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Abstract

We present a self-supervised approach to training convolutional neural networks for dense depth 

estimation from monocular endoscopy data without a priori modeling of anatomy or shading. Our 

method only requires monocular endoscopic videos and a multi-view stereo method, e. g., 

structure from motion, to supervise learning in a sparse manner. Consequently, our method 

requires neither manual labeling nor patient computed tomography (CT) scan in the training and 

application phases. In a cross-patient experiment using CT scans as groundtruth, the proposed 

method achieved submillimeter mean residual error. In a comparison study to recent self-

supervised depth estimation methods designed for natural video on in vivo sinus endoscopy data, 

we demonstrate that the proposed approach outperforms the previous methods by a large margin. 

The source code for this work is publicly available online at https://github.com/lppllppl920/

EndoscopyDepthEstimation-Pytorch.
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I. Introduction

MINIMALLY invasive procedures in the head and neck, e. g., functional endoscopic sinus 

surgery, typically employ surgical navigation systems to provide surgeons with additional 

anatomical and positional information. This helps them avoid critical structures, such as the 

brain, eyes, and major arteries, that are spatially close to the sinus cavities and must not be 

disturbed during surgery. Computer vision-based navigation systems that rely on the intra-

operative endoscopic video stream and do not introduce additional hardware are both easy to 

integrate into clinical workflow and cost-effective. Such systems generally require 

registration of pre-operative data, such as CT scans or statistical models, to the intra-

operative video data [1]–[4]. This registration must be highly accurate to guarantee the 

reliable performance of the navigation system. To enable an accurate registration, a feature-

based video-CT registration algorithm requires accurate and sufficiently dense intra-

operative 3D reconstructions of the anatomy from endoscopic videos. Obtaining such 

reconstructions is not trivial due to problems such as specular reflectance, lack of 

photometric constancy across frames, tissue deformation, and so on.

A. Contributions

In this paper, we build upon our prior work [5] and present a self-supervised learning 

approach for single-frame dense depth estimation in monocular endoscopy. Our 

contributions are as follows: (1) To the best of our knowledge, this is the first deep learning-

based dense depth estimation method that only requires monocular endoscopic images 

during both training and application phases. In particular, it neither needs any manual data 

labeling, scaling, nor any other imaging modalities such as CT. (2) We propose several novel 

network loss functions and layers that exploit information from traditional multi-view stereo 

methods and enforce geometric relationships between video frames without the requirement 

of photometric constancy. (3) We demonstrate that our method generalizes well across 

different patients and endoscope cameras.

B. Related work

Several methods have been explored for depth estimation in endoscopy. These can be 

grouped into traditional multi-view stereo algorithms and fully supervised learning-based 

methods.

Multi-view stereo methods, such as Structure from Motion (SfM) [1] and Simultaneous 

Localization and Mapping (SLAM) [6], are able to simultaneously reconstruct 3D structure 

while estimating camera poses in feature-rich scenes. However, the paucity of features in 

endoscopic images of anatomy can cause these methods to produce sparse and unevenly 

distributed reconstructions. This shortcoming, in turn, can lead to inaccurate registrations. 

Mahmoud et al. propose a quasi-dense SLAM-based method that explores local information 

around sparse reconstructions from a state-of the-art SLAM system [7]. This method 
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densifies the sparse reconstructions from a classic SLAM system and is also reasonably 

accurate. However, this approach is potentially sensitive to hyper-parameters because of the 

normalized cross-correlation-based matching of image patches.

Convolutional neural networks (CNN) have shown promising results in high-complexity 

problems including general scene depth estimation [8], which benefits from local and global 

context information and multi-level representations. However, using CNN in a fully 

supervised fashion in endoscopic videos is challenging because dense ground truth depth 

maps that correspond directly to the real endoscopic images are hard to obtain. There are 

several simulation-based works that try to solve this challenge by training on synthetic dense 

depth maps generated from patient-specific CT data. Visentini-Scarzanella et al. use 

untextured endoscopy video simulations from CT data to train a fully supervised depth 

estimation network and rely on another transcoder network to convert real video frames to 

texture independent ones required for depth prediction [9]. This method requires 

perendoscope photometric calibration and complex registration designed for narrow tube-

like structures. In addition, it remains unclear whether this method will work on in-vivo 

images since validation is limited to two lung nodule phantoms. Mahmood et al. simulate 

pairs of color images and dense depth maps from CT data for depth estimation network 

training. During the application phase, they use a Generative Adversarial Network to convert 

real endoscopic images to simulation-like ones and then feed them to the trained depth 

estimation network [10]. In their work, the appearance transformer network is trained 

separately by simply mimicking the appearance of simulated images but without knowledge 

of the target task, i. e., depth estimation, which can lead to decreased performance up to 

incorrect depth estimates. Besides simulation-based methods, hardware-based solutions exist 

that may be advantageous in the sense that they usually do not rely on pre-operative imaging 

modalities [11], [12]. However, incorporating depth or stereo cameras into endoscopes is 

challenging and, even if possible, these cameras may still fail to acquire dense and accurate 

enough depth maps from endoscopic scenes for fully-supervised training because of the non-

Lambertian reflectance properties of tissues and the paucity of features.

