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Abstract

Mitochondrial DNA (mtDNA) — which is well known for its role in oxidative phosphorylation
and maternally inherited mitochondrial diseases — is increasingly recognized as an agonist of the
innate immune system that influences antimicrobial responses and inflammatory pathology. On
entering the cytoplasm, extracellular space or circulation, mtDNA can engage multiple pattern-
recognition receptors in cell-type- and context-dependent manners to trigger pro-inflammatory and
type | interferon responses. Here, we review the expanding research field of mtDNA in innate
immune responses to highlight new mechanistic insights and discuss the physiological and
pathological relevance of this exciting area of mitochondrial biology.

Mitochondria are ubiquitous eukaryotic organelles that originated from an ancient a-
proteobacterium more than 2 billion years ago. They have a unique, double-membrane
structure and are central sites of metabolism with cell- and tissue-specific morphology,
dynamics and function. Mitochondria have maintained DNA (mitochondrial DNA
(mtDNA)) (BOX 1; FIG. 1), which encodes essential protein subunits of the oxidative
phosphorylation system. This consists of the electron transport chain (ETC; complexes I-1V)
and ATP synthase (complex V)2, which drive mitochondrial respiration and ATP production.
Mitochondria have many other functions in cells, which include myriad anabolic and
catabolic pathways, regulation of apoptosis and calcium homeostasis, and reactive oxygen
species (ROS) signalling®. More recently, mitochondria have been demonstrated to have
various roles in host immune responses. For example, they orchestrate signalling and
effector functions to boost immune cell activation and antimicrobial defence, and trigger
inflammation in response to cell and tissue damage*.

Since our efforts in 2011 to document the many roles for mitochondria in the innate immune
system, there has been rapid growth in understanding how mitochondrial constituents, which
are normally obscured from host pattern-recognition receptors (PRRS), trigger innate

immune responses when exposed during cellular stress, infection or injury?. These so-called
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mitochondrial alarmins or damage-associated molecular patterns (DAMPSs) stimulate the
innate immune system by multiple routes and are implicated in a growing list of
inflammatory diseases. Although a summation of these advances is not the aim of this
article, we direct readers to several comprehensive reviews that broadly characterize the
roles of mitochondria and mitochondrial DAMPs in mammalian immune responses and
human diseases®8. Because much of the growth in this field has centred on mtDNA, this
Review characterizes the expanding roles for mtDNA as an endogenous trigger of both pro-
inflammatory and type I interferon (IFN) responses. We discuss the detection of mtDNA by
host PRRs, focusing largely on mechanisms that depend on Toll-like receptors (TLRS),
NOD-like receptors (NLRs) and IFN stimulatory DNA receptors, and we detail recent
efforts to reveal how mtDNA is exposed in the cytoplasm or extracellular space during stress
and discuss the relevance of these processes to human disease.

Unigue features of mtDNA

There are several unique features of mtDNA that are relevant to our discussion of its role in
innate immune responses and inflammation. First, mtDNA is a small, double-stranded
circular molecule that encodes 13 oxidative phosphorylation mRNAs as well as tRNAs and
ribosomal RNAs that are needed for their translation in the mitochondrial matrix (BOX 1,
FIG. 1). The remaining ~1,200 mitochondrial proteins are nuclear gene products that are
imported into the organelle, including those needed for expression and maintenance of
mtDNA-8. Second, hundreds to thousands of mtDNA copies are present in each cell, and
mtDNA copy number is regulated basally by cell-specific mechanisms and in response to
various intrinsic and environmental stresses®. In many cells and tissues, mtDNA occurs in
quantities that seem to be in excess of what is needed to sustain oxidative phosphorylation,
which suggests that there are other evolutionary pressures for maintaining a high cellular
mtDNA copy number, perhaps related to mitochondrial signalling and/or immune functions.
Third, in addition to harbouring remnants of bacterial nucleic acid sequences, mtDNA is
methylated in a different way from nuclear DNA, making it appear more like ‘foreign’ than
‘self’DNA (FIG. 1). There remains some uncertainty about the precise degree of CpG
methylation in mammalian mtDNA: some reports have recorded none at all, whereas others
have found a small, possibly regulated amount®-17. Recent studies indicate that isoforms of
known nuclear DNA methyltransferases (DNMT1 and DNMT3b) are localized to
mitochondria, which supports the notion that there is indeed some CpG mtDNA methylation
in mammals1213, There is also some evidence for non-CpG cytosine methylation and
cytosine hydroxymethylation, the latter perhaps supported by the presence of Tet family
demethylases in mitochondrial2.13.18.19 |t remains an open question whether other forms of
DNA methylation — such as Af-adenine methylation, a common modification in bacteria
and archaea that was recently discovered in mammalian nuclear DNA — occur in mtDNAZ0,
However, although the molecular details of mtDNA methylation are clearly important to
resolve, recognition of mtDNA by PRRs would probably occur regardless of whether
methylation is zero, low or present in unique patterns. Fourth, owing to its oxidative
environment and unique repertoire of DNA repair mechanisms, mtDNA might exhibit
persistent, stereotypical oxidative damage modifications or mutagenic signatures that are
immunostimulatory. Thus, mtDNA represents a source of endogenous ligands for DNA-
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sensing PRRs, and mtDNA is increasingly regarded as a mitochondrial DAMP and trigger of
‘hidden-self’ recognition. Last, during the process of mtDNA transcription and replication,
many unique nucleic acid species with immunostimulatory potential are generated, such as
long, double-stranded RNA, uncapped mRNAs and RNA-DNA hybrids (BOX 1; FIG. 1).
This supports the idea that mitochondrial membrane integrity is an important barrier against
self-derived innate immune activation in healthy cells and tissues.

