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Abstract

Cognition and behavior emerge from brain network interactions, such that investigating causal 

interactions should be central to the study of brain function. Approaches that characterize 

statistical associations among neural time series – functional connectivity (FC) methods – are 

likely a good starting point for estimating brain network interactions. Yet only a subset of FC 

methods (“effective connectivity”) are explicitly designed to infer causal interactions from 

statistical associations. Here we incorporate best practices from diverse areas of FC research to 

illustrate how FC methods can be refined to improve inferences about neural mechanisms, with 

properties of causal neural interactions as a common ontology to facilitate cumulative progress 

across FC approaches. We further demonstrate how the most common FC measures (correlation 

and coherence) reduce the set of likely causal models, facilitating causal inferences despite major 
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limitations. Alternative FC measures are suggested to immediately start improving causal 

inferences beyond these common FC measures.

Introduction

The basic physical attributes of brain networks have been extensively characterized, yet the 

functional units (e.g., neurons, brain regions) and the dynamics that produce cognition and 

behavior remain poorly understood. We suggest that a focus on brain network interactions – 

often termed functional connectivity (FC) – may be a primary means of understanding brain 

function across these levels of organization, by identifying interactions at each level and 

ultimately how those interactions produce cognition.

Yet FC as it is currently defined suffers from a variety of theoretical and practical issues that 

limit its ability to advance neuroscientific understanding. In this Perspective we identify 

these issues and propose a framework to begin remedying them (Table 1). This framework 

will appear familiar to experienced FC researchers, as it incorporates insights and best 

practices from FC research approaches (including “effective connectivity”) and beyond. 

Nevertheless, we expect it to be useful for both novice and expert FC researchers, due to 

insights gained from integrating across typically-separate areas of FC research. We build on 

previous discussions on this topic1–6 with the goal of making this debate more accessible 

and suggesting a novel way forward. As interactions among neural units are central to 

neurocognitive function, we anticipate fundamental improvements in FC theory and 

methodology will have widespread benefits for advancing neuroscience.

Perhaps the most fundamental issue with FC in its current conceptualization is how it is 

typically defined: as the statistical association between measured brain signals7,8. This is 

problematic because it fails to distinguish target theoretical properties of interest from the 

methods used to infer those properties. This is akin to defining the moon as the photons that 

hit one’s retina when looking at a particular location in the sky (a common method for 

detecting the moon), rather than as a physical object with a variety of properties consistent 

with the laws of physics (theoretical properties of interest). In other words, it confuses the 

map with the territory – a classic logical fallacy9 that impedes scientific progress. As these 

are issues with fundamental scientific inferences the framework (Table 1) is applicable to a 

variety of scientific problems, though we emphasize its application to FC research here.

Generalizing insights from existing FC approaches1,2, we propose that the ultimate 

phenomenon of theoretical interest in all FC research is understanding the causal interaction 

among neural entities. This clearly runs counter to the typical definition of FC as the non-

causal “statistical association” between measured brain signals. Nevertheless, it is in line 

with the kinds of inferences that should be sought in FC research, given that a physical 

means of interaction between neural entities is implied by the term “connectivity” (as in 

structural/axonal connectivity). Further, FC researchers already work within a causal 

inference framework, whether they realize it or not. For instance, FC is often used to identify 

sets of correlated brain regions that are then commonly treated as real causal entities 

(physical systems) known as large-scale brain networks or brain systems10–13. Additionally, 

when it was discovered that in-scanner motion was strongly associated with fMRI-based FC 
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estimates, this was generally treated as a causal problem, with motion as an alternate causal 

path confounding proper FC inference14–16.

This tendency to already interpret FC measures in a causal framework suggests it would be 

natural to elevate causal reasoning from implicit to explicit in FC research. The kinds of 

causal inferences that can be made using FC methods is often limited, however, because 

simple statistical measures such as coherence and Pearson correlation allow ambiguous 

causal paths among measured neural signals. Despite their limitations, we illustrate below 

how even simple FC measures can be informative (albeit often weakly) with regard to causal 

inferences. Notably, FC measures labeled “effective connectivity” can often enable more 

precise causal inferences2,6, though they are not without their own limitations (see below). 

Despite these limitations (and in contrast to some others17) we view any narrowing of the 

space of likely causal graphs as progress toward the ultimate goal of strong causal inferences 

in FC research.

Our proposal to shift the focus of FC from association to causal interaction derives from 

many considerations, though in large part from the increased confidence in defining 

causality and making causal inferences that has coincided with what has been called the 

“Causal Revolution” occurring over the past 25 years18–22. Central to this increased 

confidence have been demonstrations of new methods to make valid causal inferences from 

observational data, expanding causal inference beyond the limited purview of randomized 

controlled experiments19,23.

