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Abstract

We map a class of well-mixed stochastic models of biochemical feedback in steady state to the 

mean-field Ising model near the critical point. The mapping provides an effective temperature, 

magnetic field, order parameter, and heat `capacity that can be extracted from biological data 

without fitting or knowledge of the underlying molecular details. We demonstrate this procedure 

on fluorescence data from mouse T cells, which reveals distinctions between how the cells respond 

to different drugs. We also show that the heat capacity allows inference of the absolute molecule 

number from fluorescence intensity. We explain this result in terms of the underlying fluctuations, 

and we demonstrate the generality of our work.

I. INTRODUCTION

Positive feedback is ubiquitous in biochemical networks and can lead to a bifurcation from a 

monostable to a bistable cellular state [1–4]. Near the bifurcation point, the bistable state 

often reflects a choice between two accessible but opposing cell fates. For example, in T 

cells, the distribution of doubly phosphorylated ERK (ppERK) can be bimodal [4]. ppERK 

is a protein that initiates cell proliferation and is implicated in the self- or non-self-decision 

between mounting an immune response or not [4,5].

The bifurcation point is similar to an Ising-type critical point in physical systems such as 

fluids, magnets, and superconductors, where a disordered state transitions to one of two 

ordered states at a critical temperature [6]. In fact, universality tells us that the two should 

not just be similar, they should be the same: because they are both bifurcating systems, both 

types of systems should exhibit the same critical scaling exponents and therefore belong to 

the same universality class [6]. Although this powerful idea has allowed diverse physical 
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phenomena to be united into specific behavioral classes, the application of universality to 

biological systems is still developing [7–14].

Biological tools such as flow cytometry, fluorescence microscopy, and RNA sequencing 

allow reliable experimental estimates of abundance distributions, inspiring researchers to 

seek to apply insights from statistical physics to biological data. In particular, recent studies 

have demonstrated that biological systems on many scales, from molecules [15], to cells 

[16–21], to populations [22–24], exhibit signatures consistent with physical systems near a 

critical point. However, some of these studies have come under scrutiny because some of the 

signatures, particularly scaling laws, can arise far from or independent of a critical point 

[25–27]. Part of the problem is that the identification of appropriate scaling variables from 

data can be ambiguous, and one is often left looking for scaling relationships in an unguided 

way.

Typical approaches to the interpretation of abundance distributions include fitting to either 

detailed mechanistic models of the underlying reaction scheme, or to an effective description 

of the data such as a Gaussian or log-normal mixture model. The former approach is usually 

difficult to parametrize and difficult to generalize to other systems. The latter approach often 

suffers from numerical issues (the likelihood is unbounded and the expectation-

maximization algorithm can lead to spurious solutions [28]). Moreover, the vicinity of a 

bifurcation point is precisely where a mixture analysis is most likely to fail. In contrast, 

mapping to a statistical physics framework is expected to be universal, in the sense that the 

precise microscopic details of a broad range of biochemical models are unimportant near the 

bifurcation point, as they are coarse-grained rather than particular reaction parameters.

Here we provide a framework for mapping well-mixed stochastic models of biochemical 

feedback to the mean-field Ising model, and we apply it to published data on T cells. This 

allows us to extract effective thermodynamic quantities from experimental data without 

needing to fit to a parametric model of the system. This makes the theory applicable to a 

broad class of biological datasets without worrying about model selection or goodness-of-fit 

criteria. The theory provides insights on how T cells respond to drugs, and it reveals 

distinctions between one type of drug response and another. Furthermore, we find that one of 

the thermodynamic quantities (the heat capacity) provides a way to estimate absolute 

molecule number from fluorescence level in bifurcating systems. We demonstrate that our 

results can be extended to cases in which feedback is indirect, and we discuss further 

extensions, including to spatiotemporal dynamics.

II. RESULTS

We consider a reaction network in a cell where X is the molecular species of interest, and the 

other species A, B, C, etc. form a chemical bath for X [Fig. 1(a)]. The reactions of interest 

produce or degrade an X molecule, can involve the bath species, and in principle are 

reversible. We allow for nonlinear feedback on X, meaning that the production of an X 
molecule in a particular reaction might require a certain number of X molecules as reactants. 

This leads to an arbitrary number of reactions of the form
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jrX + Y r
+

kr−

kr+ jr + 1 X + Y r
−, (1)

where in the rth reaction, jr are stoichiometric integers describing the nonlinearity, kr
± are the 

forward (+) and backward (−) reaction rates, and Y r
± represent bath species involved as 

reactants (+) or products (−). A simple and well-studied special case of Eq. (1) is Schlögl’s 

second model [29–36], in which X is either produced spontaneously from bath species A, or 

in a trimolecular reaction from two existing X molecules and bath species B (i.e., R = 2, j1 = 

0, j2 = 2, Y 1
+ = A, Y 2

+ = B, and Y 1
− = Y 2

− = ∅).

We assume that molecules are well-mixed and that the numbers of bath molecules are 

constant. The latter assumption is equivalent to integrating out all species but X, such that 

the feedback on X arises directly from X itself [Eq. (1)]. However, in general the feedback 

will be indirect, with X regulating dynamic species in the bath that in turn regulate X (this is 

almost certainly the case in the T cells we study here). Therefore, we consider this more 

general case later in Sec. II D and show that the results discussed below remain unchanged.