Although it is often stated that mtDNA is prone to damage owing to its lack of packaging by
histones and inefficient DNA repair mechanisms, such statements are somewhat misleading.
In fact, mtDNA is not ‘naked’, but rather packaged into protein~-DNA complexes called
nucleoids®. The mtDNA-binding protein transcription factor A, mitochondrial (TFAM) —
which was originally identified as a transcriptional activator for mtDNA promoters in
humans and mice — is a major component that initiates and drives mtDNA packaging and
overall nucleoid structure821, The TFAM concentration in cells and tissues, as well as its
mtDNA-binding density, is likely to be regulated to enable different modes of packaging and
precise regulation of mtDNA transcription?2. Packaging by TFAM probably insulates
mtDNA from oxidative damage to a certain degree — a mode of protection that is
augmented by robust mitochondrial base-excision repair pathways to cope with oxidative
and other non-bulky base damage. Thus, mammalian mtDNA is not devoid of protective or
repair mechanisms. However, mtDNA repair pathways are not as extensive as those available
for nuclear DNA, as mitochondria lack nucleotide excision repair and some other pathways
that are active in the nucleus23-25. As such, the steady-state amount of cellular mtDNA
damage is a balance between the number of insults endured in the oxidative environment of
the mitochondrial matrix and/or imparted by environmental stress and the efficiency of
mtDNA repair. These properties of mtDNA are relevant to this Review because the degree of
packaging and oxidation of mtDNA have both been implicated in mtDNA-dependent innate
immune signalling. Last, in a similar way to other high-mobility-group box proteins, TFAM
possesses immunomodulatory potential, reinforcing the notion that mtDNA and its
associated molecules serve as agonists of the innate immune system26:27,

MtDNA in pro-inflammatory responses

mtDNA as a

Collins et a/.?8 were the first to report the immunostimulatory potential of mtDNA in 2004;
they found that mtDNA elicited secretion of tumour necrosis factor (TNF) when added to
mouse splenocytes and induced arthritis when injected into the joints of mice. Since then, a
number of other studies have substantiated these early observations and shown that mtDNA
can directly engage PRRs of the innate immune system to enhance pro-inflammatory
responses? (TABLE 1). In this section, we discuss the detection of mtDNA by TLR9 and
cytosolic inflammasomes, highlighting mechanistic aspects, open questions and disease
relevance.

pro-inflammatory TLR9 agonist.

TLR9 was the first TLR that was shown to sense nucleic acids, and it recognizes
hypomethylated CpG motifs in DNA in the endolysosomal compartment2?. TLR signalling
proceeds through the adaptor myeloid differentiation primary response protein 88 (MYD88),

Nat Rev Immunol. Author manuscript; available in PMC 2020 June 11.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

West and Shadel

Page 4

which activates mitogen-activated protein kinases (MAPKSs) and nuclear factor-xB (NF-xB)
to trigger inflammatory responses, or through interferon regulatory factor 7 (IRF7) to
enhance type | IFN responses in dendritic cells (DCs) or other immune cells. In 2010, two
studies from the Hauser laboratory reported that CpG motifs from mtDNA could trigger
TLR9 signalling to activate p38 and p42-44 MAPK activity, CXC-chemokine ligand 8
secretion and neutrophil chemotaxis3%:31, Furthermore, they reported the presence of
circulating mtDNA in the plasma of trauma patients and other individuals with non-
infectious injury, thus implicating mtDNA as a DAMP. A large body of literature supports
mtDNA as an endogenous TLR9 agonist (FIG. 2; TABLE 1), and circulating mtDNA has
been implicated in the TLR9-dependent inflammatory pathology of diverse diseases such as
rheumatoid arthritis, atherosclerosis, hypertension, acute liver injury and non-alcoholic
steatohepatitis (TABLE 2). Circulating mtDNA seems to correlate with increased
inflammatory phenotypes, which is also true for nuclear DNA, and there are potential
limitations to the assays used to quantify mtDNA3! (BOX 2). It is therefore difficult to
determine the relative contribution of circulating nuclear DNA versus mtDNA to
inflammatory pathology, and thus further investigation is warranted in many cases.

Several reports have shown that inflammation and disease can be promoted not only by
stimulation of TLR9 through an extracellular release mechanism but also by cell-
autonomous ligation of TLR9 by mtDNA. Oka et a/.32 demonstrated that in DNase I1-
deficient hearts, mtDNA is inefficiently degraded by autophagy and engages TLR9-mediated
inflammatory responses in cardiomyocytes to induce myocarditis and dilated
cardiomyopathy. Moreover, under hypoxic conditions, high-mobility-group protein B1
(HMGB1) and mtDNA can form a complex in hepatocellular carcinoma cells and bind to
TLR9 to enhance pro-tumorigenic signalling and inflammation33. This study did not
delineate how mtDNA, which presumably enters the cytosol first, is trafficked into the
endolysosomal compartment to engage TLR9. Autophagy is the most obvious route;
however, other pathways may have a role. For example, mitochondria-derived vesicles
(MDVs) — which have been recently shown to mediate the trafficking of mitochondrial
proteins to endosomes to facilitate antigen presentation — could in principle introduce
mtDNA into the endocytic machinery, where it could engage TLR9 (REFS 34,35). MDVs
might also provide a direct route for the release of mtDNA into the cytoplasm (FIG. 2).

mtDNA as an inflammasome agonist.

Inflammasomes are multi-subunit, cytoplasmic protein complexes that consist of receptor
and sensor molecules, the adaptor protein ASC and the inflammatory cysteine protease
caspase 1. Four receptors have been shown to form inflammasomes — including NOD, LRR
and Pyrin domain-containing protein 1 (NLRP1), NLRP3, NLR family CARD domain-
containing protein 4 (NLRC4) and absent in melanoma 2 (AIM2) — all of which are
activated by exogenous pathogen-associated molecular patterns (PAMPS) and/or endogenous
DAMPs released during necrosis or cellular stress36. Receptor clustering promotes
inflammasome complex assembly and caspase 1 activation, leading to processing of the
cytokines pro-interleukin-1p (pro-1L-1p) and pro-IL-18 into mature, secreted forms.
Production of mitochondrial ROS (mROS), release of mitochondrial DAMPs and altered
mitochondrial dynamics have been linked to inflammasome activation, although the exact
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mechanisms by which mitochondria engage NLRP3 and other inflammasomes remain under
investigation37.