Several self-supervised approaches for single-frame depth estimation have been proposed in 

the generic field of computer vision [13]–[16]. However, based on our observations and 

experiments, these methods are not generally applicable to endoscopy because of several 

reasons. First, photometric constancy between frames assumed in their work is not available 

in endoscopy. The camera and light source move jointly, and therefore, the appearance of the 

same anatomy can vary substantially with different camera poses, especially for regions 

close to the camera. Second, appearance-based warping loss suffers from gradient locality, 

as observed in [15]. This can result in network training to get trapped in bad local minima, 

especially for textureless regions. Compared to natural images, the overall scarcer and more 

homogeneous texture of tissues observed in endoscopy, e. g., sinus endoscopy and 

colonoscopy, makes it even more difficult for the network to obtain reliable information 

from photometric appearance. Moreover, estimating a global scale from monocular images 

is inherently ambiguous [17]. In natural images, the scale can be estimated using learned 

prior knowledge about sizes of common objects, but there are no such visual cues in 

endoscopy, especially for images where instruments are not present. Therefore, approaches 
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that try to jointly estimate depths and camera poses with correct global scales are unlikely to 

work in endoscopy.

The first and second points above demonstrate that the recent self-supervised approaches 

cannot enable the network to capture long-range correlation in either spatial or temporal 

dimension in imaging modalities where no lighting constancy is available, e. g., endoscopy. 

On the other hand, traditional multi-view stereo methods, such as SfM, are capable of 

explicitly capturing long-range correspondences with illumination-invariant feature 

descriptors, e. g., Scale-Invariant Feature Transform (SIFT), and global optimization, e. g., 

bundle adjustment. We argue that the estimated sparse reconstructions and camera poses 

from SfM are valuable and should be integrated into the network training of monocular 

depth estimation. We propose novel network loss functions and layers that enable the 

integration of information from SfM and enforce the inherent geometric constraints between 

depth predictions of different viewpoints. Since this approach considers relative camera and 

scene geometry, it does not assume lighting constancy. This makes our overall design 

suitable for scenarios where lighting constancy cannot be guaranteed. Because of the 

inherent difficulty of global scale estimation of monocular camera-based methods, we elect 

to only estimate depth maps up to a global scale. This not only enables self-supervised 

learning from results of SfM, where true global scales cannot be estimated, but also makes 

the trained network generalizable across different patients and scope cameras, which is 

confirmed by our experiments. We introduce our method in terms of data preparation, 

network architecture, and loss design in Section II. Experimental setup and results are 

demonstrated in Section III, where we show that our method works on unseen patients and 

cameras. Further, we show that our method outperforms two recent self-supervised depth 

estimation methods by a large margin on in vivo sinus endoscopy data. In Section IV and V, 

we discuss the limitations of our work and future directions to explore.

II. Methods

In this section, we describe methods to train convolutional neural networks for dense depth 

estimation in monocular endoscopy using sparse self-supervisory signals derived from SfM 

applied to video sequences. We explain how self-supervisory signals from monocular 

endoscopy videos are extracted, and introduce our novel network architecture and loss 

functions to enable network training based on these signals. The overall training architecture 

is shown in Fig. 1, where all concepts are introduced in this section. Overall, the network 

training depends on loss functions to backpropagate useful information in the form of 

gradients to update network parameters. The loss functions are Sparse Flow Loss and Depth 
Consistency Loss introduced in the Loss Functions section. To use these two losses to guide 

the training of depth estimation, several types of input data are needed. The input data are 

endoscopic video frames, camera poses and intrinsics, sparse depth maps, sparse soft masks, 

and sparse flow maps, which are introduced in the Training Data section. Finally, to convert 

network predictions obtained from the Monocular Depth Estimation to proper forms for loss 

calculation, several custom layers are used. The custom layers are Depth Scaling Layer, 
Depth Warping Layer, and Flow from Depth Layer, which are introduced in the Network 

Architecture section.
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A. Training Data

Our training data are generated from unlabeled endoscopic videos. The generation pipeline 

is shown in Fig. 2. The pipeline is fully automated given endoscopic and calibration videos 

and could, in principle, be computed on-the-fly by replacing SfM with SLAM-based 

methods.