Especially transformative to progress in defining causality is the realization (building on 

centuries of work in philosophy24) that counterfactuals (e.g., experimental control) can be 

used to conclusively define causality19,25. As a particularly clear example of counterfactual 

causality in science, the concept of a controlled experiment implicitly invokes this definition: 

Comparing a treatment condition (with the cause present) with a control condition (with the 

cause absent) informs us what would have happened in the treatment condition had the 

treatment not been applied. Accordingly, we define the “cause” of an observed neural event 

(the “effect”) as a preceding neural event whose occurrence is necessary to observe the 

effect. Causality can thus be demonstrated by observing a system under two conditions, 

differing only in the presence or absence of the causing event. Note that this focus on neural 

interactions is a more circumscribed definition of causality than the cognition-focused 

causation typically used in lesion and stimulation studies in neuroscience (i.e., that activity 

in a neural entity is necessary for a cognitive function). Even with this more modest goal for 

causal inference, making such inferences is complicated by methodological limitations. 

Making progress despite these limitations is a major focus of this Perspective.

One solution to the problems faced by FC research might be to abandon the term “functional 

connectivity” altogether – an idea espoused by at least one of the authors (PAVS). Going 

beyond issues with terminology, our primary goal in developing the current framework is to 

create a unifying conceptualization of FC, accommodating both methodological and target 

theoretical properties using the logic of causal inference. One prominent divide among FC 

methods is the supposed distinction between “effective connectivity” and other FC 

approaches7. Unfortunately, there is some confusion in the field over how to define the 
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concept of effective connectivity (although attempts have been made to address this1,2), with 

emphasis sometimes placed on the target theoretical property of whether a connection is 

direct vs. indirect (e.g., via a third brain region)7,26,27 or whether a connection is directed vs. 

undirected/bidirectional2,7,28. We seek to remedy this situation by placing all such methods 

under the umbrella of FC, with a systematic taxonomy that clarifies what theoretical 

properties each FC method targets, and hence what aspects of brain network interactions 

each is capable of characterizing.

Another major goal of developing an FC-focused framework is to bring best practices for 

grounding FC findings in physical mechanisms into focus. Bridging the gap between FC 

observations and physical mechanisms is clearly easier in some cases (e.g., invasive animal 

models) than others (e.g., noninvasive methods such as fMRI and EEG). This is in part due 

to the indirect nature of methods like fMRI and EEG, which introduces ambiguities into 

interpretation (Figure 1). We frame this problem as a matter of mapping observations to a 

hypothesis search space29,30 consisting of different possible causal interactions among 

neural entities, with each observation constraining the likelihood of each hypothesis. With 

proper validation of FC methods, we suggest it is possible to produce minimally ambiguous 

interpretations, especially when multiple FC methods are combined to create a convergent 

interpretation. The framework builds on recent simulation-based and empirical validations of 

FC measures31–33 to suggest a way forward for FC method validation, with the goal of 

making accurate inferences about brain function. We expect that constraining the hypothesis 

space by seeking convergence across validated methodologies and replications will bring us 

towards a mechanistic understanding of brain network functions34.

In the following sections we begin with a summary of the proposed framework. Remaining 

issues with FC interpretation are then detailed, along with a general strategy for validating 

mechanistic interpretations of FC methods to help overcome these issues. Suggestions for 

how to apply these principles to commonly used FC methods (fMRI, EEG, and intracranial 

recordings) are also provided as Supplementary Material. Together, the proposed framework 

integrates best practices from across FC research to provide a way toward achieving more 

valid inferences of the FC properties that are of theoretical interest to the neuroscience 

community.

Summary of the proposed framework

We propose a framework that incorporates best practices and insights from diverse areas of 

FC research, targeting three key gaps: 1) the need for an account of FC as both a theoretical 

and methodological construct; 2) the need to reconcile functional (and effective) 

connectivity approaches within a single theoretical ontology grounded in biological 

mechanisms; and 3) a systematic means of validating theoretically-meaningful 

interpretations of results obtained using FC methods.

The FC framework is a conceptual structure within which a taxonomy of FC methods and 

relevant inferences can be detailed (see Box 1 for definitions of key terms). The taxonomy 

consists of a series of mappings, each between a methodological procedure and the 

inferences that can be based on it (Figure 2A). These inferences are built from three classes 
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of property: 1) Target theoretical properties, representing the potential scientific purposes of 

a method and what inferences of theoretical importance it can support; 2) Methodological 
properties, representing limitations and enhancements imposed by the method that are not of 

direct theoretical interest for understanding the brain; and 3) Confounding properties, 

alternate (often non-neural) causes of observed effects, which must be addressed to make 

valid inferences.

As a brief illustration of this framework, consider a statistically significant Pearson 

correlation between two brain regions based on resting-state fMRI data. A target theoretical 
property could be whether the two regions causally interact at rest. The target theoretical 
properties that can be validly targeted by a given method are limited by methodological 
properties as well as confounding properties. For instance, methodological properties 
indicate several ambiguities when using Pearson correlation with fMRI data, which 

undermine support for the inference. Specifically, it is ambiguous whether the potential 

interaction, mediated via action potentials over axons, is direct or involves other regions. 

The direction of the interaction is also ambiguous, as are other properties (e.g., its temporal 

frequency). Finally, the target inference can be made only when confounding properties 
inconsistent with the target theoretical properties have been controlled for (e.g., correction 

for motion artifacts). Given these properties, a statistically significant FC result would 

support the following inference (which is somewhat weaker than the target inference): The 

two regions interact (directly or indirectly, with ambiguous directionality), and/or share 

mutual interactions with other regions, during resting state. See Supplemental Material for 

additional details. Despite the weakness of this inference, it informs our understanding of 

these two regions by revealing that some causal models are more likely than others (see 

Figure 2). It also points toward the need to use and/or develop better methods for 

strengthening the intended causal inference.