Substantial evidence supports mtDNA as an endogenous agonist of inflammasomes (FIG. 2;
TABLE 1). A 2010 report by Nakahira et a/. was one of the first to link mtDNA to NLRP3
inflammasome activation, showing that depletion of the autophagy proteins beclin 1 and
LC3B in mouse bone marrow-derived macrophages (BMDMSs) results in enhanced caspase 1
activation and IL-1p and IL-18 secretion38. This response requires mROS as an upstream
activator of NLRP3, which they proposed leads to increased mtDNA release into the
cytoplasm to enhance IL-1f and/or I1L-18 secretion. Interestingly, they also observed
mtDNA release in wild-type BMDM s in response to ATP and lipopolysaccharide (LPS), but
not to urate crystals. Moreover, cytosolic mtDNA was detected in beclin 1- and LC3B-
deficient cells, even in the absence of ATP and LPS stimulation, which suggests that mtDNA
release selectively induces a subset of inflammasome agonists and is basally inhibited by
autophagy. Last, Nakahira et a/38 demonstrated a role for AIM2 in caspase 1 activation
downstream of mtDNA, showing that AIM2-deficient BMDM s secreted less IL-1 in
response to mtDNA transfection than control BMDM:s. Shortly thereafter, Shimada et a/.3°
demonstrated that NLRP3 binds mtDNA and suggested that the requirement for mROS in
this response is likely to be due to the preference of NLRP3 for oxidized mtDNA species.
Their work suggests that NLRP3 might not promote mtDNA release per se, but instead
stabilize it in the cytoplasm after release, although other reports have strengthened the notion
that mitochondrial damage and mtDNA release are amplified by NLRP3 inflammasome
activation?0:41, Several other research groups have implicated mROS and oxidized mtDNA
in NLRP3 inflammasome activation*243, and Jabir et a/** have recently provided evidence
of mtDNA binding to NLRC4 complexes. Furthermore, several studies have shown that
mtDNA-release-associated inflammasome activation is probably involved in several
pathogenic states, including atherosclerosis, age-related macular degeneration, mevalonate
kinase deficiency and certain bacterial infections (TABLE 2), which supports mtDNA as an
inflammasome agonist with implications for disease#3-46

Despite clear evidence of mtDNA involvement in inflammasome activation, many
mechanistic questions remain. First, it is unclear how mtDNA enters the cytosol, and the
specific sequences and structural features of these immunostimulatory molecules are
unknown. Some data indicate that mtDNA sequences several hundred base pairs in length
are released to activate inflammasomes3®. This suggests that membrane damage and
mitochondrial rupture is probably responsible for the activation, because although the gated
release of mtDNA of this length is possible, it seems unlikely (FIG. 2). Second, the precise
role of mROS in inflammasome activation is controversial*’. Oxidation of mtDNA by
mROS seems to be required, but ROS also have context-specific signalling and damaging
roles, so activation of other ROS-mediated inflammatory pathways might explain some of
the conflicting results®. Third, although complexes of NLRP3 and NLRC4 seem to bind to
mtDNA or oxidized mtDNA in co-immunoprecipitation experiments, it is not clear whether
the NLRs themselves bind directly or whether other factors are needed. Furthermore, the
role of autophagy and/or mitophagy in limiting inflammasome activation by removing
damaged mtDNA needs to be investigated further, as do the consequences of mitochondrial
damage and mtDNA release upstream and downstream of inflammasome-dependent caspase
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1 activation4042, Last, more effort is needed to unravel the dynamic physical association of
NLRs with mitochondria and how this imparts signalling specificity47+48.

MtDNA haplogroups and inflammatory disease.

Different human populations have acquired sequence polymorphisms in mtDNA that
characterize maternally inherited genetic haplotypes. Clusters of these single-nucleotide
polymorphisms (SNPs) define related mtDNA haplotypes, called haplogroups. Haplogroups
have enabled tracking of global migrations of human populations, and there is substantial
evidence that they are drivers of evolutionary adaptation and disease susceptibility. In
addition to these inherited SNPs, somatic mtDNA mutations accumulate with age. The
involvement of mtDNA in innate immune responses begs the question of whether mtDNA
haplotypes or somatic mtDNA mutations contribute to inflammatory pathology and/or the
increase in chronic inflammation with age. Although more investigation into this area is
certainly warranted, the concept has been supported by identifying that a mutation in the
mtDNA-encoded cytochrome B gene correlates with NLRP3 inflammasome activation in
people with fibromyalgia and that mtDNA haplotypes are associated with sepsis
susceptibility and other inflammatory pathways and disorders in humans*®-52, Therefore, we
envision that inherited mtDNA SNPs or acquired somatic mtDNA mutations could influence
inflammatory pathways directly by differentially affecting how mtDNA engages cytoplasmic
PRRs and/or by imparting functional changes in mitochondria that could influence
downstream inflammatory signalling events. These could include alterations in oxidative
phosphorylation and/or mROS generation, which might result in heightened immune cell
function on PRR ligation or pathogen infection.

MtDNA in type | interferon responses

In addition to triggering pro-inflammatory responses, recent reports have demonstrated that
both cytosolic and extracellular mtDNA engage PRRs and trigger type | IFNs and
interferon-stimulated gene (1SG) expression. Although some of the mechanistic details
warrant clarification, the identification of mtDNA as a type | IFN-inducing DAMP raises
important implications for understanding the pathobiology of infectious and non-infectious
diseases involving both mitochondrial stress and type | IFN signatures®3. In this section, we
discuss the emerging concept that mtDNA serves as an agonist of membrane-bound and
cytosolic PRRs regulating type I IFN responses such as those mediated by TLR9, cyclic
GMP-AMP synthase (cGAS) and stimulator of interferon genes (STING) (TABLE 1).

Intracellular mtDNA engages the cGAS-STING axis.