Data Preprocessing—A video sequence is first undistorted using distortion coefficients 

estimated from the corresponding calibration video. A sparse reconstruction, camera poses, 

and the point visibility are estimated by SfM [1] from the undistorted video sequence, where 

black invalid regions in the video frames are ignored. To remove extreme outliers in the 

sparse reconstruction, point cloud filtering is applied. The point visibility information, 

appeared as b below, is smoothed out by exploiting the continuous camera movement 

present in the video. The sparse-form data generated from SfM results are introduced below.

Sparse Depth Map—Monocular depth estimation module, shown in Fig. 1, only predicts 

depths up to a global scale. However, to enable valid loss calculation, the scale of the depth 

prediction and the SfM results must match. Therefore, the sparse depth map introduced here 

is used as anchor to scale the depth prediction in the Depth Scaling Layer. To generate 

sparse depth maps, 3D points from the sparse reconstruction from SfM are projected onto 

image planes with camera poses, intrinsics, and point visibility information. The camera 

intrinsic matrix is K. The camera pose of frame j with respect to the world coordinate is Tw
j , 

where w stands for world coordinate system. The homogeneous coordinate of nth 3D point 

of the sparse reconstruction in the world coordinate is pnw. Note that n can be the index of 

any point in the sparse reconstruction. Frame indices used in the following equations, e. g., j 
and k, can be any indices within the same video sequence. The difference of j and k is within 

a specified range to keep enough region overlap. The coordinate of nth 3D point w.r.t. frame 

j, pnj, is

pnj = Tw
j pnw . (1)

The depth of nth 3D point w.r.t. frame j, znj, is the z-axis component of pnj. The 2D projection 

location of nth 3D point w.r.t. frame j, unj, is

unj = K pnj

znj
. (2)

We use bn
j = 1 to indicate that nth 3D point is visible to frame j and bn

j = 0 to indicate 

otherwise. Note that the point visibility information from SfM is used to assign the value to 

bn
j. The sparse depth map of frame j, Zj

s, is

Zj
s unj =

znj if bn
j = 1

0 if bn
j = 0

, where (3)
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s stands for word ”sparse”. Note that for equations in the Training Data section, they 

describe the value assignments for regions where points of the sparse reconstruction project 

onto. For regions where no points project onto, the values are set to zero.

Sparse Flow Map—The sparse flow map is used in the Sparse Flow Loss introduced 

below. Previously, we directly used the sparse depth map for loss calculation [5] to exploit 

self-supervisory signals of sparse reconstructions. This makes the training objective, i. e., 

sparse depth map, for one frame fixed and potentially biased. Unlike the sparse depth map, 

sparse flow map describes the 2D projected movement of the sparse reconstruction, which 

involves camera poses of two input frames with random frame interval. By combining the 

camera trajectory and sparse reconstruction, and considering all pair-wise frame 

combinations, the error distribution of the new objective, i. e., sparse flow map, for one 

frame is more likely to be unbiased. This makes the network less affected by the random 

noise in the training data. We observe that the depth predictions are naturally smooth with 

edge-preserving for the model trained with SFL, which removes the need of explicit 

regularization during training, e. g., smoothness loss proposed in Zhou et al. [14] and Yin et 
al. [15].

The sparse flow map, Fj, k
s , represents the 2D projected movement of the sparse 

reconstruction from frame j to frame k.

Fj, k
s unj =

unk − unj

(W , H)⊤ if bn
j = 1

0 if bn
j = 0

, where (4)

H and W are the height and width of the frame, respectively.

Sparse Soft Mask—A sparse mask enables the network to exploit the valid sparse signals 

in the sparse-form data and ignore the rest of the invalid regions. The soft weighting is 

defined before training and accounts for the fact that the error distribution of individual 

points in the results of SfM is different and mitigates the effect of reconstruction errors from 

SfM. It is designed with the intuition that a larger number of frames used in triangulating 

one 3D point in the bundle adjustment of SfM usually means higher accuracy. The sparse 

soft mask is used in the SFL introduced below. The sparse soft mask of frame j, Mj, is 

defined as

Mj unj = 1 − e−∑ibni /σ if bn
j = 1

0 if bn
j = 0

, where (5)

i iterates over all frames in the video sequence where the SfM is applied. σ is a hyper-

parameter based on the average number of frames used to reconstruct each sparse point in 

SfM.
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B. Network Architecture

Our overall network architecture shown in Fig. 1 consists of a two-branch Siamese network 

[19] in the training phase. It relies on sparse signals from SfM and geometric constraints 

between two frames to learn to predict dense depth maps from single endoscopic video 

frames. In the application phase, the network has a simple single-branch architecture for 

depth estimation from a single frame. All the custom layers below are differentiable so that 

the network can be trained in an end-to-end manner.

