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A
B
ST

R
A
C
T We have previously characterized the reproducibility of brain tumor relative cerebral blood volume

(rCBV) using a dynamic susceptibility contrast magnetic resonance imaging digital reference object
across 12 sites using a range of imaging protocols and software platforms. As expected, reproducibil-
ity was highest when imaging protocols and software were consistent, but decreased when they were
variable. Our goal in this study was to determine the impact of rCBV reproducibility for tumor grade
and treatment response classification. We found that varying imaging protocols and software plat-
forms produced a range of optimal thresholds for both tumor grading and treatment response, but the
performance of these thresholds was similar. These findings further underscore the importance of
standardizing acquisition and analysis protocols across sites and software benchmarking.

INTRODUCTION
The National Cancer Institute’s Quantitative Imaging Network
(QIN), Radiological Society of North America’s Quantitative
Imaging Biomarkers Alliance (QIBA), and the National Brain
Tumor Society’s (NBTS) Jumpstarting Brain Tumor Drug
Development Coalition all have initiatives aiming to standardize
Dynamic Susceptibility Contrast (DSC) MRI protocols and post-
processing methods. Standardization of relative cerebral blood
volume (rCBV) as a quantitative biomarker for glioma care is
warranted because of the increased adoption of rCBV into

multisite clinical trials and protocol variability could impact its
use as a reliable biomarker of response (1–3). For example, a
recent systematic meta-analysis of 26 published studies found
that although DSC-MRI accurately distinguishes tumor recur-
rence from post-treatment radiation effects within a given study,
inconsistency of DSC-MRI protocols between institutions led to
substantial variability in reported optimal thresholds. These
resulting inconsistencies emphasize the need for greater consis-
tency before a specific quantitative DSC-MRI strategy is adopted
across institutions for routine clinical use (4). To overcome this
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challenge, the American Society of Functional Neuroradiology
(ASFNR) provided a minimal set of protocol recommendations
for the acquisition of clinical DSC-MR images (5). In addition,
the aforementioned initiatives, e.g. QIBA, are working to release
more comprehensive recommendations on imaging protocol
and postprocessing methods (O. Wu, Personal Communication,
January 24, 2020).

In a previously published study involving 12 sites within the
NCI’s Quantitative Imaging Network (QIN), variable imaging pro-
tocols (IPs) and postprocessing methods (PMs) were found to
reduce rCBV reproducibility (6). In contrast, another QIN study
showed that if acquisition and preprocessing steps were held
constant, the variability between sites greatly diminished such
that a global threshold to distinguish low- from high-grade tu-
mor could be identified (7). This study extends these previous
investigations by evaluating the potential impact of variable IPs
and PMs on 2 clinical use cases, namely, classification of brain
tumor grade and treatment response assessment. Virtual tumors
were designed to reflect each one of these clinical cases using a
DSC digital reference object (DRO) representative of a wide range
of glioma MR signals. Using these virtual patients, the aim of this
study was to evaluate the influence of the previously character-
ized rCBV reproducibility as a classifier for tumor grade and
treatment response.

MATERIALS AND METHODS
The previously validated population-based DRO used in this
study encompasses 10 000 unique DSC-MRI tumor voxels and
was simulated for each IP provided by the 12 participating QIN
sites (6, 8). In addition to these site-specific DROs, an additional
DRO was simulated using parameters from the standard imaging
protocol (SIP) as defined by the ASFNR (5). All sites used their
PM of choice to compute rCBV maps from these simulated DROs.
In summary, the majority of IPs submitted were similar in align-
ment with the ASFNR recommendations (5), whereas a variety of
software platforms were used (IB Neuro, nordicICE, PGUI, 3D
Slicer, Philips IntelliSpace Portal [ISP], and in-house processing
scripts). A detailed description of each site’s IPs and PMs are
tabulated in Bell et al.’s (6) study, and tables are reprinted with
permission (see online supplemental Tables 1 and 2).