The master equation for the probability of observing n molecules of species X according to 

Eq. (1) is

ṗn = bn − 1pn − 1 + dn + 1pn + 1 − bn + dn pn, (2)

where bn = ∑r = 1
R Jrn

+  and dn = ∑r = 1
R Jrn

−  are the total birth and death propensities, and 

Jrn
+ = kr

+nr+n!/ n − jr ! and Jrn
− = kr

−nr−n!/ n − jr − 1 ! are the forward and backward 

propensities of each reaction pair. Here nr± are the numbers of molecules of the bath species 

involved in reaction r, and the factorials account for the number of ways that X molecules 

can meet in a reaction. The steady state of Eq. (2) is [37,38]

pn = p0 ∏
j = 1

n bj − 1
dj

= p0
n! ∏

j = 1

n
fj, (3)

where p0
−1 = ∑n = 0

∞ 1/n! ∏j = 1
n fj is set by normalization. In the second step of Eq. (3) we 

define an effective birth propensity fn ≡ nbn−1/dn corresponding to spontaneous death with 

propensity n [Fig. 1(a)]. In general, fn is an arbitrary, nonlinear feedback function governed 

by the reaction network. For the Schlögl model, it is fn =[aK2 +s(n−1)(n−2)]/[(n−1) (n − 2) + 

K2], where we have introduced the dimensionless quantities a ≡ k1
+nA/k1

−, s ≡ k2
+nB/k2

−, and 

K2 ≡ k1
−/k2

−. As a ubiquitous example, we also consider the Hill function fn = a + snH/(nH + 

KH) with coefficient H. Importantly, the inverse of Eq. (3),

fn = npn
pn − 1

, (4)
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allows calculation of the feedback function from the distribution [39], as utilized when 

analyzing the experimental data later in Sec. II B.

The quantity fn − n determines the dynamic stability: there can be either one or two stable 

states n∗ [Fig. 1(b)], and the transition from a monostable to a bistable regime occurs at a 

bifurcation point [Fig. 1(c), inset]. These deterministic regimes correspond stochastically to 

unimodal and bimodal distributions pn, respectively, with maxima at n∗, while the 

bifurcation point corresponds to a distribution that is flat on top [Fig. 1(c)].

A. Ising mapping and scaling exponents

To understand the scaling behavior near the bifurcation point, we expand the stability 

condition fn* − n* = 0 to third order around a point nc satisfying fnc″ = 0. This choice of nc 

eliminates the quadratic term in the dynamic forcing fn − n, equivalent to eliminating the 

cubic term in an effective potential as in Ginzburg–Landau theory [40]. Defining the 

parameters

m ≡ n* − nc
nc

, ℎ ≡
2 fnc − nc

−fnc‴nc3
, θ ≡

2 1 − fnc′
−fnc‴nc2

, (5)

the expansion fnc + fnc′ n* − nc + fnc‴ n* − nc
3/3! − n* = 0 becomes h − θm − m3/3 = 0. This 

expression is equivalent to the expansion of the Ising mean-field equation m = tanh[(m + 

h)/(1 + θ)] for small magnetization m, where θ = (T − Tc)/Tc is the reduced temperature, and 

h is the dimensionless magnetic field [40]. Therefore, in our system we interpret m as the 

order parameter, θ as an effective reduced temperature, and h as an effective field. Explicit 

expressions for nc, θ, and h in terms of the biochemical parameters and vice versa are given 

for the Schlögl and Hill models in Appendix A.

We see in Figs. 1(c) and 1(d) that nc determines where the distribution is centered, that θ 
drives the system to the unimodal (θ > 0) or bimodal (θ < 0) state, and that h biases the 

system to high (h > 0) or low (h < 0) molecule numbers. Note that unlike in the Ising model, 

even when h = 0 an asymmetry persists between the high and low states [see the purple 

distribution in Fig. 1(c)]. The reason is that in the master equation [Eq. (2)], unlike in 

Ginzburg-Landau theory, fluctuations scale with molecule number, such that the high state is 

wider than the low state.

The equivalence between our system and the Ising mean-field equation near the critical point 

[Eq. (5)] implies that our system has the same scaling exponents β = 1/2, γ = 1, and δ = 3 as 

the Ising universality class in its mean-field limit [40]. For completeness, we verify in 

Appendix B that these scalings are indeed obeyed by the Schlögl and Hill models.

However, Eq. (5) does not explicitly determine the value of the exponent α. The reason is 

that, unlike β, γ, and δ, the exponent α depends on the entire distribution pn, not just the 

maxima. Specifically, α concerns the heat capacity, C|h=0 ~ |θ|−α, which depends on the 

entropy S and thus pn. The equilibrium definition C = T∂T S generalizes to a nonequilibrium 
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system like ours when one uses the Shannon entropy S = −kB ∑n pn ln pn [41]. Since T = (1 

+ θ)Tc, we have C = (1 + θ)∂θS, or

C
kB

= − (1 + θ) ∑
n = 0

∞
pn 1 + ln pn ψn − ∑

j = 0

∞
pjψj , (6)

where ψn ≡ (1/2)fnc‴ nc2∑j = 1
n j − nc /fj. Equation (6) follows from performing the θ 

derivative using the expression in Eq. (3), the expansion below Eq. (5), and the definition of 

θ [Eq. (5)]. We see in Fig. 2(a) that when h = 0, C exhibits a minimum at θ∗. We see in Fig. 