Monocular Depth Estimation—This module uses a modified version of the 57-layer 

architecture in [18], known as DenseNet, which achieves comparable performance with 

other popular architectures with a large reduction of network parameters by extensively 

reusing preceding feature maps. We change the number of channels in the last convolutional 

layer to 1 and replace the final activation, which is log-softmax, with linear activation to 

make the architecture suitable for the task of depth prediction. We also replace the 

transposed convolutional layers in the up transition part of the network with nearest neighbor 

upsampling and convolutional layers to reduce the checkerboard artifact of the final output 

[20].

Depth Scaling Layer—This layer matches the scale of the depth prediction from 

Monocular Depth Estimation and the corresponding SfM results for correct loss calculation. 

Note that all operations of the following equations are element-wise except that Σ here is 

summation over all elements of a map. Zj′ is the depth prediction of frame j that is correct up 

to a scale. The scaled depth prediction of frame j, Zj, is

Zj = 1
∑Mj

∑ Mj
Zj

s

Zj′ + ϵ Zj′ , where (6)

ϵ is a hyper-parameter to avoid zero division.

Flow from Depth Layer—To use the sparse flow map generated from SfM results to 

guide network training with the SFL described later, the scaled depth map first needs to be 

converted to a dense flow map with the relative camera poses and the intrinsic matrix. This 

layer is similar to the one proposed in [15], where they use the produced dense flow map as 

the input to an optical flow estimation network. Here instead, we use it for the depth 

estimation training. The dense flow map is essentially a 2D displacement field describing a 

3D viewpoint change. Given the scaled depth map of frame j, and the relative camera pose 

of frame k w.r.t. frame j, Tj
k = (Rj

k, tjk), a dense flow map between frame j and k, Fj,k, can be 

derived. To demonstrate the operations in a parallelizable and differentiable way, the 

equations below are described in a matrix form. The 2D locations in frame j, (U, V), are 

organized as a regular 2D meshgrid. The corresponding 2D locations of frame k are (Uk, 
Vk), which are organized in the same spatial arrangement as frame j. (Uk, Vk) is given by
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Uk = Zj A0, 0U + A0, 1V + A0, 2 + B0, 0
Zj A2, 0U + A2, 1V + A2, 2 + B2, 0

V k = Zj A1, 0U + A1, 1V + A1, 2 + B1, 0
Zj A2, 0U + A2, 1V + A2, 2 + B2, 0

. (7)

As a regular meshgrid, U consists of H rows of [0, 1, …, W − 1], and V consists of W 

columns of [0, 1, …, H − 1]T. A = KRj
kK−1 and B = − Ktjk. Am,n and Bm,n are elements of 

A and B at position (m, n), respectively. The dense flow map, Fj,k, for describing the 2D 

displacement field from frame j to frame k is

Fj, k = Uk − U
W , V k − V

H . (8)

Depth Warping Layer—The sparse flow map mainly provides guidance to regions of a 

frame where sparse information from SfM gets projected onto. Given that most frames only 

have a small percentage of pixels whose values are valid in a sparse flow map, most regions 

are still not properly guided. With the camera motion and camera intrinsics, geometric 

constraints between two frames can be exploited by enforcing consistency between the two 

corresponding depth predictions. The intuition is that the dense depth maps predicted 

separately from two neighbor frames are correlated because there is overlap between the 

observed regions. To make the geometric constraints enforced in the Depth Consistency 
Loss described later differentiable, the viewpoints of the depth predictions must be aligned 

first. Because a dense flow map describes a 2D projected movement of the observed 3D 

scene, Uk and Vk described above can be used to change the viewpoint of the depth Zk from 

frame k to frame j with an additional step, which is modifying Zk to describe the depth value 

changes due to the viewpoint changing. The modified depth map of frame k, Zk, is

Zk = Zk C2, 0U + C2, 1V + C2, 2 + D2, 0 , where (9)

C = KRk
jK−1, D = Ktk

j. With Uk, Vk and Zk, the bilinear sampler in [21] is able to generate 

the dense depth map Zk, j that is warped from the viewpoint of frame k to that of frame j

C. Loss Functions

We propose novel losses that can exploit self-supervisory signals from SfM and enforce 

geometric consistency between depth predictions of two frames.