We next describe how this framework addresses the three core problems with FC research 

mentioned above.

Problem 1: The need for an account of FC as both a theoretical and methodological 
construct

Every methodological approach should have one or more theoretical targets if it seeks to be 

explanatory rather than just descriptive. Unfortunately, the FC literature has often failed to 

identify the target theoretical construct, or has inferred target theoretical constructs beyond 

those permitted by methodological properties of a given FC approach. This has led to a 

tendency to interpret the results of a specific approach in terms of biological mechanisms, 

when that approach does not warrant this level of interpretation. We address this by framing 

FC in terms of mapping empirical results to target theoretical properties via methodological 

properties. This allows us to (1) reduce the temptation to overinterpret findings, and (2) 

identify the limitations of a given methodology with respect to its ability to support 

inferences targeting biological mechanisms.

Two uses of FC that have recently become popular – dynamic FC and FC-behavior 

associations – are particularly illustrative of this problem. In the case of dynamic FC, time-

varying changes in FC are often characterized35,36 without considering the mechanisms 
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driving the FC measures (and their changes) to begin with. Similarly, FC-behavior 

associations have revealed potential insights into the neural basis of cognition37–39, yet 

incomplete understanding of the mechanistic basis of FC also limits the utility of this 

approach. It will therefore be important to advance causal understanding of FC measures so 

results involving dynamic FC and FC-behavior associations (along with other uses of FC 

methodology) provide mechanistic insight into brain function.

It is worth noting that “effective connectivity” approaches, such as dynamic causal 

modelling (DCM), Granger causality, or Bayesian search methods, are typically clearer 

about their target theoretical inferences. For instance, DCM restricts FC-related inferences to 

a particular structural graph and a specific form of directed FC among a set of nodes40. 

Adding assumptions to their modeling of FC helps link observations to these target 

theoretical properties. However, these assumptions are often by necessity unrealistic or 

overly simplistic – for instance, only incorporating a small subset of brain regions (and 

failing to account for extraneous influences), evaluating only unrealistically sparse networks, 

or modelling properties such as connection weight as a single global parameter41–43. The 

current framework seeks to expand the sort of reasoning underlying effective connectivity 

approaches to the whole of FC-related research, while acknowledging an inherent trade-off 

between the competing imperatives of accounting for complexity and potential confounds on 

the one hand, and modelling the nervous system in its entirety on the other.

Problem 2: The need to integrate functional (and effective) connectivity approaches into 
a single framework

Sixteen years ago the classic paper “The elusive concept of brain connectivity”8 made a 

strong case that connectivity research was not a cumulative scientific enterprise. According 

to that paper, “Until it is understood what each definition means in terms of an underlying 

neural substrate, comparisons of functional and/or effective connectivity across studies may 

appear inconsistent and should be performed with great caution.”8. The current framework 

thus seeks to develop a “common currency” for comparison of results across different FC 

measures. This will allow corroboration of theoretically important results across FC 

approaches, which may together constrain neurocognitive theories (see Figure 2A).

We agree with Horwitz8 that it is essential to understand the mapping between each FC 

measure and its neural substrates. As measurements entail different levels of ambiguity, it is 

important to be explicit about the limitations and assumptions a particular method requires 

when making such a mapping. Accordingly, our proposed separation of FC properties into 

three distinct classes (target theoretical, methodological, and confounding) allows inferences 

about causal interactions to be made at various levels of ambiguity and uncertainty.

We take the position that all FC measures are useful provided they reduce the hypothesis 

space – the vast set of network configurations that are possible among the theoretical target 

properties. Thus, rather than seeing ambiguities about target theoretical properties as 

evidence that a given FC measure is useless or flawed, we focus on what information it 

provides that helps us constrain neurocognitive theory. For instance, a consistent non-zero 

Pearson correlation between two regions’ fMRI time series increases the probability of a 

causal interaction existing between those regions, ambiguities about the direction and 
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directness of the relationship notwithstanding (see Figure 2B,C). Notably, this strategy is 

analogous to another that was successfully employed when available evidence was typically 

ambiguous, in developing and validating the theory of evolution by natural selection44.

The proposed framework seeks to enumerate a common set of target theoretical FC 

properties, based on key properties of neural systems. These target theoretical properties are 

based on the standard model of neural interaction as described by Hodgkin and Huxley45 

and elsewhere46,47. We assume that FC measures seek to infer some aspect of causal 

interaction among neural entities, mediated by action potentials via synaptic transmission. 

We therefore emphasize target theoretical properties that refer to aggregate action potentials 

and postsynaptic potentials, as well as the various means to alter the relationship between 

them (e.g., synaptic strengths, timing). Notably, several researchers have begun combining 

FC measures to constrain causal graphs of brain region interactions2,48,49, demonstrating 

that converging multimethod FC evidence can be used to constrain the hypothesis space (see 

Box 2). A similar approach has also been developed to improve inferences about changes in 

Pearson correlation-based FC via combination with a simple covariance-based FC measure4.

