Table 2.
Feature Name | Univariate Analysis (AUC) |
---|---|
IBEX | |
135-1Correlation | 0.74 |
LocalRangeStd | 0.72 |
1GaussAmplitude | 0.66 |
VoxelSize | 0.62 |
-333-4ClusterShade | 0.62 |
Pyradiomics | |
log-σ-2-0-mm-3D_firstorder_Minimum | 0.72 |
log- σ2-0-mm-3D_glszm_SizeZoneNonUniformityNormalized | 0.70 |
log-σ2-0-mm-3D_glcm_InverseVariance | 0.68 |
wavelet-LHL_firstorder_Skewness | 0.67 |
wavelet-LHH_firstorder_Skewness | 0.65 |
wavelet-HHH_glszm_SmallAreaEmphasis | 0.65 |
CIFE | |
DWF_Z_H | 0.72 |
Intensity_Minimum | 0.71 |
Gabor_Max_Z | 0.68 |
Intensity_Skewness | 0.65 |
Optimal features are listed for each individual extractor. These features are then used to build prediction models in the multivariate analysis. Each feature has a correlation coefficient <0.2 and an AUC > 0.6.