As outlined in the previously published manuscript, there
were 3 phases to this study to evaluate the effects of various IPs
and PMs (6). Phase I (“site IP w/constant PM”) required the man-
aging center to process rCBV maps for each site-specific DRO.
Computation of rCBV was based on previously optimized meth-
ods (9). Some sites provided more than one IP owing to differen-
ces in field strengths (n = 15 [3.0 T], n = 4 [1.5 T]), dosing schemes
(n = 5 [0.10 0.10] mmol/kg; n =4 [0 0.10] mmol/kg]; n= 3 [0.025
0.10] mmol/kg; n= 2 [0.05 0.10] mmol/kg); n = 1 [0.025 0.075],
[0.033 0.066], [0.05 0.05], [0.10 0.05] mmol/kg), and acquisition
methods (n = 17 [single-echo]; n= 2 [dual-echo]). In this study’s
phase, 19 different DROs were processed by the managing center
(see online supplemental Table 1). Phase II (“constant IP w/site
PM”) required each site to process rCBV maps from the standard
protocol using their PM of choice. Two sites chose to process
rCBV maps using multiple software platforms (see online supple-
mental Table 2), resulting in 17 submitted rCBV maps (see online

supplemental Table 1; second to last column). Phase III (“site IP
w/site PM”) allowed each site to process their own rCBV maps
using their IP and PM, which yielded 25 rCBV maps (see online
supplemental Table 1—last column). In total, across all 3 phases,
61 rCBV maps were analyzed in this study.

Virtual Tumor Development
Two clinical data sets were identified for each clinical case inves-
tigated in this study (more details for each case appear after this
paragraph). The mean tumor rCBV values were known a priori
for each subject in each data set. The managing center simulated
a reference DRO to match the imaging parameters used in the
selected clinical data set and then processed these time curves
into an rCBV map using previously detailed methods (8, 9). In
general, virtual tumors were created by selecting 25 pixels of the
10 000 pixels possible from the rCBV map (produced by the
reference DRO) such that the mean of these pixels matched
each clinical patient. Specifically, this was done by first
applying a threshold to identify the DRO pixels whose rCBV
value matched each patient-specific mean rCBV to within
620%, allowing for intratumor heterogeneity. From this pool
of DRO indices, 25 voxels were randomly selected. Repeat tu-
mor indices were not allowed for each consecutive simulated
tumor. Once these 25 pixels were selected, the mean virtual
tumor rCBV values could be found. To evaluate the effects of
varying IPs and PMs on tumor grading, these masks were
then retrospectively applied to all the 61 submitted rCBV
maps for each of the 3 phases outlined above. Specific details
for each aim of the study are outlined below, including a
flowchart to demonstrate the steps involved (Figure 1).

Case 1: Tumor Grade Classification. A publicly available data
set on The Cancer Imaging Archive (TCIA) was used to study
rCBV-based classification of high-grade gliomas (HGGs) and
low-grade gliomas (LGG)s (10, 11). This data set contains 49
DSC-MRI images of low- (LGG; n=13) and high-grade (HGG;
n=36) glial brain lesions with previously published mean rCBV
values for each tumor (7). In the end, 24 LGG and 72 HGG virtual
tumor masks were simulated.

Case 2: Consistency of Longitudinal rCBV Differences Owing
to Treatment. The data set used for Case 2 originated from a pre-
vious study by Schmainda et al. (3), in which rCBV changes meas-
ured in HGGs undergoing Bevacizumab therapy were shown to
be predictive of overall survival. This data set contains 36 subjects
with 2 imaging time points, namely, pretreatment (preTx) and
posttreatment (postTx). The authors provided the mean rCBV
value for each subject at each time point. Using this information,
virtual tumors were created for each time point for 35 subjects for
a total of 70 virtual tumors. In this cohort, 24 subjects were identi-
fied as responders (determined by overall survival) and 11 sub-
jects as nonresponders. The mean percent difference in rCBV was
then calculated by (rCBVpostTx � rCBVpreTx)/rCBVpreTx � 100%. In
the end, 68 virtual masks (preTx and postTx) were simulated for
23 responders and 11 nonresponders.