2(b) that θ∗ vanishes as the system size increases, nc → ∞. This implies that C|h=0 ~ |θ|0 to 

subquadratic order in θ, or α = 0, again consistent with the Ising universality class in its 

mean-field limit. Interestingly, whereas C is discontinuous in the mean-field Ising model 

[40] and constant in the van der Waals model of a fluid [6], it is minimized here; 

nevertheless, in all cases α = 0. Note from Fig. 2(a) that C is negative near θ = 0; negative 

heat capacity is a well-known feature of nonequilibrium steady states [42–44].

B. Application to immune cell data

To demonstrate the utility of our theory, we apply it to published data from T cells [4]. In 

these experiments, chemotherapy drugs inhibit the enzymes MEK and SRC in the 

biochemical networks of the cells. The inhibition results in bimodal (low dose) or unimodal 

(high dose) distributions of ppERK abundance, which is measured as fluorescence intensity 

I by flow cytometry. The distributions are shown for a range of drug doses in Figs. 3(a) and 

3(b) (the insets show distributions of log intensity for clarity). Experimental details are given 

in the original publication [4] and are summarized in Appendix C, along with the drugs and 

dose amounts.

First, we compute the feedback function f from each distribution using Eq. (4) (see 

Appendix D). Figures 3(c) and 3(d) show the corresponding forcing functions [compare to 

Fig. 1(b)]. As expected, in each case we see that the forcing function transitions from two 

stable states to one stable state as the drug is applied.

Then, we compute Ic (the analog of nc in units of fluorescence intensity), θ, and h from the 

feedback function using Eq. (5) (see Appendix D). These quantities are shown as a function 

of drug dose in Figs. 3(e)–3(g). We see that the behavior is different depending on whether 

MEK inhibitor (MEKi) or SRC inhibitor (SRCi) is applied. Specifically, MEKi decreases Ic, 

increases θ, and decreases h, whereas SRCi only decreases h, leaving the other quantities 

unchanged. Thus, the effective thermodynamic quantities can differentiate cellular responses 

to different perturbations, such as the application of different drugs.

Furthermore, the mapping provides an intuitive interpretation of the drug responses. MEKi 

causes a transition from a bimodal to a unimodal state in the expected way: by increasing the 

reduced temperature θ from a negative to a positive value [Fig. 3(f)]. In the process, Ic 

decreases [Fig. 3(e)], meaning that the unimodal state is shifted to lower molecule number, 

near the lower mode of the bimodal state [Fig. 3(a), inset]. In contrast, SRCi causes a 

transition from a bimodal to a unimodal state in a different way: by decreasing the field 
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while leaving θ and Ic unchanged [Figs. 3(e)–3(g)]. In essence, the distribution remains 

bimodal and unshifted, except that the field causes the high mode to diminish in weight [Fig. 

3(b), inset]. Interestingly, the mean dose-response curves are similar for the two drugs [4], 

but our mapping elucidates precisely how the transitions are different at the distribution 

level. Related conclusions were drawn in [4], but those conclusions relied on fitting the 

distributions to a five-parameter Gaussian mixture model, which is expected to fail near the 

bifurcation point. Here we use only three parameters and no fitting, and we emerge with an 

intuitive interpretation in terms of thermodynamic quantities.

Finally, we note that for both drugs the effective field is negative at all doses [Fig. 3(g)]. The 

reason is that the fluorescence distributions have long tails (which is why they are often 

easier to visualize in log space); see Figs. 3(a) and 3(b). In the theory, a long tail is 

indistinguishable from a low-molecule-number bias in the peak, which corresponds to h < 0. 

We address the possible origins and implications of the long tails in Sec. III.

C. Estimation of molecule number

We now apply the theory to compute the heat capacity from the T cell data. Specifically, we 

compute C using Eq. (6) (see Appendix D) for all drugs and doses used in the experiments 

[4] (Appendix C). Unlike the other thermodynamic quantities, C requires a conversion from 

fluorescence intensity to molecule number because it depends explicitly on the distribution 

pn [Eq. (6)]. Therefore, we compute C for various values of the conversion factor I1, where n 
= I/I1. The results are shown in Fig. 4. We see that irrespective of I1 over four orders of 

magnitude, the data closest to h = 0 (yellow) exhibit a global minimum in C at θ = 0, as 

expected from Fig. 2(a). However, we also see that the depth of the minimum agrees with 

that of the theory only for the particular choice I1 ≈ 0.1 [Fig. 4(c)].

To obtain a more precise estimate of I1, we plot the sum of squared errors between the data 

and the theory as a function of I1 in Fig. 4(e). We focus on the bifurcation region by 

considering only values of θ within −Δθ ⩽ θ ⩽ Δθ, and we find that our results are not 

sensitive to the choice of θ [Fig. 4(f)]. This procedure (see the details in Appendix D) results 

in an estimate of I1 = 0.5 ± 0.2, as seen in Fig. 4(f). This value of I1 corresponds to 

n* = 170000 ± 70000 ppERK molecules in the high mode averaged across all cases with no 

inhibitor. It is possible to compare this value with previous measurements on these cells. In 

two separate experiments, it was estimated that there are approximately 100000 [5] and 

214000 [45] ERK molecules per cell, and that only about 50% of these molecules are doubly 

phosphorylated during T cell receptor activation [5] (see Appendix D). These considerations 

give a range of roughly 50000–107000 ppERK molecules, which is consistent with our 

estimate of 170000 ± 70000. The agreement is especially notable given that T cell protein 

abundances generally span six orders of magnitude, from tens to tens of millions of 

molecules per cell [45].