Problem 3: The need to validate FC methods to improve mapping of FC results to 
properties of theoretical interest

Improved validation of FC methods would substantially increase our ability to make strong 

FC-related theoretical inferences. This reflects the core of the framework: clear mappings 

between FC method-driven observations and target theoretical inferences. Simulation-based 

and empirical validations serve to establish these mappings, which can then be generalized 

to make inferences in new, theoretically-informative scenarios.

We expect the proposed framework to advance efforts to validate FC methods in several 

ways. First, it clarifies what needs to be validated by explicitly stating the target theoretical 

properties that should be detected by a given FC method. Second, the framework makes it 

clear that confounding variables need to be accounted for before a given method can be 

considered “validated” – ready for use to make target inferences with empirical data. Finally, 

we flesh out the framework’s use of mappings between observation and theoretical targets to 

develop strategies for FC method validation.

Details of the FC mechanism framework

Step 1: Identifying target theoretical properties

A mechanism refers to a causal chain of events, and thus for FC our target theoretical 

properties are, minimally, causal interactions between neural entities. Ideally, a causal 

interaction should be described as having directionality, directness, and weight. 

Directionality refers to the direction of information/activity flow; given neural entities A and 

B, it specifies whether activity passes from A to B, B to A, or in both directions. Directness 
refers to the number of relays required for activity to pass between A and B; in other words, 

whether it is a direct (monosynaptic) connection or an indirect (polysynaptic) one. Weight 
refers to the strength of the connection; in other words, how much the signal in A influences 

the signal in B, as well as whether it is excitatory or inhibitory. In practice, the majority of 
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methods currently used to observe neural activity in humans lack sufficient temporal and/or 

spatial resolution or coverage to support a full causal description. Yet, they remain useful for 

supporting weaker causal inferences that might be ambiguous with respect to directionality, 

directness, or weight.

For FC approaches, we can define “neural entity” as a spatially contiguous region of neural 

tissue generating a signal (Box 1). This encompasses a range of possibilities: small 

anatomical entities, such as neurons or microcolumns, or larger parcels of neural tissue, 

whose boundaries are determined cytoarchitectonically or otherwise10,50–52. Often, 

theoretical sources such as current dipoles53, units of a reference grid such as voxels, or the 

locations of EEG or intracranial electrodes are also treated as neural entities. In order to 

support inferences about biological mechanisms, however, each neural entity should 

describe how its time series integrates action potentials and/or post-synaptic potentials over 

time and space (Figure 1).

Step 2: Identifying methodological properties

It is crucial to be explicit about the methodology employed to obtain the evidence used to 

support target inferences. As outlined in Table 1, this includes several important properties 

inherent to any observational approach. The temporal and spatial resolution of the sampling 

method constrain how interactions are inferred and how neural entities are defined, 

respectively. In order to assess temporal precedence, for instance, it is critical to have a 

sufficient sampling rate to determine the order in which neural entities are activated. 

Similarly, if the sampling rate is low compared to the connection latency, it can become 

difficult to determine the directness of observed interactions. Spatial sampling is more 

critical for the definition of neural entities. This refers to both spatial coverage and spatial 

resolution; if sensors are too sparsely or too focally distributed there is a risk of failing to 

capture the complete set of neural entities (and potentially fall victim to confounding; see 

Box 2).

Because the goal of FC approaches is to elucidate biological mechanisms, it is essential to 

specify how observations map onto their biological causes. This mapping can first be done 

abstractly, by defining the observational pathway through which neuronal activity (action 

potentials or post-synaptic potentials) maps via sequential levels to the sensors sampling 

their (typically aggregate) activity (see Figure 1 for an overview). The observational 

pathway can then inform the observation equation1, which formally specifies how neural 

entity states generate the observed signal for a given modality. These equations can range 

from simple (e.g., spatiotemporal averaging of local field potentials) to highly detailed (e.g., 

layer-resolved biophysical neural population models)54. They depend largely on the nature 

of the recording apparatus, and represent an integration of existing theoretical knowledge 

and methodological assumptions about the signal generating process. The physical processes 

involved in the blood-oxygenation-level-dependent (BOLD) signal55,56, for instance, are 

clearly distinct from those generating an extracellular local field potential recorded from an 

implanted electrode57. The observation equation should specify these details, ideally 

indicating aspects of the observational pathway that remain unknown or are ambiguous.
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Finally, we focus on the importance of assumptions for describing and interpreting FC 

approaches and their results. We propose as a key aspect of this framework the enumeration 

of all critical assumptions required for an FC approach. Specifically, assumptions should be 

made explicit if they are judged to: (1) be essential for interpreting a methodological result 

or inference; and/or (2) be uncertain or have the potential to be contentious. Assumptions 

provide clear focal points for critical discussion, and can be associated either with the 

analytical methodology, or with the observation equation. For example, in fMRI-based FC 

studies it is typically assumed that the hemodynamic response function (describing 

neurovascular coupling) is homogeneous across the brain, or across individuals. The validity 

of these assumptions is a matter of ongoing debate in the field, however58–63, and it is 

therefore important to include them when describing an fMRI-based FC measure requiring 

them64. In general, distinguishing assumptions from the technical details of a given approach 

can greatly facilitate dialogue addressing that approach and its findings, and failing to do so 

risks obscuring that dialogue.

