a receptor for advanced glycosylation end products (RAGE)-

dependent fashion to engage endosomal TLR9 and enhance type I IFN and inflammatory 

responses. Event 4: anti-mtDNA immune complexes can also engage Fcγ receptors (FcγRs) 

to stimulate endosomal TLR9 signalling. All outcomes enhance local and/or systemic type I 

IFN and inflammatory responses to promote pathology in systemic lupus erythematosus 

(SLE) or other autoimmune or autoinflammatory diseases. ECSIT, evolutionarily conserved 

signalling intermediate in Toll pathway, mitochondrial; IL-6, interleukin-6; MYD88, 

myeloid differentiation primary response protein 88; NF-κB, nuclear factor-κB; OXPHOS, 

oxidative phosphorylation; TNF, tumour necrosis factor; TRAF, TNF receptor-associated 

factor.
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