Why does the heat capacity extract the conversion between fluorescence intensity and 

molecule number? As mentioned above, α is the only exponent that is a function of pn 

instead of just its maxima. This means that the plot of C versus θ contains information not 

only about means or modes, but also about fluctuations. The notion that fluctuation 
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information is essential for converting from intensity to molecule number can be seen with a 

simpler example: a Poisson distribution. Here we would have σI
2/I2 = σn2/n2 = 1/n = I1/I. 

From this relation it is clear that information about not only the mean (I) but also the 

fluctuations (σI
2) in intensity is necessary and sufficient to infer the conversion factor I1. In 

our case, the heat capacity is extracting similar information, but for a bifurcating system.

D. Generalization to indirect feedback

In the T cells, it is well known that ppERK does not apply feedback to its own activation 

directly, but rather indirectly via upstream components [4,5,46]. Therefore, we seek to 

determine the extent to which the above results are sensitive to our assumption in the theory 

that the feedback is direct. To this end, we construct a minimal extension of the model in Eq. 

(1) in which the feedback is indirect:

∅
k2

k1 X, 2X
k4

k3 D,

D
k5 D + A, A

k6 A + X, A
k7 ∅ ,

D
k8 D + B, B + X

k9 B, B
k10 ∅ .

(7)

Here X is produced, is degraded, and reversibly dimerizes (first line); the dimer D produces 

a species A that produces X and is degraded (second line); and the dimer also produces a 

species B that degrades X and is degraded (third line). Equation (7) is an extension of Eq. (1) 

because there are multiple stochastic variables (X, D, A, and B), there are irreversible 

reactions, and X feeds back on itself indirectly through D, A, and B instead of directly.

The deterministic steady state of Eq. (7) is

0 = ṅ/k2 = c0 − n* + c2n*
2 − c3n*

3, (8)

where c0 ≡ k1/k2, c2 ≡ k3k5k6/(k2k4k7), c3 ≡ k3k8k9/(k2k4k10), and the molecule numbers of 

D, A, and B have been eliminated in favor of n∗ by setting their own time derivatives to zero. 

Because Eq. (8) is cubic in n∗, we see immediately that it has the same form as the expanded 

Ising mean-field equation h − θm − m3/3 = 0 [see Eq. (5)]. Specifically, defining m = (n∗ − 

nc)/nc as in Eq. (5), the choice nc = c2/(3c3) eliminates the term quadratic in m and implies 

θ = 3c3/c2
2 − 1 and ℎ = 9c0c3

2/c2
3 − 3c3/c2

2 + 2/3. It immediately follows that this model has the 

same exponents β = 1/2, γ = 1, and δ = 3 as the mean-field Ising universality class.

To test whether the heat capacity for this model exhibits the same features as that for the 

direct feedback model in Fig. 2(a), we compute the steady-state marginal distribution pn 

using stochastic simulations [47] of Eq. (7). Specifically, we set k3/k4 = 1/nc and k5/k7 = k8/

k10 = 1 to ensure that the numbers of D, A, and B molecules, respectively, are on the order 

of nc. We then set k4/k2 = k7/k2 = k10/k2 = ρ, where ρ is a free parameter that determines 

whether the degradation timescales of D, A, and B, respectively, are faster (ρ > 1) or slower 

(ρ < 1) than that of X. These conditions, along with the definitions of nc, θ, and h above, 

constitute nine equations for nine reaction rates, plus k2, which sets the units of time. 
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Solving these equations yields expressions for the rates in terms of nc, θ, h, and ρ that we 

use in the simulations.

Figure 5(a) shows the heat capacity C as a function of θ for h = 0, nc = 100, and ρ = {0.1, 1, 

10}, where C = (1 + θ)∂θS is computed from the entropy S = −kB ∑n pn ln pn by numerical 

derivative. We see that for all ρ values, the curves exhibit a minimum at θ = 0, implying α = 

0, and they rise more steeply for negative than for positive θ as in Fig. 2(a).

We then investigate whether Eq. (1) remains valid as a coarse-grained description of the 

extended model in Eq. (7). To answer this question, we infer values of nc, θ, h, and C 
directly from the simulation data pn using the same protocol as for the experimental data. 

That is, we compute fn via Eq. (4), and then compute θ, h, and C from its derivatives at nc 

according to Eqs. (5) and (6), where nc satisfies fnc″ = 0. As with the experimental data (see 

Appendix D), derivatives are calculated using a Savitsky-Golay filter [48], although here we 

apply the filter directly to fn and perform the analysis directly in n space, not log space.