The cGAS-STING signalling axis has emerged as a crucial regulator of type | IFN
responses to both exogenous and endogenous DNAS3-55 (FIG. 3a). The enzyme cGAS
detects cytoplasmic DNA and generates the cyclic dinucleotide cGAMP, which serves as a
second messenger that binds to and activates STING6, Activated STING engages TANK-
binding kinase 1 (TBK1), which phosphorylates interferon regulatory factor 3 (IRF3) to
promote its homodimerization and translocation to the nucleus, where it induces expression
of IFNB and ISGs. Several research groups have demonstrated that cGAS functions as the
predominant sensor of viral and bacterial DNA in the cytoplasm of infected cells®6-0, In
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addition, cGAS-STING signalling plays a vital part in orchestrating type | IFN and
inflammatory responses to self DNA, driving pathology in type I interferonopathies, such as
Aicardi-Goutieres syndrome, as well as regulating inflammatory responses in the tumour
microenvironment®3:55.61-64_ Although most endogenous ligands for cGAS are presumed to
originate from nuclear DNA, several lines of evidence now suggest that mtDNA also serves
as a cell-intrinsic cGAS ligand in certain contexts (FIG. 3a).

White et a/5° and Rongvaux et a/.%6 showed that mtDNA released during BCL-2-like
protein 4 (BAX)- and BCL-2 homologous antagonist/killer (BAK)-mediated apoptosis can
engage cGAS-STING-IRF3 signalling and trigger type | IFN responses and expression of
ISGs. In the absence of caspase 9 or of both caspase 3 and caspase 7, mtDNA activates
cGAS to enhance type | IFN responses and ISG expression, suggesting that the apoptotic
caspase cascade functions to suppress cell-intrinsic, mtDNA-dependent type | IFN responses
during programmed cell death. Using immunoprecipitation assays, White er a/.° reported
that cGAS binds indiscriminately to mtDNA after permeabilization of the mitochondrial
outer membrane by BAX and BAK. This indicates that the entire mitochondrial genome is
exposed during apoptosis, which raises interesting questions regarding the mechanisms of
release and the possible accessibility of cGAS to inner mitochondrial compartments during
mitochondrial permeabilization.

Activation of the mitochondrial permeability transition (MPT) pore is associated with
release of linear mtDNA fragments up to 700 bp in length; thus, under certain
circumstances, it is possible that MPT is responsible for the liberation of mtDNA fragments
during apoptosis and/or mitochondrial stress®7-68. In agreement with an MPT-dependent
mechanism of mtDNA release, the vaccine adjuvant chitosan stimulates mitochondrial
stress, production of mROS and accumulation of cytosolic DNA to activate CGAS-STING
signalling and type | IFN responses in DCs®. Although this report does not definitively
demonstrate that mtDNA is the activating cGAS ligand, type | IFN and ISG expression
induced by chitosan exposure was inhibited by the addition of cyclosporin A, a compound
that was previously shown to block MPT and the release of fragmented mtDNA from
isolated mitochondria in vitrc®® (FIG. 3a). However, these findings must be interpreted
carefully as cyclosporin A can directly inhibit PRR and NF-xB signalling and thus its
modulation of type I IFN responses in this system could be independent of alterations to
mitochondrial permeability’%.71. The hypothesized role of the MPT pore as a direct conduit
for mtDNA release has been challenged recently and certainly requires more investigation’2.
The mitochondrial ATP synthase seems to be a major component of the MPT pore, and
might even be the actual pore’3-7>. Interestingly, TrwB, a member of the conserved FtsK/
SpolllE family of bacterial DNA transporters, is a DNA-dependent F1-ATPase that is
involved in transfer of DNA between bacteria during conjugation’®77. TrwB is structurally
related to mitochondrial F1-ATPase, and in light of findings that implicate mitochondrial
ATP synthase in MPT and MPT in mtDNA release, it is intriguing to consider that regulated
mtDNA release might be an evolutionary vestige of the bacterial origin of this organelle.
Future studies should clarify the role of MPT in mtDNA release and, perhaps more
importantly, define the mtDNA species that uniquely engage cGAS over other DNA sensors.
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Our recent work also provides support for mtDNA-dependent activation of the cGAS-
STING pathway (FIG. 3a). We found that cells and tissues from TFAM heterozygous ( 77am
*/=) mice — which have altered nucleoid morphology, presumably due to altered mtDNA
packaging — exhibit increased expression of ISGs and antiviral factors and are markedly
resistant to viral infection’8. The antiviral ‘priming’ phenotype in 77am*/~ cells is driven by
constitutive cGAS-STING-TBKI signalling to IRF3 and depends on the presence of
abnormal nucleoid structures and the stress that they impart. Treatment of 77am*!~ cells with
dideoxycytosine — which specifically inhibits mtDNA replication and promotes mtDNA
depletion — markedly decreased ISG expression and viral resistance, thus implicating
mtDNA-dependent cGAS activation in this genetic background. Moreover, we observed
enrichment of specific mtDNA fragments in the cytosol of TFAM-deficient fibroblasts and
macrophages. That is, we found that mtDNA sequences corresponding to the D-loop
regulatory region (BOX 1) were more prevalent in the cytoplasm of 77#am™'~ cells. It is thus
tempting to speculate that specific sequences derived from this three-stranded region of
mtDNA (BOX 1) might resist nuclease degradation and/or bind with higher affinity to
CGAS, thus rendering them more immunostimulatory. Moreover, mtDNA, and perhaps the
D-loop region in particular, is closely associated with the inner mitochondrial membrane and
inner—outer membrane contact sites, and thus this region of mtDNA may be more readily
released during mitochondrial membrane breakage, fission or fusion’®-81, It is also
noteworthy that the 7S DNA strand that forms the D-loop is constantly made and degraded,
which may be relevant to its role in innate immune or mitochondrial stress signalling®2.
Although our work does not reveal the precise mechanism by which mtDNA fragments are
liberated from mitochondria, 7#am*’~ cells have elongated mitochondria and the 1SG
response is dampened by knockdown of mitofusin 1 (MFNZ1), suggesting that altered
mitochondrial morphology or dynamics also contributes to mtDNA release. Altogether, our
findings further support the idea that mitochondrial stress can liberate cytosolic mtDNA that
serves as an endogenous cGAS ligand.