Step 3: Identifying confounding properties

We also want to identify all uncontrolled factors that may confound our causal inferences. 

Formally, a “confounder” refers to any variable that influences two or more variables of 

interest such that spurious associations arise65. For FC analysis, such confounders fall into 

one of several categories. First, confounders can be non-neural factors that introduce 

correlated noise simultaneously into multiple neural entities. Examples include 

physiological artifacts, head motion, and environmental noise. Second, violations of 

methodological assumptions can also result in confounds. Shared variance between neural 

entities, for instance, can arise from spatial smoothness induced by image reconstruction, or 

as a result of source signal mixing in EEG/MEG, which cannot be completely removed 

through current source localization approaches66. Finally, confounds can arise from 

observed or unobserved neural entities influencing two or more other neural entities (see 

Box 2).

Having identified potential confounding properties, it is equally important to specify how 

they will be addressed. Ideally, this would be done by obviating potential confounds prior to 

data collection. Head motion might be minimized, for example, by means of a head 

restraining apparatus. Confounding variables can alternatively be accounted for by 

measuring them directly, and removing their portion of the variance from the neural time 

series. Physical factors such as head motion or physiological artifacts are commonly 

addressed in this manner. In cases where confounding factors cannot be directly measured, 

they can also be isolated via signal decomposition approaches such as independent 

component analysis, for which artifactual components can be identified and their variance 

removed67–71.

If a confound is not addressed via methodological properties, this should be reflected as an 

ambiguity in the target theoretical properties. This is critical, since the theoretical inference 

drawn from a given observation must both be supported by its methodological properties, 

and properly address its confounding properties. This implies that, in the absence of 
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effective control of confounds, we should modify our inferences to explicitly state the 

possibility that observed effects are due to confounding.

Looking forward: The central role of FC method validation

Valid mappings from FC observations to theoretical properties of interest are critical for 

gaining mechanistic insights. In this section we provide a systematic approach to validate FC 

methods (Figure 3). Validating mechanistic interpretations of an FC measure involves: (1) 

identification of a series of ground-truth theoretical and confounding conditions, using either 

simulation or empirical experiments; and (2) tests of the FC measure for sensitivity to the 

ground-truth conditions. This can be considered as a series of “forward mappings”, from 

theoretical/confounding properties to FC observations. For example, if a manipulation of the 

theoretical properties in a particular network configuration can be detected by an FC 

method, it can be said to be sensitive to that manipulation. Identification of many such 

forward mappings allows us to quantify our confidence that the method can capture a given 

property; in other words, it allows us to infer (3) the selectivity of the FC measure for those 

properties (a “backward mapping”). This is the mapping of interest for future studies: from 

FC observation to target theoretical properties.

It is critical that the set of sensitivity tests include both plausible confounding properties and 

target theoretical properties of interest. Without sensitivity testing of confounding properties 

– along with strategies to minimize or eliminate confounds if sensitivity to them is 

established – there can be only minimal confidence in the validity of mechanistic 

interpretations of FC observations. In turn, without sensitivity testing of theoretical 

properties of interest there can be no valid basis for inferring causal mechanisms from FC 

observations.

As a simple example of utilizing this validation framework, consider testing of Pearson 

correlation in a neural mass simulation of fMRI data. Spiking in neural entity A directly and 

bidirectionally connected to neural entity B causes a non-zero Pearson correlation in the 

simulated fMRI signal (sensitivity test 1). However, spiking in neural population B also 

causes non-zero Pearson correlation (sensitivity test 2). From these two tests, we infer the 

selectivity of the mapping from FC observation to target theoretical properties: that 

observing an fMRI Pearson correlation only allows us to infer that an interaction likely 

occurred between A and B with ambiguous directionality. In practice, more sensitivity tests 

should be included to test for confounding properties and interactions with additional neural 

entities.

There are a wide variety of strategies that can be used for sensitivity tests during FC method 

validation, each with strengths and weaknesses. The basic validation strategies we focus on 

here are: (1) detailed simulations; (2) abstract simulations; and (3) empirical validations.

Relative to empirical studies, detailed simulations have the advantage that a large number of 

sensitivity tests can be conducted across the space of possible ground-truth conditions. On 

the other hand, these simulations typically require many more assumptions. This reflects the 

complexity of the nervous system; both because our knowledge is imperfect and for 
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computational tractability we must make approximations. This is true even of detailed 

neuron-level simulation studies46,47,72,73, for which numerous assumptions are typically 

necessary to fill gaps in current knowledge and produce plausible neural interactions. One 

way to overcome this limitation is to vary model parameters over a range of plausible values 

(e.g., action potential conduction delays of 10-100 ms in 1 ms increments) to ensure the FC 

method remains valid over this range. Another approach is to focus a model’s detail on 

properties that are most relevant to the method being validated. For example, modeling 

individual ion channels may be useful for validating a calcium imaging-based approach, but 

not for an EEG-based approach.