Figure 5(b) shows the result of this procedure for the inferred heat capacity C as a function 

of the inferred θ. We see that, as with the exact C and θ [Fig. 5(a)], the data exhibit a 

minimum at θ = 0 and rise more steeply for negative than for positive θ. Note that the values 

of C and θ are different in (a) and (b), which is expected because the shape of pn is not 

quantitatively the same in the two models of Eqs. (1) and (7); nonetheless, the shape of the C 
versus θ curves remains the same. We have checked that the inferred values of nc and h are 

distributed around their known values of 100 and 0, respectively, and that the shape persists 

across a range of filter window sizes.

These results suggest that the main findings above are not sensitive to our assumption that 

feedback is direct, and therefore that we are justified in using Eq. (1) as a coarse-grained 

model to analyze the T cell data.

III. DISCUSSION

We have employed the fact that a feedback-induced bifurcation exhibits the scaling 

properties of the mean-field Ising universality class to provide a simple prescription for 

modeling and analyzing biological data. Contrary to existing mixture-model approaches, our 

method is most valuable near the bifurcation point, which is where biologically significant 

cell-fate decisions are expected to take place. Our approach provides the effective order 

parameter, reduced temperature, magnetic field, and heat capacity from experimental 

distributions without fitting or needing to know the molecular details. By applying the 

approach to T cell flow cytometry data, we discovered that these quantities discriminate 

between cellular responses in an intuitive, interpretable way, and that the heat capacity 

allows estimation of the molecule number from fluorescence intensity for a bifurcating 

system. By generalizing the theory to include indirect feedback, we demonstrated the 

capacity to model realistic signaling cascades where indirect feedback is common. Our 

approach should be applicable to other systems observed to undergo a pitchfork-like 

bifurcation and the associated unimodal-to-bimodal transition in abundance distributions, 
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but not to systems that have an absorbing or extinction state, as they are expected to fall 

under a different universality class [49,50].

The theory assumes only birth-death reactions and neglects more complex mechanisms such 

as bursting [51,52] or parameter fluctuations [53,54]. These mechanisms are known to 

produce long tails and may be responsible for the long tails observed in the experimental 

data [Figs. 3(a) and 3(b)]. Cell-to-cell variability (CCV) may also contribute to the long 

tails, as it is known to be present in T cell populations [55]. Our theory neglects CCV and 

instead assumes that the distribution of molecule numbers across the population is the same 

as that traced out by a single cell over time. Although CCV may play an important role, one 

generically expects the role of intrinsic fluctuations to be amplified near a critical point, and 

models that ignore CCV have been shown to be sufficient to explain both the bimodality [3] 

and variance properties [56] of ppERK in T cells. Moreover, the fact that our theory provides 

an estimate of the molecule number that is consistent with other estimates suggests that 

intrinsic fluctuations play a large role. Distinguishing between intrinsic fluctuations and 

long-lived CCV is an important topic for future work.

Our work provides key tools that can be used for a broader exploration of biological 

systems. The approach is applicable to any experimental dataset that exhibits unimodal and 

bimodal abundance distributions, and could lead to a unified picture of diverse cell types and 

environmental perturbations in terms of effective thermodynamic quantities. At the same 

time, several extensions of our work are natural. For example, the dynamics of the theory 

could be probed to investigate the consequences of critical slowing down for driven or 

dynamically perturbed systems with feedback. Alternatively, the theory could be generalized 

to systems that are not well-mixed, such as intracellular compartments or communicating 

populations, to investigate space-dependent universal behavior and its biological 

implications.

IV. DATA AVAILABILITY

Data and code for all figures and the MIFlowCyt record are available [59].
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APPENDIX A:: MAPPING FOR SCHLÖGL AND HILL MODELS

Here we provide the mapping from nc, θ, and h to the biochemical parameters and vice versa 

for the Schlögl and Hill models. For the Schlögl model, the feedback function is

fn = aK2 + s(n − 1)(n − 2)
(n − 1)(n − 2) + K2 . (A1)

The condition fnc″ = 0 is satisfied by
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nc = 3
2 + 1

6 3 4K2 − 1 . (A2)

The parameters θ and h are given by Eq. (5), where

fnc = (3a + s)K2 − s
4K2 − 1

, (A3)

fnc′ = (s − a)K2 3
4K2 − 1

3/2
, (A4)

fnc‴ = − 6(s − a)K2 3
4K2 − 1

5/2
. (A5)

These expressions are inverted to write the biochemical parameters a, s, and K in terms of 

nc, θ, and h:

K2 = 1
4 3x2 + 1 , (A6)

s = 3nc3(θ + ℎ) + ncx2 + x3

3nc2θ + x2 , (A7)

a = 3x2 + 1 3nc3(θ + ℎ) + ncx2 + x3 − 4x5

3x2 + 1 3nc2θ + x2 , (A8)

where x ≡ 2nc − 3.

Similarly, for the Hill model we have

fn = a + s nH

nH + KH , (A9)

nc = K H − 1
H + 1

1/H
, (A10)

fnc = a + H − 1
2H s, (A11)

fnc′ =
H2 − 1 s

4Hnc
, (A12)
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fnc‴ = −
H2 − 1 2s

8Hnc3
, (A13)

K = nc
H + 1
H − 1

1/H
, (A14)

s = nc
16H

H2 − 1 H2 − 1 θ + 4
, (A15)

a = nc
(H − 1) (H + 1)2(θ + ℎ) + 4

(H + 1) H2 − 1 θ + 4
. (A16)

In the Hill model, H is an additional free parameter.