Sparse Flow Loss (SFL)—To produce correct dense depth maps that agree with sparse 

reconstructions from SfM, the network is trained to minimize the differences between the 

dense flow maps and the corresponding sparse flow maps. This loss is scale-invariant 

because it considers the difference of the 2D projected movement in the unit of pixel, which 

solves the data imbalance problem caused by the arbitrary scales of SfM results. The SFL 

associated with frame j and k is calculated as
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ℒflow (j, k) = 1
∑Mj

∑ Mj Fj, k
s − Fj, k +

1
∑Mk

∑ Mk Fk, j
s − Fk, j .

(10)

Depth Consistency Loss (DCL)—Sparse signals from the SFL alone could not provide 

enough information to enable the network to reason about regions where no sparse 

annotations are available. Therefore, we enforce geometric constraints between two 

independently predicted depth maps. The DCL associated with frame j and k is calculated as

ℒconsist (j, k) =
∑ W j, k Zj − Zk, j

2

∑ W j, k Zj
2 + Zk, j

2 +

∑ W k, j Zk − Zj, k
2

∑ W k, j Zk
2 + Zj, k

2 ,

(11)

where Wj,k is the intersection of valid regions of Zj and the dense depth map Zj, k that is 

predicted from frame k but warped to the viewpoint of frame j. Because SfM results contain 

arbitrary global scales, this loss only penalizes the relative difference between two dense 

depth maps to avoid data imbalance.

Overall Loss—The overall loss function for network training with a single pair of training 

data from frames j and k is

ℒ(j, k) = λ1ℒflow (j, k) + λ2ℒconsist (j, k) . (12)

III. Experiment and Results

A . Experiment Setup

All experiments are conducted on a workstation with 4 NVIDIA Tesla M60 GPU, each with 

8 GB memory. The method is implemented using PyTorch [23]. The dataset contains 10 

rectified sinus endoscopy videos acquired with different endoscopes. The videos were 

collected from 8 anonymized and consenting patients and from 2 cadavers under an IRB 

approved protocol. The overall duration of videos is approximately 30 minutes. In all leave-

one-out experiments below, the data from 7 out of 8 patients are used for training. The data 

from the 2 cadavers are used for validation and the left-out patient is used for testing.

We select trained models for evaluation based on the network loss on the validation dataset. 

Overall, two types of evaluation are conducted. One is comparing point clouds converted 

from depth predictions with the corresponding surface models from CT data. The other is 

directly comparing depth predictions with the corresponding sparse depth maps generated 

from SfM results.
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For the evaluation related to CT data, we pick 20 frames with sufficient anatomical variation 

per testing patient. The depth predictions are converted to point clouds. The initial global 

scales and poses of point clouds before registration are manually estimated. To this end, we 

pick the same set of anatomical landmarks in both the point cloud and the corresponding CT 

surface model. 3000 uniformly sampled points from each point cloud are registered to the 

corresponding surface models generated from the patient CT scans [24] using Iterative Most 

Likely Oriented Point (IMLOP) algorithm [25]. We modify the registration algorithm to 

estimate a similarity transform with hard constraint during optimization. The constraint is to 

prevent the point cloud from deviating from the initial alignment too much, given that the 

initial alignments are approximately correct. The residual error is defined as the average 

Euclidean distance over all closest point pairs of the registered point cloud to the surface 

model. The average residual errors over all point clouds are used as the accuracy estimate of 

the depth predictions.

For the evaluation related to SfM, all video frames of the testing patient where a valid 

camera pose is estimated by SfM are used. Sparse depth maps are first generated from the 

SfM results. For a fair comparison, all depth predictions are first re-scaled with the 

corresponding sparse depth maps using the Depth Scaling Layer to match the scale of the 

depth predictions and SfM results. Because of the scale ambiguity of the SfM results, we 

only use common scale-invariant metrics for evaluation. The metrics are Absolute Relative 

Difference, which is defined as: 1
|T |Σy ∈ T y − y * /y *, and Threshold, which is defined as: % 

of y s.t. max
yi
yi*

,
yi*
yi

< σ, with three different σ, which are 1.25, 1.252, and 1.253 [15]. The 

metrics are only evaluated on the valid positions in the sparse depth maps and the 

corresponding locations in the depth predictions.