An alternative validation strategy is abstract simulations, for which parameters are reduced 

to abstract or simplified equivalents31,74–77. For instance, rather than modeling every neuron 

in an entity, one can simulate a “neural mass” that generates averaged neuronal activity. This 

can have multiple advantages. First, it is easier to intuitively understand abstract models than 

detailed ones. Second, abstract simulations are much more computationally efficient, which 

is especially important for large-scale simulations and sensitivity tests across a wide range of 

ground-truth conditions. Third, an abstract simulation can be equivalent to generalizing over 

many parameters in a detailed simulation, increasing confidence in the generalizability of 

the validation results. Despite these advantages, a substantial limitation of abstract 

simulations is the possibility that an omitted detail would change the outcome of the 

simulation, resulting in inaccurate sensitivity tests. This could be the case, for instance, if an 

abstract model were to assume a single large conduction delay between neural units when a 

given FC method is actually not sensitive to small but realistic conduction delays.

The best strategy to minimize assumptions is to use empirical validation. The absolute ideal 

would be to know the ground truth in the system of interest (e.g., the human brain) for the 

context about which you want to make FC inferences. In practice, however, empirical 

validation involves the limited set of scenarios in which we can establish (or strongly expect) 

the ground truth and test the sensitivity of an FC method to that ground truth32,78,79. The 

validations in such limited scenarios are then expected to generalize to other scenarios of 

interest in which ground truth is unknown. As an example, a recent study used the 

established “memory reactivation” effect in which the portion of sensory cortex representing 

a sensory experience is reactivated along with that memory80, to establish a ground-truth 

reversal of directed FC between visual and auditory cortices in humans32. This resulted in 

evidence that a variety of fMRI and MEG FC measures are sensitive to the direction of 

interaction among cortical regions32. This validation involved only minimal assumptions 

relative to simulation-based validation, yet unlike simulations it was limited to only a pair of 

experimental conditions (involving two brain regions). Other empirical validations of FC 

measures have involved animal models77,81–84, allowing for more extensive ground-truth 

manipulations, but limited by the untested assumption that findings generalize to the human 

brain.

There have been multiple successful empirical tests for confounding properties. For instance, 

several strategies have been proposed to establish the empirical ground truth of head 

movement as a confound for Pearson correlation-based FC with fMRI14–16. One such 

strategy, the comparison of high- versus low-motion subjects, has revealed extensive brain-
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wide differences in FC estimates85. Various strategies have likewise been proposed to 

address this motion confound. While linear regression was unable to fully address motion 

effects85, other approaches such as removing high-movement time points from time series 

have been effective in making FC estimates more similar between high- and low-motion 

subjects86. Simulation-based validation can also be applied to establish confounding 

properties and strategies to correct them4,87, although in such cases it is important to also 

establish relevance by demonstrating the existence of the confound in empirical data.

Ultimately, it is clear that FC method validation requires convergent evidence across several 

of these validation strategies. Simulations can provide a broad search over many sensitivity 

tests to help determine what theoretical FC properties a given FC measure is selective for. 

Yet, model assumptions are always required, reducing confidence that they will generalize to 

empirical data, especially given the possibility that non-simulated confounding properties 

are present. Therefore, empirical validation is important to ensure that, at least in the cases 

where some ground truth can be reasonably established, the sensitivity and selectivity of a 

given FC measure is indeed sufficient to support mechanistic interpretation of FC 

observations.

Conclusions

The mechanistic FC framework developed here makes clear how many hurdles still need to 

be overcome to achieve full mechanistic accounts of neural network processes. 

Simultaneously, the framework reveals what progress we have made despite ambiguities in 

interpreting existing FC measures. We hope this framework catalyzes work toward improved 

interpretation of existing FC measures and development of FC measures (and recording 

techniques) that provide for more comprehensive and unambiguous inferences about brain 

network mechanisms of theoretical interest.
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Box 1.

Definitions of key terms

Neural entity:

A spatially contiguous territory of neural tissue that generates a signal of interest. 

Examples of neural entities are: an individual neuron, a cortical column, a cortical region.

Functional connectivity (FC):

Causal interactions between neural entities. These interactions are specified by the 

“theoretical properties” of causal interactions (see definition below).

Causal interaction:

A neural event that, had it not occurred, its effect on another neural entity also would not 

have occurred. This is referred to as the “counterfactual” definition of causality. This 

definition is common in scientific reasoning: a control condition provides the alternative 

(counterfactual) case in which a proposed cause is altered, and observation of an altered 

effect constitutes evidence supporting the causal inference. While direct experimentally-

controlled manipulation is the ideal for identifying causal interactions, decades of 

research suggests observational data can be used to validly constrain causal inferences in 

many cases.

Target theoretical property:

A property describing an aspect of causal interactions between neural entities that 

constitutes the inferential target of a given FC method. Examples of such properties are: 

directionality, directness, linearity, and weight/strength. If an FC method is not selective 

for a given theoretical property, it is said to be “ambiguous” with respect to that property. 

In Figure 1, target theoretical properties are denoted as κ, and inferences about them are 

denoted as κ.

Methodological property:

A property describing the observational method by which inferences about FC are 

supported.

Confounding property:

A factor that induces a spurious association between the neural entities of interest, such 

that this association disappears if the factor is kept constant.