The physiological relevance of cGAS activation in 77am*/~ mice is not completely clear, but
our results suggest that mtDNA stress may contribute to innate immune activation and type |
IFN responses in various pathological states, from infectious diseases to cancer,
neurodegeneration and other mitochondria-related illnesses. With regard to pathogen-
mediated mtDNA stress, we and others have shown that cellular infection by herpes simplex
virus 1 (HSV-1) and HSV-2 causes mtDNA stress and a swift decline in mtDNA copy
number’8.83.84 A mutant HSV-1 strain lacking the gene responsible for mtDNA targeting is
less efficient at triggering antiviral responses and 1SG expression, possibly suggesting that
cellular monitoring of mtDNA homeostasis is an evolutionarily beneficial mechanism that
cooperates with canonical sensing of viral nucleic acids to fully engage antiviral innate
immunity’885_ Conversely, host type | IFN responses can enhance the pathogenesis of
certain microorganisms, such as Mycobacterium tuberculosis, and tuberculosis infection
triggers both cGAS-STING signalling and mitochondrial stress®’59:86-88 These findings
raise the interesting possibility that mitochondrial damage and mtDNA release may be a
strategy used by M. tuberculosis or other microorganisms to boost cGAS activation, increase
type I IFN responses and enhance intracellular survival (FIG. 3a).
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Extracellular mtDNA in type | IFN responses.

In addition to an intracellular role for mtDNA in triggering type | IFN responses, mtDNA
released from activated neutrophils can engage either the cGAS-STING pathway or the
endosomal TLR9 pathway on neighbouring immune cells89-°1 (FIG. 3b; TABLE 1).
Neutrophil extracellular trap (NET) formation — a process implicated in bacterial clearance
and sterile inflammatory diseases such as systemic lupus erythematosus (SLE) — results in
cell death and extrusion of neutrophil DNA and/or protein complexes into the extracellular
space. NETSs have recently been shown to contain mtDNA, thus raising the possibility that
extracellular mtDNA could contribute to type | IFN-mediated pathology observed in
individuals with SLE8%92 Consistent with this hypothesis, Lood et a/%° have shown that
triggering of neutrophils by ribonucleoprotein-containing immune complexes (RNP-1Cs)
increases mROS generation and mitochondrial translocation to the cellular surface to support
the formation of NETS that are enriched in oxidized mtDNA. The degree of oxidation of
NET DNA is a crucial determinant of its immunostimulatory potential. The expression of
type | IFNs and pro-inflammatory cytokines by human peripheral blood mononuclear cells
and splenic cells is potentiated by oxidation, and lupus-like disease is reduced in mice
treated with mROS scavengers. Interestingly, the response to mtDNA-enriched NETSs
requires STING but not TLR9-MYD88, indicating a crucial role for cGAS in this
response0, It is unclear how RNP-IC stimulation increases mROS production to oxidize
mtDNA, although one possibility may involve TLR7 activation of a signalling cascade
dependent on MYD88, TNF receptor-associated factor 6 (TRAF6) and evolutionarily
conserved signalling intermediate in Toll pathway, mitochondrial (ECSIT), which has been
shown to trigger mROS production from oxidative phosphorylation complex 193,

Oxidized mtDNA has also been shown to engage TLR9 on plasmacytoid DCs (pDCs)%*, and
Caielli er a/®! further implicated the release of oxidized mtDNA from neutrophils as a driver
of TLR9-dependent IFNa secretion by pDCs. They showed that neutrophils constitutively
extrude mtDNA-TFAM complexes (and selectively extrude other mitochondrial cargo) into
the extracellular space as a result of an attenuated mitophagy pathway, although they argue
that MDVs normally direct oxidized mtDNA to lysosomes for degradation®l. However, this
process is disrupted in neutrophils taken from individuals with SLE in a way that leads to
extrusion of extracellular oxidized mtDNA-TFAM complexes®l. These complexes then
activate the receptor for advanced glycosylation end products (RAGE; also known as
ACER)- and TLR9-dependent production of IFNa from pDCs to increase SLE pathology
(FIG. 3b). Although these observations raise the interesting possibility of neutrophil-specific
mechanisms for mitophagy and mtDNA turnover, the mechanisms governing vesicular
trafficking and packaging of oxidized mtDNA remain unclear. Nonetheless, these reports
strongly implicate extracellular mtDNA in the inflammatory and type | IFN-mediated
pathology of SLE and perhaps other autoimmune diseases (TABLE 2).

Conclusion and future perspectives

Mitochondria are multifaceted organelles that are key hubs of cellular metabolism and
signalling, but increasingly they are also being documented as important participants in
innate immune responses to pathogens and cellular damage. Mitochondria not only house
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machinery that is necessary for antiviral and inflammasome signalling but are also important
sources of endogenous DAMPSs. Specific characteristics of mtDNA, such as its relative
hypomethylation, unique structural features and heightened susceptibility to oxidative
damage, make it a potent DAMP that activates TLR9, NLRs, cGAS and perhaps other innate
sensors to trigger pro-inflammatory processes and type I IFN responses.