In terms of the sparsity of the reconstructions from SfM. The number of points per sparse 

reconstruction is 4687 (±6276). After smoothing out the point visibility information from 

SfM, the number of projected points per image from the sparse reconstruction is 1518 

(±1280). Given the downsampled image resolution, this means that 1.85 (±1.56)% of pixels 

in the sparse-form data have valid information. In the training and application phase, all 

images extracted from the videos are cropped to remove the invalid blank regions and 

downsampled to the resolution of 256×320. The range for smoothing the point visibility 

information in the Data Preprocessing section is set to 30. The frame interval of two frames 

that are randomly selected from the same sequence and fed to the two-branch training 

network is set to [5, 30]. We use extensive data augmentation during experiments to make 

the training data distribution unbiased to specific patients or cameras as much as possible, e. 

g., random brightness, random contrast, random gamma, random HSV shift, Gaussian blur, 

motion blur, jpeg compression, and Gaussian noise. During network training, we use 

Stochastic Gradient Descent (SGD) optimization with momentum set to 0.9 and cyclical 

learning rate scheduler [26] with learning rate from 1.0 e−4 to 1.0 e−3. The batch size is set 

to 8. The σ for generating the soft sparse masks is set to the average track length of points in 

the sparse reconstructions from SfM. The ϵ in the depth scaling layer is set to 1.0e−8. We 

train the network with 80 epochs in total. λ1 is always 20.0. For the first 20 epochs, λ2 is set 
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to 0.1 to mainly use SFL for initial convergence. For the remaining 60 epochs, λ2 is set to 

5.0 to add more geometric constraints to fine-tune the network.

B. Cross-patient Study

To show the generalizability of our method, we conduct 4 leave-one-out experiments where 

we leave out Patient 2, 3, 4, and 5, respectively, during training for evaluation. Data from 

other patients are not used for evaluation for the lack of corresponding CT scans. The 

quantitative evaluation results in Fig. 4 (a) show that our method achieves submillimeter 

residual errors for all testing reconstructions. The average residual error over testing frames 

from all 4 testing patients is 0.40 (±0.18) mm. For a better understanding of the accuracy of 

the reconstructions, the average residual error reported by Leonard et al. [1], where the same 

SfM algorithm that we use to generate training data is evaluated, is 0.32 (±0.28) mm. We use 

the same clinical data for evaluation as theirs in this work. Therefore, it shows our method 

achieves comparable performance with the SfM algorithm [1], though our reconstructions 

are estimated from single views.

C. Comparison Study

We conduct a comparison study to evaluate the performance of our method against two 

typical self-supervised depth estimation methods [14], [15]. We use the original 

implementation of both methods with a slight modification, where we omit the black invalid 

regions of endoscopy images when computing losses during training. In Fig. 3, we show 

representative qualitative results for all three methods. In Fig. 5, we overlay the CT surface 

model with the registered point clouds of one video frame from all three methods. We also 

compare our method with these methods quantitatively. Table. I, where the evaluation related 

to SfM is used, shows evaluation results of depth predictions from all three methods, 

revealing that our method outperforms both competing approaches by a large margin. Note 

that all video frames from Patient 2, 3, 4, and 5 are used for evaluation. For this evaluation, 

all four trained models in the Cross-patient Study are used to generate depth predictions for 

each corresponding testing patient to test the performance of our method. For Zhou et al.and 

Yin et al., the evaluation model sees all patient data except Patient 4 during training. 

Therefore, it is a comparison in favor of the competing methods. The bad performance of the 

competing methods on the training and testing dataset shows that it is not overfitting that 

makes the model performance worse than ours. Instead, these two methods cannot make the 

network exploit signals in the unlabeled endoscopy data effectively. The boxplot in Fig. 4 (b) 

shows the comparison results with the CT surface models. For the ease of experiments, only 

the data from Patient 4 are used for this evaluation. The average residual error of our 

reconstructions is 0.38 (±0.13) mm. For Zhou et al., it is 1.77 (±1.19) mm. For Yin et al., it 
is 0.94 (±0.36) mm. The extreme outliers of reconstructions from Zhou et al.are removed 

before error calculation.

We believe the main reason for the inferior performance of the two comparison methods lies 

in the choice of main driving power to achieve self-supervised depth estimation. Zhou et 
al.choose L1 loss to enforce photometric consistency between two frames. This assumes the 

appearance of a region does not change when the viewpoint changes, which is not the case 

in monocular endoscopy where the lighting source moves jointly with the camera. Yin et 
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al.use a weighted average of Structural Similarity (SSIM) loss and L1 loss. SSIM is less 

susceptible to brightness changes and pays attention to textural differences. However, since 

only simple statistics of an image patch are used to represent the texture in SSIM, the 

expressivity is not enough for cases with scarce and homogeneous texture, such as sinus 

endoscopy and colonoscopy, to avoid bad local minimal during training. This is especially 

true for the tissue walls present in the sinus endoscopy, where we observe erroneous depth 

predictions.