Observational pathway:

An abstract description of the mapping, via representational levels, from target physical 

mechanisms (action potentials or postsynaptic potentials) to neural entity to sensors 

collecting observations. Referring to Figure 1, the observational pathway maps from real 

causal interactions (denoted by κ) to observed dependencies (denoted by δ). Mapping 

backwards from observed dependencies allows us to estimate causal interactions (denoted 

by κ).

FC methods:
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Approaches that seek to characterize causal interactions between neural entities, with 

potential limitations regarding what aspects of causal inferences are valid for a given 

approach.

Effective connectivity methods:

Following Friston et al.89, approaches that use parameterized models to characterize 

causal interactions between neural entities. This has been operationalized as the simplest 

circuit diagram (parameterized model) that explains observed responses90. Under the 

proposed framework, effective connectivity methods can be considered a subset of FC 

methods, since both seek to characterize causal interactions between neural entities.
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Box 2.

How to immediately begin improving causal inferences beyond correlation-
based FC: Confound reduction using partial correlation and alternatives

Even if all confounding properties due to measurement artifacts are accounted for (e.g., 

motion artifacts driving spurious causal inferences) many potential confounds exist 

among neural entities. Such confounders are neural entities that directly cause activity in 

two or more other neural entities (Box 2 Figure A). Confounders can lead to spurious 

causal inferences, such as the erroneous conclusion that stimulating one neural entity 

(e.g., the orange node in Box 2 Figure A) will affect another neural entity (e.g., the blue 

node in Box 2 Figure A). This confounding problem is perhaps the biggest barrier to 

progress in FC research and in causal inference generally19. While many FC methods can 

make approximately correct predictions regarding effects of causal interventions despite 

ambiguities in other causal configurations (e.g., chains and colliders; Box 2 Figure B & 

C), this is not the case for confounders17.

The worst-case scenario for the confounding problem is when unmeasured confounders 

exist, given that there are limited options (e.g., directly stimulating each neural entity to 

observe its causal effect) for accounting for such confounders. The whole-brain coverage 

of modern neuroimaging methods (fMRI and EEG/MEG) provides some hope of being 

able to measure all neural entities at a given level of organization (e.g., brain regions). In 

practice, however, we are likely not observing clean signal from all neural entities of 

interest, given various biases in current methods (e.g., EEG/MEG signals reflecting 

dipoles), such that some unobserved confounders likely exist in these datasets. Yet even 

in the presence of unobserved confounders, taking observed confounders into account 

improves causal inferences. There are many FC measures that, unlike pairwise 

correlation and coherence, take confounding into account via fitting all measured time 

series simultaneously, such as partial correlation, multiple regression91, dynamic causal 

modeling40, multivariate Granger causality92, and Bayesian search approaches88. We 

focus here on the first of these.

Partial correlation is simply the Pearson correlation between a pair of time series 

calculated after the portion of their variance explained by all other observed time series is 

removed. A partial correlation coefficient thus reflects the degree to which two time 

series are correlated after accounting for potential confounders represented in the other 

time series. This improves causal inferences in the case of confounders (Box 2 Figure A) 

and chains (Box 2 Figure B).

However, partial correlation does not improve causal inferences in the case of 

colliders5,88 (Box 2 Figure C). This is due to the regressing-out step, which ends up 

introducing a negative correlation (in the case of positive relationships with a collider like 

in Box 2 Figure C) between independent time series. In the case illustrated in Box 2 

Figure C, the orange and blue nodes’ time series are mixed into the green node’s time 

series due to causal influences (which define the green node as a collider). In this case, 

the regressing-out step erroneously makes two independent time series appear dependent. 

Note that if the orange node or blue node had been negatively related to the green node 
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then the regressing-out step would have introduced a positive correlation between them. 

These effects are related to what is sometimes referred to as “conditioning on a 

collider”93.

Perhaps surprisingly, one way to correct for the confounder case is to consider the result 

with pairwise correlation. While pairwise correlation provides the incorrect causal 

adjacency graph in most cases (Box 2 Figure A & B), it provides the correct result in the 

collider case (Box 2 Figure C). Thus, a simple approach to remove problematic partial 

correlation results is to remove connections that are not present with pairwise correlation 

but appear with partial correlation. As a further bonus, the resulting causal graph can be 

oriented with causal directionality (at least in a 3-node case) because only a collider 

graph could have produced this pattern of results88,94,95.

Notably, this does not correct all possible problems with partial correlations in more 

complex graphs. For instance, consider a graph where two nodes without a direct 

connection between them are influenced by a confounder and also are themselves causes 

of a collider. In this graph, combining partial correlation and pairwise correlation as 

described above will inevitably result in a false connection between the two nodes. 

However, in principle a set of existing methods can account for such cases. These 

Bayesian search approaches combine tests of causal independence (similar to pairwise 

correlation) with tests for confounding (similar to partial correlation) in a causal search 

framework to identify the causal graph most likely to have generated the observed data88. 