APPENDIX B:: SCALING EXPONENTS β, γ, AND δ

Here we verify that the stochastic Schlögl and Hill models have the scaling exponents β, γ, 

and δ of the mean-field Ising universality class. Specifically, we expect m = ±(−3θ)β for h = 

0 and θ < 0, with β = 1/2; χ = θ−γ or χ = (−2θ)−γ for θ > 0 or θ < 0, respectively, with γ = 

1, where χ ≡ (∂hm)h=0 is the dimensionless susceptibility; and m = (3h)1/δ for θ = 0, with δ 
= 3. Figure 6 computes these quantities from the parameters and maxima of pn for the 

Schlögl and Hill models using the mapping in Eq. (5). We see that the scalings hold, as 

expected.

APPENDIX C:: EXPERIMENTAL METHODS

The experimental data analyzed in Fig. 3, along with a detailed description of the 

experimental methods, have been published previously [4]. In this appendix, we briefly 

summarize the experimental system and methods. The drugs and dose ranges used in Figs. 3 

and 4 are listed in Table I.

The data investigate inhibition of the antigen-driven MAP kinase cascade in primary CD8+ 

mouse T cells. A natural way to stimulate T cells is to load a peptide (a fragment of an 

antigenic protein that the T cells are programed to recognize) onto antigen-presenting cells. 

We achieve this by incubating RMA-S cells with antigen at 37 °C. At the same time, we 

harvest the spleen and lymph nodes of a RAG2−/− OT1 mouse, which has T cells specific 

only to the ovalbumin peptide with the amino acid sequence SIINFEKL. When we mix the 

OT1 T cells with the antigen-loaded RMA-S cells, we expose the OT1 T cells to their 

activating peptide. In response, the T cells activate their receptors through a SRC Family 

kinase (Lck). This triggers an enzymatic cascade, which in turn actives Ras-Raf-MEK-ERK 

leading to double phosphorylation of ERK, rendering it capable of communicating with the 

nucleus. By waiting for 10 min, the signaling reaches steady state and the distribution of the 

abundance of doubly phosphorylated ERK (ppERK) is the readout.

Erez et al. Page 11

Phys Rev E. Author manuscript; available in PMC 2020 June 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



To measure the abundance of ppERK, we use fluorescence cytometry. Specifically, we 

introduce ppERK-targeted antibodies that are preconjugated with a fluorescent dye. Because 

antibodies selectively attach to their target molecule with negligible false-positives, the 

fluorescence intensity of the dye is proportional to the abundance of ppERK. To measure the 

intensity, approximately 30 000 cells per sample are passed oneby-one through a 

microfluidic device where they encounter a series of excitation lasers. Each cell yields one 

intensity value, and the histogram provides an estimate of the distribution of ppERK 

abundance across the population. We assume that the distribution across the population is a 

fair representation of the steady-state distribution of ppERK abundance of a single cell. This 

is reasonable (and is the accepted practice) since while the cells are alive and the experiment 

is taking place, they are in a dilute suspension (approximately 30 000 cells in 100 μL), not 

close enough together to influence each other.

APPENDIX D:: EXPERIMENTAL DATA ANALYSIS

We calculate the forcing functions and the effective thermodynamic quantities Ic, θ, h, and C 
from an experimental intensity distribution using the following procedure. First, we set n = I/
I1 to convert p(I) to pn, where the intensity of one molecule I1 converts from intensity I to 

molecule number n. We will see below that only C will depend on the value of I1.

Next, because the experimental distributions are long-tailed, we convert Eq. (5) to ln I space 

for numerical stability. Here we provide the necessary conversions between functions of n 
from the theory, and functions of ℓ ≡ ln I from the experiments, as the probability 

distributions over n and ℓ do not have the same functional forms [57]. In what follows, a 

prime denotes the derivative of a function with respect to its argument (n for f; and ℓ for q, Q, 

and ϕ). ℓ and n are related as

ℓ = ln I1n , n = eℓ

I1
. (D1)

We denote the distribution of ℓ as q(ℓ). Approximating n as continuous, probability 

conservation requires

q(ℓ) = pn
dℓ/dn = npn . (D2)

Using Eq. (D2), the feedback function [Eq. (4)] is

fn = npn
pn − 1

= n − 1 npn
n − 1 pn − 1

= (n − 1)q ℓ
q ℓ

, (D3)

where, using Eq. (D1),

ℓ = ln I1(n − 1) = ln I1n + ln(1 − ϵ) ≈ ℓ − ϵ . (D4)

The last steps define ϵ ≡ 1/n and assume that for most values of n with appreciable 

probability we have ϵ ≪ 1. Therefore, Eq. (D3) becomes

Erez et al. Page 12

Phys Rev E. Author manuscript; available in PMC 2020 June 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



fn = n(1 − ϵ) q(ℓ)
q(ℓ − ϵ) ≈ n(1 − ϵ) q(ℓ)

q(ℓ) − ϵq′(ℓ)
= n(1 − ϵ)

1 − ϵq′/q ≈ n(1 − ϵ) 1 + ϵq′
q ≈ n 1 + ϵ q′

q − 1

= n + q′
q − 1,

(D5)

where we have kept to first order in ϵ. Defining ϕ(ℓ) ≡ fn − n, from Eq. (D5) we have

ϕ(ℓ) = fn − n = q′
q − 1 = Q′ . (D6)

In the last step, we define Q(ℓ) ≡ −ℓ + ln q so that ϕ is computed as a total derivative, which 

we find more numerically stable. The ϕ(ℓ) are the forcing functions plotted in Figs. 3(c) and 

3(d).