D. Ablation Study

To evaluate the effect of loss components, i. e., SFL and DCL, a network is trained with only 

SFL with Patient 4 for testing. The model trained in the Cross-patient Study with Patient 4 

for testing is used for comparison. Since DCL alone is not able to train a model with 

meaningful results, we do not evaluate its performance alone. The qualitative (Fig. 6) and 

quantitative (Fig. 4 (b)) results show that the model trained with SFL and DCL combined 

has a better performance than the model trained with SFL only. In terms of the evaluation 

results on data from Patient 4, the average residual error for the model trained with SFL only 

is 0.47 (±0.10) mm. In terms of the evaluation related to SfM, the values of metrics 

including absolute relative difference, threshold test with σ = 1.25, 1.252, 1.253 are 0.14, 

0.81, 0.98, 1.00, respectively. In comparison, the average residual error for the model trained 

with SFL and DCL is 0.38 (±0.13) mm. The values of the same metrics as above are 0.13, 

0.85, 0.98, 1.00, respectively, which shows slight improvement compared with the model 

trained with SFL only. Note that sparse depth maps are unevenly distributed and there are 

usually few valid points for evaluation on the tissue wall which DCL is observed to help 

most with. Therefore, the observed improvement in the evaluation related to SfM is not as 

large as the average residual error in the evaluation related to CT data.

IV. Discussion

The proposed method does not require any labeled data for training and generalizes well 

across endoscopes and patients. The method was initially designed for and evaluated on 

sinus endoscopy data, however, we are confident that it is also applicable to monocular 

endoscopy of other anatomies. However, some limitations of our method remain that need to 

be addressed in the future work. First, the training phase of our method relies on the 

reconstructions and camera poses from SfM. On the one hand, this means our method will 

evolve and improve with more advanced SfM algorithms becoming available. On the other 

hand, this means our method does not apply to cases where the SfM is not able to produce 

reasonable results. Whereas our method tolerates random errors and outliers from SfM to a 

certain extent, if large systematic errors occur in a large portion of the data, which could 

occur in cases of highly dynamic environments, our method will likely fail. Second, our 

method only produces dense depth maps up to a global scale. In scenarios where the global 

scale is required, additional information needs to be provided during the application phase to 

recover the global scale. This can be achieved e. g., by measuring known-size objects or 

using external tracking devices. In terms of the inter-frame geometric constraints, concurrent 

to our work, 3D ICP loss was proposed by [16] to enforce geometric consistency of two 

depth predictions. Because the Iterative Closest Point (ICP) used in their loss calculation is 
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not differentiable, they use the residual errors of the point cloud registration upon 

convergence as the difference approximation of two depth predictions. There are two 

advantages of the proposed DCL over the 3D ICP loss. First, it is able to handle errors 

between two depth predictions that can be compensated by a rigid transformation. Second, it 

does not involve a registration method which can potentially introduce erroneous 

information for training when a registration failure happens. Because the implementation of 

the 3D ICP loss is not released, no comparison is made in this work. Recently, a similar 

geometric consistency loss [27] has been proposed, which is subsequent to our work [5]. In 

terms of the evaluation, the average residual error reported in the evaluation related to CT 

data can lead to underestimated errors. This is because the residual error is calculated using 

pairs of closest points between the registered point clouds and the CT surface models. Since 

the distance between a closest point pair is always less than or equal to the distance between 

the true point pair, the overall error will be underestimated. Depending on the accuracy of 

SfM, the evaluation related to SfM may better represent the true accuracy for regions of the 

depth predictions that have valid correspondences in the sparse depth maps. But this metric 

has the disadvantage that regions where no valid correspondences exist in the sparse depth 

maps are not evaluated. The exact accuracy estimate is available only if the camera 

trajectory of a video is accurately registered to the CT surface model, which is what we 

currently do not have and will work on as a future direction.

V. Conclusion

In this work, we present a self-supervised approach to training convolutional neural 

networks for dense depth estimation in monocular endoscopy without any a priori modeling 

of anatomy or shading. To the best of our knowledge, this is the first deep learning-based 

self-supervised depth estimation method proposed for monocular endoscopy. Our method 

only requires monocular endoscopic videos and a multi-view stereo method during the 

training phase. In contrast to most competing methods for self-supervised depth estimation, 

our method does not assume photometric constancy, making it applicable to endoscopy. In a 

cross-patient study, we demonstrate that our method generalizes well to different patients, 

achieving submillimeter residual errors even when trained on small amounts of unlabeled 

training data from several other patients. In a comparison study, we show that our method 

outperforms two recent self-supervised depth estimation methods by a large margin on in 
vivo sinus endoscopy data. For future work, we plan to fuse depth maps from single frames 

to form an entire 3D model to make it more suitable for applications such as clinical 

anatomical study and surgical navigation.
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Fig. 1. Network architecture.
Our network in the training phase (top) is a self-supervised two-branch Siamese network. 

Two frames j and k are randomly selected from the same video sequence as the input to the 

two-branch network. To ensure enough region overlap between two frames, the frame 

interval is within a specified range. All concepts in the figure are introduced in Section II. 