The evidence that immunostimulatory mtDNA can enter the cytoplasm, the extracellular
space and even the circulation, is robust, and it is perhaps straightforward to envision how
damaged or dying cells may release mtDNA into the extracellular milieu. However,
regulated and non-necrotic mtDNA release mechanisms have also been suggested, and
therefore additional studies are warranted to clarify the physiological and pathological
relevance of these pathways. For example, depletion of the mitochondrial fusion machinery
can decrease antiviral signalling and mtDNA stress-induced ISG expression, suggesting that
altered mitochondrial membrane fusion may promote the release of mtDNA and perhaps
other DAMPs*78. In addition, the intersection of autophagy and mitophagy pathways and
mtDNA release should be examined more closely. It is possible that incomplete
mitochondrial degradation by these pathways leads to mtDNA fragmentation and
cytoplasmic release, and substantial evidence supports the notion that macroautophagy is the
predominant mechanism for preventing cytoplasmic mtDNA accumulation3842, Last,
several reports suggest that mtDNA release is controlled by various mitochondrial pores or
associated regulatory proteins such as the MPT pore, the voltage-dependent anion channel,
hexokinase, BAX and BAK38:65.66.95 However, so far, no definitive genetic or biochemical
experiments have demonstrated the direct release of mtDNA by a mitochondrial pore.
Moreover, many of the proteins implicated thus far primarily regulate mitochondrial outer
membrane permeability, which in isolation does not provide a complete route for mtDNA to
transit from the matrix to the cytoplasm’2. Hopefully, genetic studies coupled with super-
resolution, live-cell imaging modalities will clarify the open mechanistic questions regarding
gated mtDNA release.

It is also curious why mtDNA release does not uniformly activate both pro-inflammatory
and type I IFN responses. Cytosolic mtDNA accumulation after activation of BAX and BAK
or mtDNA stress preferentially activates cCGAS-STING signalling and type | IFN responses,
with no observed or reported effects on inflammasome activation, IL-1p production or pro-
inflammatory cytokine expression82:66.78 This is somewhat surprising, as extra-
mitochondrial mtDNA should be accessible to bind to NLRP3 or AIM2, and could also enter
the endolysosomal compartment through autophagy to engage TLR9. It is therefore likely
that unique aspects of mtDNA, such as its length, conformation, sequence, degree of
oxidation or the precise location of its release, govern its differential agonist activities. More
research is required to define the unique mechanisms by which mtDNA engages each of
these sensors, and these efforts will be key to understanding how mtDNA activates specific
inflammatory profiles in various disease contexts.

Aberrant innate immune responses are being implicated in an ever-growing list of
pathologies, including autoimmune disease, metabolic syndrome, neurodegeneration and
cancer. Mitochondrial dysfunction and/or damage is a shared feature in nearly all of these
diseases, as well as in ageing, and thus it is interesting to speculate that the release of
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mitochondrial constituents may be a common factor in the propagation, and perhaps
initiation, of the inflammatory pathology of these conditions. Following the emergence of
mtDNA as an important mitochondrial DAMP (TABLES 1,2), future work to unravel the
mechanistic aspects of mtDNA release, sensing and resulting inflammatory pathology will
have broad implications for understanding the mitochondrial aetiology of human disease and
ageing, perhaps leading to new avenues for therapeutic intervention to improve human
health.
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Pattern-recognition receptors

(PRRs). Evolutionarily conserved receptors of the innate immune system that detect foreign
viral, bacterial and/or fungal constituents, as well as endogenous molecules released from
injured cells and tissues

Damage-associated molecular patterns
(DAMPs). Molecules that are exposed or released by injured, necrotic or dying cells and are
recognized by pattern-recognition receptors

Nucleoids
Functional mitochondrial DNA packaging complexes in the mitochondrial matrix that
consist of one or more mitochondrial DNA genomes and associated proteins

Transcription factor A, mitochondrial
(TFAM). A dual high-mobility-group box protein in mitochondria that promotes packaging
of mitochondrial DNA and regulates transcription from mitochondrial DNA promoters

Inflammasomes
Multi-protein complexes that activate caspase 1 to induce processing of pro-interleukin-1p
and pro-interleukin-18 into mature and secreted forms

Haplogroups
Clusters of single-nucleotide polymorphisms in mitochondrial DNA that define inherited
lineages

Cyclic GMP-AMP synthase
(cGAS). A cytosolic DNA sensor that catalyses the production of the second messenger
cyclic GMP-AMP (cGAMP) on binding to DNA

Stimulator of interferon genes
(STING). An endoplasmic reticulum-resident adaptor protein that binds to cyclic GMP-
AMP (cGAMP) to trigger type | interferon production
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Aicardi-Goutieres syndrome

A disease in which mutations in the cytosolic enzyme 3 repair exonuclease 1 (TREX1)or
other nucleases lead to the intracellular accumulation of endogenous nucleic acids,
triggering chronic type I interferon responses that cause debilitating autoinflammatory and
neurodegenerative pathology

D-loop
A stable three-stranded DNA structure in mammalian mitochondrial DNA that is caused by
premature termination of replication

Systemic lupus erythematosus

(SLE). A chronic autoimmune disease that is linked to aberrant type | interferon responses in
which autoantibodies specific for DNA, RNA or proteins ass.’sciated with nucleic acids
form immune complexes that accumulate in multiple tissues to cause pathology
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Box 1 |
Expression and replication of mitochondrial DNA

The nucleotide sequence of human mitochondrial DNA (mtDNA) was determined in
1981; it is a circular molecule of 16,569 bp, which encodes 37 genesZ. The 13 MRNAs
direct synthesis of an essential subset of oxidative phosphorylation complex subunits by
dedicated ribosomes in the mitochondrial matrix. The two ribosomal RNA components
(12S and 16S) and the requisite 22 tRNAs are encoded by mtDNA, whereas all additional
proteins needed for mitochondrial transcription, translation and mtDNA replication are
the products of nuclear genes and are co- or post-translationally imported into the
organelle. A major regulatory site of mtDNA (called the D-loop region) harbours the
promoters for transcription (the heavy-strand promoter (HSP) and the light-strand
promoter (LSP)) and is the origin of heavy-strand replication (Oy) and other conserved
cis-acting elements (see the figure).