The point nc is defined by fnc″ = 0. Equation (D1) implies

∂n = I1e−ℓ∂ℓ, (D7)

such that the condition fnc″ = 0 becomes

0 = ∂n
2f = ∂n

2(ϕ + n) = ∂n
2ϕ = I1e−ℓ∂ℓ

2ϕ
= I1e−ℓ∂ℓ I1e−ℓ∂ℓϕ = I1

2e−ℓ −e−ℓϕ′ + e−ℓϕ″
= I1e−ℓ 2 ϕ″ − ϕ′ .

(D8)

Therefore, we define a point ℓc by

ϕ″ ℓc = ϕ′ ℓc . (D9)

Numerically, we enforce Eq. (D9) by writing it as 0 = ∂ℓ(ϕ′ − ϕ), and therefore

ℓc = argmaxℓ ϕ′ − ϕ . (D10)

Then

Ic = eℓc, nc = eℓc

I1
(D11)

from Eq. (D1).

Derivatives of f with respect to n at nc are related in a straightforward way to derivatives of ϕ 
with respect to ℓ at ℓc. First, the zeroth derivative is, by Eq. (D6),

fnc = ϕ ℓc + nc, (D12)

where nc is defined in Eq. (D11). Then, using Eq. (D7), the first derivative is

Erez et al. Page 13

Phys Rev E. Author manuscript; available in PMC 2020 June 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



fnc′ = ∂n ϕ + n nc = ∂n ϕ nc + 1 = I1e−ℓ∂ℓ ϕ ℓc + 1

= I1e−ℓcϕ′ ℓc + 1 = ϕ′ ℓc
nc

+ 1. (D13)

Finally, by a similar procedure, the third derivative is

fnc‴ = 1
nc3

ϕ‴ ℓc − 3ϕ″ ℓc + 2ϕ′ ℓc

= 1
nc3

ϕ‴ ℓc − ϕ′ ℓc ,
(D14)

where the second step uses Eq. (D9). Using Eqs. (D11)–(D14), θ and h [Eq. (5)] become

θ =
2 1 − fnc′

−fnc‴nc2
= −2ϕ′ ℓc

ϕ′ ℓc − ϕ‴ ℓc
, (D15)

ℎ =
2 fnc − nc

−fnc‴nc3
= 2ϕ ℓc

ϕ′ ℓc − ϕ‴ ℓc
. (D16)

Note that they do not depend on I1.

To estimate the derivatives in Eqs. (D15) and (D16), we apply a Savitsky-Golay filter to the 

experimental q(ℓ) [48]. Savitsky-Golay filtering replaces each data point with the value of a 

polynomial of order J that is fit to the data within a window W of the point. Since we require 

three derivatives of ϕ(ℓ) [Eqs. (D15) and (D16)], which depends on the first derivative of q(ℓ) 
[Eq. (D6)], we use the minimum value J = 4. Thus, the procedure requires the adjustable 

parameter W/L, where L is the number of ln I bins. We find that L = 100 and W = 25 suffice 

[Figs. 3, 4, and 5(b)], and that results are robust to W/L.

The analysis is demonstrated for an example experimental distribution in Fig. 7. In 

summary, we do the following:

i. Plot q(ℓ) from the data using L bins [Fig. 7(a), black].

ii. Filter q(ℓ) using window W [Fig. 7(a), red].

iii. Compute ϕ(ℓ) using Eq. (D6) [Fig. 7(b)].

iv. Compute ℓc using Eq. (D10) [Fig. 7(c)].

v. Compute Ic, θ, and h from ℓc, ϕ, and its derivatives using Eqs. (D11), (D15), and 

(D16).

vi. Compute pn from the data using I1.

vii. Compute C/kB from pn, θ, nc [Eq. (D11)], fnc‴  [Eq. (D14)], and fn [Eq. (D5)] 

using Eq. (6).
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Figure 7(d) shows that Ic falls between the maxima as expected, and that θ and h are 

negative corresponding to a distribution that is bimodal and skewed to the left, respectively.

To estimate the value of I1, consider χ2, defined as

χ2 = ∑
i = 1

N 1
σi2

Ci
kB

− C θi
kB

2
, (D17)

where N is the number of data points, Ci/kB is the value of the heat capacity for each data 

point, C(θi)/kB is the predicted value of the heat capacity at the location θi of that data point, 

and σi2 is the variance for data point i. Under the simplifying assumption that σi2 takes the 

same value σ2 for all data points, we have χ2 = s/σ2, where s is the sum of squared errors 

plotted in Fig. 4(e). As a function of I1, χ2 should scale quadratically near its minimum,

χ2 = I1 − I1
2

σI1
2 + const, (D18)

where the location and curvature of the minimum give the best estimate I1 and error in the 

estimate σI1, respectively [58]. In terms of s, we have

s = σ2 I1 − I1
2

σI1
2 + s*, (D19)

where s∗ is the minimal value. The value σ2 is, by definition, the average squared deviation 

of the data from the theory [58],

σ2 = 1
N ∑

i = 1

N Ci
kB

− C θi
kB

2
= s*

N , (D20)

here evaluated at the minimum s∗. Inserting this result into Eq. (D19), we obtain

s = s* I1 − I1
2

NσI1
2 + 1 . (D21)

We see that if I1 deviates from I1 by σI1, then s is larger than its minimal value by a factor of 

1 + N−1. This criterion, illustrated by the black line in Fig. 4(e), is used to determine σI1.