Among current algorithms, we recommend the following approaches available from the 

Center for Causal Discovery (http://www.ccd.pitt.edu) for making causal inferences 

taking into account both confounders and colliders: fGES, IMaGES2,96 (also available at 

https://cran.r-proiect.org/web/packages/IMaGES), Two-step97, and FASK97. Yet even 

these algorithms are not suited for all conditions, such that they (like all current methods) 

require further refinement through theoretical and empirical validation and method 

development (see section “Looking forward: The central role of FC method validation”).
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Box 2 figure –. 
Switching from pairwise correlation to partial correlation improves causal inference (but 

is not perfect). Integrating inferences from both pairwise and partial correlation improves 

causal inferences in most cases, though some issues remain (see text).
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Figure 1 –. 
Ontological levels relevant to mechanistic interpretation of FC, defining the pathway 

from neural mechanisms (neural level) to imaging measurements (observational level) to 

inferences about target theoretical properties (inferential level). At the neural level, physical 

connections between regions, denoted κ, depend on the signal strength (spike rate) and 

synaptic strength. At the observational level, time series recorded with imaging sensors (e.g., 

fMRI voxels, EEG electrodes, intracranial electrodes) represent neural signals that are 

spatiotemporally filtered through the observational pathway (forward problem). These time 

series also contain measurement noise and confounding variance. Observed dependencies at 

this level are denoted δ. At the inferential level, we attempt to infer (estimate) FC properties 

of interest, possibly with a degree of ambiguity, at the neural level from our observed time 
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series. This can be done by mapping backward from sensors to neural entities (solving the 

inverse problem) to estimate the underlying neural activity and compute FC measures, 

denoted κ^hat, on this estimated activity. However, methodological and confounding 

properties limit the accuracy we can achieve with this backward mapping.
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Figure 2 –. The conceptual structure of the functional connectivity (FC) framework.
A) Each method involves a mapping between observations and target theoretical properties, 

mediated by methodological properties that enable and/or restrict the possible inferences that 

can be made. Methodological properties merely shift what inferences are possible, but 

confounding properties can completely block inferences by creating ambiguities outside the 

space of causal brain network configurations (e.g., subject motion obscuring FC 

observations nullifies inferences about neural mechanisms causing FC observations). The 

grid illustrates the space of all hypotheses under consideration, with each grid point being a 

particular causal network configuration (of which only one can be true). Each method’s 

color indicates which hypotheses that method’s results are compatible with (more coverage 

= more ambiguity). The overlap between methods (purple) illustrates the ability to use 

multiple FC methods to converge on a more narrow set of possibilities. This advances theory 

through logical conjunctions across FC methods. B) An illustration of a correlation-based 
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FC measure in a simple 3-node network. The directionality of influences are ambiguous 

(based on Pearson correlation of neural time series; left side of panel) but this nonetheless 

constrains the hypothesis space (both likely and unlikely; right side of panel) by providing a 

higher probability of some causal network configurations than others. C) Another 

illustration of a simple 3-node network, this time with no correlation between the bottom 

two nodes. Correlation does especially well in this scenario, given that only a “collider” 

graph is likely with this set of correlations in a 3-node system88.
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Figure 3 –. A systematic approach to validate mechanistic interpretations of FC measures.
The basic illustration from Figure 2 is modified with a procedure for validating FC methods. 

Three ground-truth conditions are indicated, each reflecting a scenario in which the 

experimenter can be highly confident about the state of the theoretical property (for the first 

2 conditions) or confounding property (for the third condition) that is being manipulated. 

Each ground-truth condition is associated with a sensitivity test, wherein it is tested whether 

the FC method in question (Method A) is sensitive to the manipulation. Once a large set of 

ground-truth conditions and associated sensitivity tests has been carried out, one then infers 

the selectivity of the mapping from the Method A to theoretical and confounding properties. 

An FC method is valid for inferring a given set of theoretical properties of interest in so far 

as the method is both sensitive to and selective for those theoretical properties. The 

selectivity to those theoretical properties implies that the method is not sensitive to plausible 

confounding properties (after applying any strategies used to reduce the influence of 

confounds).
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Table 1 -
Overview of the FC framework, defining the three main types of properties relevant for 
drawing mechanistic inferences: theoretical, methodological, and confounding.

Examples of each property are provided, along with the types of assumptions required for each. Note that 

these are meant to be illustrative, but not exhaustive – additional properties can be added by the researcher as 

appropriate.

Theoretical properties Methodological properties Confounding properties

Description

Properties of the system about which 
the researcher would like to draw 
inferences. Must relate to causal 
interactions among neural entities.

Properties inherent to the observational or 
analytic methodology, which will influence 
the details of the inferences made regarding 
theoretical properties of interest

Properties of the data that may result 
in spurious associations that can lead 
to erroneous inferences regarding the 
theoretical properties of interest

Common 
Examples

• Directness: mono- or polysynaptic
• Directionality: A→B, A←B, A↔B
• Weight: synaptic strength
• Linearity: Linear or nonlinear

• Spatial resolution/coverage
• Temporal resolution
• Conditions: experimental manipulation, 
cohort
• Observational pathway
• Neural entities: spatially contiguous
• Interaction estimate: e.g., correlation

• Motion artifacts
• Cardiac artifacts
• Respiratory artifacts
• Unmeasured neural sources
• Spatial autocorrelation
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