Expression begins with transcription of almost full-length primary transcripts (both
mtDNA strands), which are then processed into the mature mRNA, ribosomal RNA and
tRNA species by various RNase enzymes. During the asymmetric mode of mtDNA
replication, transcripts from the LSP are used as primers for leading-strand replication,
the 3’ ends of which are generated by transcription termination and/or specific RNA
processing events downstream of the LSP and extended by mtDNA polymerase -y (Pol
). After DNA synthesis begins, Pol vy is efficiently stalled or terminated ~1 kb
downstream and the nascent DNA remains stably bound to the template, forming a stable
three-stranded D-loop structure — a hallmark of mammalian mtDNA, the precise
biological relevance of which still remains a mystery2-9. A productive replication event
requires synthesis past the 3 end of the D-loop and then priming of the lagging strand,
which occurs at multiple sites. One major site is called O, (origin of light-strand
replication), which is located ~12 kb away from Oy, and hence leading and lagging
strand replication can occur asynchronously, with large stretches of single-stranded DNA
(ssDNA) and RNA-DNA hybrids (shown in red) persisting as intermediates in the
process. Other models of mtDNA replication (for example, the ‘bootlace’ model) have
also been proposed®’.

In addition to the immunostimulatory aspects of the mtDNA molecule itself, transcription
and replication of mtDNA involves the formation of unique nucleic acid species that may
also engage host nucleic acid sensors. We propose that sSDNA, RNA-DNA hybrids and
perhaps other higher-order nucleic acid structures derived from mtDNA, such as
triplexes, R-loops and four-way junctions (not shown), may be detected by cyclic GMP-
AMP synthase (cGAS) or other pattern-recognition receptors (PRRs) of the innate
immune system.
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Box 2 |
Experimental and interpretive issues when analysing mitochondrial DNA

There has been an explosion of interest in mitochondrial DNA (mtDNA) as an
immunostimulatory and pro-inflammatory agent, and here we summarize some important
experimental considerations when studying mtDNA. First, PCR is commonly used to
detect and quantify cytosolic or circulating, cell-free mtDNA. It should be noted that
mtDNA has been transferred to the nucleus many times during evolution, and hence there
are hundreds of mtDNA sequences resident in mammalian genomes, some of which are
close to full length%. Without proper controls for nuclear contamination, these so-called
nuclear mitochondrial sequences (NUMTSs) will be amplified by PCR using mtDNA-
specific primers and can lead to false-positive results seemingly demonstrating that
mtDNA has been released into the cytoplasm or into circulation. NUMTS are often
mutated, and therefore, in the absence of controls to eliminate nuclear contamination, can
also lead to similar false conclusions that mtDNA mutations are involved in a given
process. Second, it is well-accepted that the release of mtDNA into the cytoplasm can
activate nucleic acid sensors such as Toll-like receptor 9 (TLR9) and cyclic GMP-AMP
synthase (CGAS). However, it should be noted that release per se has never been
demonstrated in a real-time assay. Release can only be surmised if highly purified
cytoplasmic fractions are generated that are devoid of nuclear (that is, NUMT)
contamination. The use of multiplexed mtDNA probes to ensure that the amplification of
all probes scales equally can help to circumvent these issues, as can the use of specific
primers or methods designed to avoid NUMT contamination as described?®-101, Even
this approach has the caveat that mitochondria can be preferentially broken during
preparation, and various experimental manipulations could lead to fragile mitochondria
that rupture more readily during fractionation when compared with controls. Either of
these scenarios can lead to the false conclusion that mtDNA is released into the
cytoplasm from the organelle itself /n vivo.

To circumvent these issues, many investigators have turned to using compounds such as
dideoxycytosine or ethidium bromide, which inhibit mtDNA replication and deplete
mtDNA, or have used cells that are completely devoid of mtDNA (rhoO cells) to more
conclusively implicate mtDNA in the responses of interest. Although these are valid
approaches, they too are not without caveats. For example, ethidium bromide is an
intercalating agent that also binds to RNA and DNA in the cytoplasm, which, in
principle, could directly influence the stability or detection of any nucleic acid,
mitochondrial or nuclear, by host pattern-recognition receptors. In addition, most rho0
lines are derived from immortalized cancer cells and are products of strong selection for
cells that can survive this harsh metabolic challenge, possibly resulting in populations
with adaptive nuclear mutations and/or dramatically altered innate immune responses.
Furthermore, rhoO cells, and those treated with mtDNA-depleting compounds for long
periods, are devoid of not only mtDNA but also all mtDNA-derived RNA and protein
species. These cells are deficient in oxidative phosphorylation and hence have completely
altered cellular metabolism, ATP production and mitochondrial reactive oxygen species
profiles. Thus, using rho0 conditions alone to conclude that a given phenotype is due

Nat Rev Immunol. Author manuscript; available in PMC 2020 June 11.




1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnue Joyiny

West and Shadel

Page 21

specifically to the absence of mtDNA is tenuous. Despite these caveats, mtDNA can be
confidently implicated in innate immune responses by pursuing the proper controls and
gathering multiple lines of evidence. However, better techniques to detect mtDNA /n situ
and visualize mtDNA release in real time are needed.
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Figure 1 |. Immunostimulatory features of mitochondrial DNA and related species.
The circular mitochondrial DNA (mtDNA) of mammals is depicted with nucleic acid

species generated during transcription and replication (BOX 1). Transcription of mtDNA
involves the divergent light-strand promoter (LSP) and heavy-strand promoters (HSPS),
which are shown at the top with the direction of transcription indicated by arrows. The two
polycistronic primary transcripts from each strand are shown in red. Because almost the
entire genome is transcribed in both directions, there is ample opportunity for double-
stranded RNA (dsRNA) to be formed, as depicted at the bottom, which could engage
retinoic acid-inducible gene I protein (RIG-1; also known as DDX58) or melanoma
differentiation-associated protein 5 (MDADS; also known as IFIH1) and trigger mitochondrial
antiviral signalling protein (MAVS). Replication of mtDNA initiates downstream of the LSP,
but is paused or terminated frequently, forming a stable ~1 kb nascent DNA strand that
remains associated with the template and displaces the non-template strand. This forms the
hallmark three-stranded D-loop structure of mammalian mtDNA, and may be the source of
cytosolic DNA that activates cyclic GMP-AMP synthase (cGAS). Other potentially unique
features of mtDNA and mtDNA-encoded proteins are indicated, as are the innate immune
sensors that we postulate might sense these unique features. rRNA, ribosomal RNA; TLR9,
Toll-like receptor 9.
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Figure 2 |. Mitochondrial DNA in inflammasome activation and pro-inflammatory responses.
Event 1: tissue pathology and cellular damage trigger necrosis and/or mitochondrial stress,