Statistical Analysis
The ability for rCBV to classify tumor grade and therapy response
was evaluated using receiver operating characteristics (ROC)
analysis. From the ROC analysis, the area under the ROC curve
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(AUROC) and optimal threshold (defined by where the sensitivity
and specificity from the ROC analysis overlap) are reported for
each submitted DRO. Boxplots were used to show the distribution
of the ROC results. The boxplot lines (“whiskers”) are drawn from
the 25th and 75th percentiles of the samples, and any observa-
tions outside of these are considered outliers. All statistical tests
were done in MATLAB (The MathWorks, Inc., Natick, MA).

RESULTS
The distributions of rCBV for both virtual cases were similar to
their respective clinical data sets (Figures 2–3). For tumor grading
(Figure 2B), the mean values were within 10% and 3% for the
LGG and HGG populations, respectively. For treatment response
(Figure 3B), the mean values were within 0.35% and 1.5% for
the preTx and postTx, respectively. Results specific to each case
are detailed below.

Boxplots of the ROC results are summarized in Figure 4
(optimal thresholds) and Figure 5 (AUROC) for each clinical use
case. In general, the range of thresholds increases for phase II
and phase III when compared with phase I of the study highlight-
ing the effect of varying PMs. The range of optimal thresholds is

narrower for phase I where only IPs differed. Also noted are the
wider distributions of optimal thresholds for the tumor grading
(Figure 4A) compared with those for treatment response (Figure
4B). For tumor grading (Figure 4A), the IP without a preload for a
single-echo acquisition (phase I) and the second definition from
Philip’s ISP (phase II) result in optimal thresholds that are deemed
outliers. For treatment response (Figure 4B), all IP with a preload
<1 standard dose for a single-echo acquisition (phase I) and
PMs’ methods that included 3DSlicer and in-house scripts (phase
II) resulted in optimal thresholds that markedly differed from the
rest of the population. Importantly, the clinical performance of
rCBV was highly consistent across sites that used similar IPs and
PMs.

Despite the heterogeneity in optimal thresholds for varying
IPs and PMs, tighter boxplot distributions in AUROC results are
observed across all 3 phases of the study (Figure 5). In general,
the distribution of AUROC is the narrowest when a constant PM
is used. There are clear outliers for each clinical use case and all
result in a decreased AUROC. For tumor grading (Figure 5A), the
4 outliers observed for phases II and III are those that used PGUI
and an in-house script. Note that the optimal threshold outliers
do not correlate to the AUROC outliers.

Figure 1. A flowchart of the steps involved to create the
virtual tumors from the digital reference object (DRO).

Figure 2. Histogram distributions of mean
relative cerebral blood volume (rCBV) the for
The Cancer Imaging Archive (TCIA) data set
(A) and the virtual tumors (B) for tumor grade:
low-grade glioma (LGG) (blue) and high-
grade glioma (HGG) (red). The rCBV distribu-
tions for both populations are similar (as listed
within the legend), with slight deviations noted
for very low and high mean rCBV tumors.
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DISCUSSION/CONCLUSION
Previously published results show that variable IPs and PMs
reduce rCBV reproducibility (6). In this follow-up study, we fur-
ther explore how reduced reproducibility affects the potential
clinical utility of rCBV with the overarching goal to improve the

utilization of quantitative imaging biomarkers extracted from
DSC-MRI in neuro-oncology.

The clinical performance of tumor grading and treatment
response is generally not diminished with reduced rCBV reprodu-
cibility owing to variations in IP and PM, highlighting the

Figure 3. Histogram distributions of the mean rCBV, pre- (preTx) and posttreatment (postTx), for the clinical data set (A)
and the virtual tumors (B): preTx (blue) and postTx (red). The rCBV distributions for both populations are similar (as listed
within the legend).