Figure 4(e) is restricted to data whose θ values are less than or equal to θ = 0.05 in 

magnitude, of which there are N = 20 points. As Δθ increases, N increases, and the 

minimum of s also becomes less sharp. These effects compensate, yielding an estimate of I1 

whose value and error are insensitive to Δθ, as seen in Fig. 4(f). Averaged across θ values, 

we find I1 = 0.5 and σI1 = 0.2, as reported in the main text.
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We compare our estimate of ppERK molecule number to two previous studies. In [5], it was 

estimated that there are 100 000 ERK molecules per cell (see the Results section in [5]). 

From [45], we estimate that there are 214000 ERK molecules per cell. Specifically, from the 

Excel file associated with Fig. 1 in [45], we sum the mean number (column I) of ERK1 (also 

called MAPK3, row 2345) and ERK2 (also called MAPK1, row 874) to obtain 214000 

molecules to three significant digits. In [5], it was estimated that 50% of ERK molecules are 

doubly phosphorylated during T cell receptor activation (see the caption of Fig. S2 in [5]).
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FIG. 1. 
Setup and behavior of the model. (a) We consider well-mixed stochastic biochemical 

networks described by an effective feedback function fn. (b) Feedback produces either one 

or two stable steady states. (c) The molecule number distribution is peaked around these 

states or flat at the bifurcation point. (d) Mapping to the Ising model reveals that the 

effective reduced temperature drives the distribution to the unimodal (θ > 0) or bimodal (θ < 

0) state [see (c)], while the effective field h biases the distribution toward high (h > 0) or low 

(h < 0) molecule number. Parameters: H = 3 and nc = 100 in (b), (c), and (d); h = 0 in (b) and 

(c); and θ = 0 in (d) (see also Appendix A).
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FIG. 2. 
(a) Heat capacity [Eq. (6)] is minimized at the bifurcation point, corresponding to exponent 

α = 0. (b) The location of the minimum approaches θ∗ → 0 as nc → ∞, as expected. 

Parameters: H = 3, nc = 500, and h = 0.
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FIG. 3. 
Application of the theory to immune cell data. Upon administration of either (a) MEK or (b) 

SRC inhibitor, experimental distributions of T cell ppERK fluorescence intensity are 

unimodal (bimodal) for high (low) doses. Insets show distributions of log intensity for 

clarity. (c),(d) Feedback functions calculated from the experimental distributions 

correspondingly exhibit either one or two stable states. (e)–(g) Effective thermodynamic 

quantities calculated from the data vary with drug dose in distinct ways for each drug. The 

results in (c)–(g) corroborate those in [4], but with a much simpler framework that has three 

parameters instead of five and requires no fitting or prior biological knowledge of the 

system. Error bars: standard error from filter windows 25 ⩽ W ⩽ 35 (see Appendix D).
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FIG. 4. 
Estimation of molecule number by comparing heat capacity between theory and 

experiments. (a)–(d) Rough estimate of fluorescence-to-molecule-number conversion factor 

I1 (see titles) obtained by comparing depths of theory and experimental minima. “Hill” 

refers to the theoretical curve produced by Hill-function feedback as in Eq. (A9). Different 

symbols correspond to different drugs. See Appendix C for drugs (shape) and doses (size). 

(e) More precise estimate obtained from plotting the sum of squared errors (SSE) for data 

within −Δθ ⩽ θ ⩽ Δθ and fitting to parabola (see Appendix D for details). Here Δθ = 0.05. 

(f) Estimate is insensitive to the value of θ. Theory parameters: H = 4, h = 0, and nc = Ic/I1, 

where Ic = 730 is the average value across all experiments.
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FIG. 5. 
Verification that indirect feedback does not qualitatively change modeling assumptions or 

results. (a) C and θ calculated from the extended model with indirect feedback. (b) C and θ 
inferred assuming the feedback is direct [Eq. (4)]. Compare with Fig. 2(a). Parameters: nc = 

100 and h = 0.
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FIG. 6. 
Scaling exponents β, γ, and δ for biochemical feedback models agree with those of the 

mean-field Ising universality class. Parameters: H = 3 and nc = 500.
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FIG. 7. 
Demonstration of analysis procedure for 3.4 nM of MEK inhibitor PD325901. Parameters: L 
= 100 and W = 25.
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TABLE I.

Drugs and dose ranges of experimental data [4]. Doses are spaced logarithmically. Figure 3 uses PD325901 

and dasatinib. Figure 4 uses all drugs.

Drug Inhibits Dose range (nM) Shape in Fig. 4

PD325901 MEK 0.09–1000 Up triangle

AZD6244 MEK 2.4–5000 Down triangle

Trametinib MEK 0.5–1000 Right triangle

Dasatinib SRC 0.09–1000 Circle

Bosutinib SRC 0.5–1000 Square

PP2 SRC 24–50 000 Diamond
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