resulting in the release of mitochondrial DNA (mtDNA) or mtDNA-containing
microparticles into the extracellular milieu. Event 2: mtDNA in the plasma engages
intracellular Toll-like receptor 9 (TLR9)-myeloid differentiation primary response protein
88 (MYD88)-nuclear factor-xB (NF-xB) signalling on circulating leukocytes, resulting in
increased production of pro-inflammatory mediators, such as tumour necrosis factor (TNF),
interleukin-6 (I1L-6) and adhesion molecules. This enhances leukocyte differentiation and
extravasation into tissues and causes inflammasome priming (signal 1) in tissue-resident
cells. The NOD, LRR and Pyrin domain-containing protein 3 (NLRP3) inflammasome
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(signal 2) in tissue-resident cells may also be activated by mtDNA, resulting in caspase 1-
mediated cleavage of IL-1p and IL-18 to further amplify inflammatory responses. Event 3:
mtDNA that enters the endocytic pathway by endocytosis or through mitochondria-derived
vesicles (MDVs) can engage TLR9 on tissue-resident macrophages, resulting in increased
NF-xB signalling for pro-inflammatory gene expression (signal 1). Event 4: exposure to
cellular stress, inflammasome agonists or intracellular bacteria can trigger mitochondrial
damage and enhance production of mitochondrial reactive oxygen species (mROS), resulting
in the release of oxidized mtDNA (OX-mtDNA) into the cytosol to trigger NLRP3-, NLR
family CARD domain-containing protein 4 (NLRC4)- or absent in melanoma 2 (AIM2)-
dependent activation of caspase 1 (signal 2), which increases the processing and secretion of
mature IL-1p and IL-18, further enhancing tissue inflammation and pathology (event 5).
Event 6: increased expression of sequestosome 1 (SQSTMZ1; also known as p62) through
NF-xB signalling increases mitophagy to clear damaged mitochondria and dampen
inflammasome activation.
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a | Event 1: initiation of apoptosis results in the BCL-2-like protein 4 (BAX)- and BCL-2

homologous antagonist/killer (BAK)-dependent release of mitochondrial DNA (mtDNA),
which triggers cyclic GMP-AMP (cGAMP) synthase (cGAS) activation in the absence of
apoptotic caspase 9 or both caspase 3 and caspase 7. Event 2: herpes simplex virus 1
(HSV-1) infection and mitochondrial expression of the HSV-1 protein UL12.5, or decreased
expression of transcription factor A, mitochondrial (TFAM), results in mtDNA instability
and release of fragmented mtDNA into the cytosol to activate cGAS. Events 3 and 4:
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exposure to the adjuvant chitosan, or infection with intracellular bacteria such as
Mycobacterium tuberculosis, results in mitochondrial damage, increased levels of
mitochondrial reactive oxygen species (MROS) and release of oxidized mtDNA (OX-
mtDNA) into the cytosol to engage cGAS. Cyclosporin A, an inhibitor of the mitochondrial
permeability transition (MPT) pore, can decrease CGAS activation by chitosan. On cGAS
activation, cGAMP triggers conformational changes of the endoplasmic reticulum-resident
protein stimulator of interferon genes (STING), which engages TANK-binding kinase 1
(TBK1) to activate interferon regulatory factor 3 (IRF3) and/or IRF7 to stimulate
transcription of type | interferons (IFNs) and interferon-stimulated genes (ISGs). Type |
IFNs can then activate the type I IFN receptor (IFNR) in an autocrine and/or paracrine
manner to engage the interferon-stimulated gene factor 3 (ISGF3) complex, which consists
of signal transducer and activator of transcription 1 (STAT1), STAT2 and IRF9. The ISGF3
complex further enhances ISG expression by binding to interferon-stimulated response
elements (ISRES) in the promoters of these genes. Event 5: damaged mitochondria targeted
to mitophagy or mtDNA in mitochondria-derived vesicles (MDVs) may also engage Toll-
like receptor 9 (TLR9) in lysosomes if the mtDNA they contain is not completely degraded,
resulting in engagement of the type | IFN response. b | Event 1: ribonucleoprotein-
containing immune complexes (RNP-ICs) are internalized by neutrophils, where they
stimulate a TLR7-dependent increase in mROS production, which enhances mtDNA
oxidation and mitochondrial re-localization to the plasma membrane. Event 2: neutrophil
extracellular traps (NETSs) containing OX-mtDNA can be taken up by neighbouring
conventional dendritic cells (DCs) or plasmacytoid dendritic cells (pDCs), resulting in
engagement of the cGAS-STING axis to increase expression of type | IFNs, ISGs and pro-
inflammatory cytokines. Event 3: in addition, TFAM-OX-mtDNA complexes can be
endocytosed by DCs in a receptor for advanced glycosylation end products (RAGE)-
dependent fashion to engage endosomal TLR9 and enhance type | IFN and inflammatory
responses. Event 4: anti-mtDNA immune complexes can also engage Fcy receptors (FcyRs)
to stimulate endosomal TLR9 signalling. All outcomes enhance local and/or systemic type |
IFN and inflammatory responses to promote pathology in systemic lupus erythematosus
(SLE) or other autoimmune or autoinflammatory diseases. ECSIT, evolutionarily conserved
signalling intermediate in Toll pathway, mitochondrial; IL-6, interleukin-6; MY D88,
myeloid differentiation primary response protein 88; NF-xB, nuclear factor-xB; OXPHOS,
oxidative phosphorylation; TNF, tumour necrosis factor; TRAF, TNF receptor-associated
factor.
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