Figure 4. Boxplots of the optimal rCBV threshold needed for tumor grade (A) and treatment response (B) classification
grouped by the 3 phases of this study. Individual measurements are overlaid on the boxplot to better visualize the distribu-
tion. Outliers are indicated by red plus signs. Wider distributions of optimal thresholds are seen for phases II and III where
sites use a variety of software packages for rCBV calculation.
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robustness of rCBV as a biomarker. All imaging protocols submit-
ted resulted in similar AUROC (�0.8 for tumor grading and �0.9
for treatment response) when a standardized PM was applied.
However, the IP with a preload of <1 standard dose resulted in
optimal threshold values that differed from all other IPs. This most
likely resulted from an underestimation of rCBV caused by insuffi-
ciency of the leakage correction algorithms to account for the con-
siderable T1 leakage effects that arise in the absence of a preload
and optimal pulse sequence parameters. When IP was controlled,
the majority of the PMs used in this study yielded rCBV values
that were effective classifiers for tumor grading and treatment
response, including IB Neuro, nordicICE, 3D Slicer, and Philips
ISP. However, 2 of these 4 software packages (disregarding in-
house scripts results) produced different optimal thresholds that
differed from the rest: 3D Slicer for the treatment response case
and Philips ISP for the tumor grading case. The methods that
deviated from the mean AUROC included PGUI (AUROC �0.60
for both clinical cases) and an in-house processing script
(AUROC is 0.72 and 0.80 for tumor grading and treatment
response, respectively). This result highlights the importance
of benchmarking software used for DSC-MRI analysis. The
narrower distributions of optimal thresholds and AUROC for
the treatment response use case, when compared to tumor
grading, are most likely owing to the percent difference calcu-
lation partially offsetting protocol-specific rCBV variability.
The rCBV variability is most likely equally sensitive to varia-
tions in rCBV due to different imaging protocols and postpro-
cessing methods. Note that this study did not analyze the
effect of protocol variations between 2 imaging time points.

Taken together, results of the 2 QIN DSC-MRI DRO studies
strongly justify the continuation of current efforts to standardize

IPs and PMs, particularly when rCBV is to be used as a quantita-
tive biomarker of treatment response in multisite clinical trials.
Even though individual site protocols maintained their clinical
performance utility, the site-to-site threshold variability indi-
cates applying the same threshold across sites using different PM
is not currently recommended. The lack of consistency of thresh-
olds between PMs even when the same IP and leakage correction
algorithms are used (most likely owing to differences in imple-
mentation) highlight the need for benchmarking software pack-
ages. Because it is unlikely that all vendors can provide exactly
the same algorithms and implementation, we propose 2 levels of
validation. The first level consists of performing the scientific
studies to validate that the software provides clinically meaning-
ful results. The second is to use a benchmark calibration method,
such as the DRO used for these studies, so that each vendor can
provide the threshold that should be used for a particular test.
Only in that way will we have both the freedom to select the soft-
ware of our liking and carry out cross-site studies using quantita-
tive measures.

In conclusion, results from this study show that reduced
multisite rCBV reproducibility owing to heterogeneous IPs and
PMs would confound the reliable use of this biomarker in clinical
trials, and further emphasize the need for harmonization of ac-
quisition and analysis methods.

Supplemental Materials
Supplemental Table 1: https://doi.org/10.18383/j.tom.2020.00012.
sup.01
Supplemental Table 2: https://doi.org/10.18383/j.tom.2020.00012.
sup.02

Figure 5. Boxplots of the AUROC for tumor grade (A) and treatment response (B) classification grouped by the 3 phases
of this study. Individual measurements are overlaid on the boxplot to better visualize the distribution. Outliers are indi-
cated by red plus signs. Slightly wider distributions of area under the receiver operating characteristics (AUROCs) are
seen for phases II and III where sites use a variety of software packages for rCBV calculation. Outliers consistently show a
decrease in AUROC.
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