The red dashed arrows are used to indicate the data-loss correspondence. The warped depth 

map from k to j describes the scaled depth map k viewed from the viewpoint of frame j. The 

dense flow map from j to k describes the 2D projection movement of the underlying 3D 

scene from frame j to k. During the application phase (bottom), we use the trained weights 

of the single-frame depth estimation architecture, which is a modified version of the 

architecture in [18], to predict a dense depth map that is accurate up to a global scale.
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Fig. 2. Training data generation pipeline.
The pipeline is able to generate training data from video sequences automatically. The 

symbols in the figure are defined in the Training Data section. The green dots shown in the 

figure stand for example projected 2D locations of the sparse reconstruction. These 

projected 2D locations are used to store valid information for all the sparse-form data, i. e., 

sparse depth map, sparse soft mask, and sparse flow map. A sparse depth map stores z-axis 

distances of the sparse reconstruction w.r.t. the camera coordinate. A sparse soft mask stores 

soft weights which indicate the confidence of individual points in the sparse reconstruction. 

A sparse flow map stores movement of projection locations of the sparse reconstruction 

between two frames. The generation of a sparse depth map and sparse flow map is shown in 

the second row of the figure, where two example projected locations are used to demonstrate 

the concept. The cyan dash arrows are used to indicate point correspondences between two 

frames. Note that the sparse-form data do not include the color information of the videos 

that is used to help with the visualization of the figure.
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Fig. 3. Qualitative result comparison between our method, Zhou et al. [14], and Yin et al. [15].
The first column consists of testing and training images, where the first 3 are testing ones. 

The second and third columns consist of corresponding depth maps and reconstructions 

from our method. The fourth and fifth columns are from Zhou et al.. The last two columns 

are from Yin et al.. For each displayed video frame, a sparse depth map is used to re-scale 

depth predictions from three methods. The scaled depth predictions are then normalized with 

the same max depth values for 2D visualization, where the same depth color coding as Fig. 1 

is used. The point clouds converted from the depth predictions are post-processed by a 

standard Poisson surface reconstruction method [22] for 3D visualization. It shows that our 

method performs consistently better than Zhou et al.and Yin et al.in both testing and training 

cases.
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Fig. 4. 
(a) Boxplot of residual errors for cross-patient study. The id’s of the testing patients are 

used as labels on the horizontal axis. All testing reconstructions have submillimeter residual 

errors. (b) Boxplot of residual errors for comparison study and ablation study. We 

compare our method with Zhou et al. [14] and Yin et al. [15] quantitatively using data from 

Patient 4 for testing. The difference between the residual errors from ours and the other two 

methods are statistically significant (p < .001). For ablation study, a model is trained with 

SFL only to compare with the model trained with both SFL and DCL.
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Fig. 5. Reconstructions registered to patient CT.
Alignment produced between our reconstruction and the corresponding patient CT (left) 

shows that our reconstruction adheres well to the contours of the patient CT and contains 

few outliers. Whereas alignment between the reconstructions from Zhou et al.(middle) and 

Yin et al.(right) for the same frame and the corresponding patient CT shows poor alignment 

and many outliers. Many points of the reconstructions by Zhou et al.and Yin et al.fall inside 

the regions where the endoscope cannot enter.

Liu et al. Page 20

IEEE Trans Med Imaging. Author manuscript; available in PMC 2021 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 6. Qualitative result for ablation study.
The results consist of training and testing images, where the first 2 images are seen during 

training. The second and third columns consist of corresponding depth maps and 

reconstructions from the model trained with only SFL. The fourth and fifth columns are 

from the model trained with both SFL and DCL. The result shows that DCL helps with both 

training and testing cases. It provides additional guidance to regions where sparse 

reconstructions from SfM are either inaccurate, e. g., regions with specularity in the first 

row, or missing, e. g., regions near the boundary in the second and third row.
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TABLE I

Evaluation with SfM results*

Method Absolute rel. diff.
Threshold

σ = 1.25 σ = 1.252 σ = 1.253

Ours 0.20 0.75 0.93 0.98

Zhou et al. [14] 0.66 0.41 0.68 0.83

Yin et al. [15] 0.41 0.04 0.78 0.89

*
The model performance on data from Patient 2, 3, 4, and 5 is evaluated with two metrics, which are Absolute Relative Difference and Threshold 

[15]. The sparse depth maps generated from SfM results are used as groundtruth. The models of our method for evaluation are those used in the 
cross-patient study, which means the data from all four patients are not seen during training. On the other hand, the models of Zhou et al.and Yin et 
al.have seen data from Patient 2, 3, and 0 during training.
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