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Abstract

Segmentation of the prostate in magnetic resonance (MR) images has many applications in image-

guided treatment planning and procedures such as biopsy and focal therapy. However, manual 

delineation of the prostate boundary is a time-consuming task with high inter-observer variation. 

In this study, we proposed a semiautomated, three-dimensional (3D) prostate segmentation 

technique for T2-weighted MR images based on shape and texture analysis. The prostate gland 

shape is usually globular with a smoothly curved surface that could be accurately modeled and 

reconstructed if the locations of a limited number of well-distributed surface points are known. For 

a training image set, we used an inter-subject correspondence between the prostate surface points 

to model the prostate shape variation based on a statistical point distribution modeling. We also 

studied the local texture difference between prostate and non-prostate tissues close to the prostate 

surface. To segment a new image, we used the learned prostate shape and texture characteristics to 

search for the prostate border close to an initially estimated prostate surface. We used 23 MR 

images for training, and 14 images for testing the algorithm performance. We compared the results 

to two sets of experts’ manual reference segmentations. The measured mean ± standard deviation 

of error values for the whole gland were 1.4 ± 0.4 mm, 8.5 ± 2.0 mm, and 86 ± 3% in terms of 

mean absolute distance (MAD), Hausdorff distance (HDist), and Dice similarity coefficient 

(DSC). The average measured differences between the two experts on the same datasets were 1.5 
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mm (MAD), 9.0 mm (HDist), and 83% (DSC). The proposed algorithm illustrated a fast, accurate, 

and robust performance for 3D prostate segmentation. The accuracy of the algorithm is within the 

inter-expert variability observed in manual segmentation and comparable to the best performance 

results reported in the literature.

1. INTRODUCTION

Prostate cancer (PCa) is the most commonly diagnosed cancer among men in the United 

States [1]. It is the third leading cause of death from cancer with an estimated 26,730 deaths 

in 2017 [1]. Magnetic resonance imaging (MRI), due to its high image contrast for soft 

tissue structures, is one of the imaging modalities used in PCa diagnosis, staging, and 

treatment [2, 3]. T2-weighted MRI is superior to other MRI sequences for anatomy 

visualization [3]. Contouring of the prostate gland on T2-weighted MR images could assist 

with MRI-guided procedures used for PCa diagnosis and management [4]. However, manual 

delineation of the prostate border is a time-consuming task with high inter-observer 

variability [5, 6]. One solution to address these issues is to use computer-assisted 

segmentation algorithms.

There are several automatic, and semiautomatic segmentation techniques have been 

investigated and developed to perform prostate MRI segmentation faster and more 

reproducible compared to manual contouring [7–17]. Korsager et al. [10] presented an 

automatic segmentation algorithm based on atlas registration combined with intensity and 

shape information in a graph cut segmentation framework. Mahapatra and Buhmann [11] 

used a supervoxel-based image representation for segmentation of the prostate using 

supervoxel classification followed by a graph cut-based segmentation. Tian et al. [15, 16] 

also presented a superpixel-based segmentation algorithm for T2-weighted prostate MRI 

using 3D graph-cut for energy function minimization. Shahedi et al. [12, 13] developed a 

semiautomatic and an automatic segmentation algorithm for prostate segmentation based on 

local appearance and shape characteristics of the prostate border in endorectal T2-weighted 

MRI. Cheng et al. [8] developed deep-learning methods for segmentation of the prostate in 

T2-weighted MRI. They tested both a patch-based convolutional neural network and 

holistically nested networks for segmentation. Jia et al. [9] presented a coarse-to-fine 

segmentation technique based on atlas registration and deep learning.

There have also been some studies published for validation of the segmentation algorithms 

designed for prostate MRI [6, 18, 19]. Martin et al. [19] have presented a three-phase study 

to validate prostate segmentation on MR images. They compared a semi-automatic and an 

automatic segmentation approach to fully manual contouring regarding segmentation time 

and accuracy. They reported up to 49% relative timesaving for using automatic or 

semiautomatic segmentation compared to manual segmentation. Shahedi et al. [6] have 

conducted a multi-observer user study to investigate the prostate MRI segmentation 

repeatability and operation time after manual editing. They measured the required editing 

time to yield clinically acceptable MRI prostate segmentation and the inter-observer 

variability of computer-assisted segmentation after manual editing. They used multiple error 

metrics for segmentation accuracy evaluation. In 2012, the Medical Image Computing and 
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Computer-Assisted Intervention (MICCAI) conference held a Prostate MRI segmentation 

(PROMISE12) challenge to compare the performance of the 11 segmentation algorithms 

involved in the challenge. All the algorithms were tested on the same dataset and evaluated 

using Dice similarity coefficient [20] (DSC), mean absolute distance (MAD), 95% 

Hausdorff distance [21] (HDist), and absolute relative volume difference (|ΔV%|) [18]. The 

results of these studies support this idea that for a more thorough evaluation of the 

algorithms more than one error metric might be required to quantify the segmentation 

accuracy.

Moreover, for a more comprehensive evaluation, the performance of each algorithm should 

be compared to the inter-expert observer variation in manual prostate border delineation. 

There are some published results in the literature about the inter-observer variation in the 

manual segmentation of the prostate in T2-weighted MRI [5,13]. Therefore, it is useful for a 

deeper understanding of the algorithm performance to take inter-observer variability into 

account for evaluation.

In this study, we present a learning-based semiautomatic algorithm for 3D segmentation of 

the prostate gland on T2-weighted MR images, based on the smooth globular shape of the 

prostate and the local image texture near the surface of the prostate. To evaluate the 

performance of the algorithm, we compare the algorithm segmentation with expert reference 

segmentation using a set of error metrics that measure surface distances, regional overlap 

errors, and volume differences. The main contributions of this work are: (1) A novel 

learning-based semiautomatic algorithm for segmentation of the prostate on MR images. (2) 

A local texture classification close to an estimated prostate surface to decrease the negative 

effects of image texture distortion caused by, e.g., cancer tumors. (3) A novel shape model 

developed based on the smooth globular prostate gland shape.

2. METHODS

2.1 Materials

Our MRI dataset contained 43, transverse T2-weighted MR images from 43 patients, which 

were acquired by 1.5 T and 3.0 T with three Siemens Magnetom imaging systems: Aera, 

Trio Tim, and Avanto. No endorectal coil was used for the data acquisition. The repetition 

time (TR) varies from 1000 ms to 7500 ms and echo time (TE) varies from 91 ms to 120 ms. 

The field of view for each image was 256 × 256 to 320 × 320 voxels with 0.625 mm, 0.875, 

or 1.0 mm in-plane voxel size and 1.0 mm to 6.0 mm slice spacing. We resampled all the 

images using Lanczos resampling (windowed sinc interpolation) to make the voxels 

isotropic. For each image, the prostate was manually contoured by two experienced 

radiologists.

2.2 Semiautomatic Segmentation

The proposed learning-based segmentation algorithm consists of training and test parts. 

Figure 1 shows the schematic block diagram of each part. The training and test components 

are explained in detail in sections 2.2.1 and 2.2.2, respectively.
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2.2.1 Training—We used a set of training images to extract a set of image texture 

features from the prostate surface area within each sector of the spherical space, separately. 

Then we selected the most discriminative features to train one classifier per sector. We also 

used the manual segmentation labels of the training image set to build two shape models for 

prostate; a low-density (LD) and a high-density (HD) point distribution model (PDM). 

These shape models were used for shape regularization and surface reconstruction at the 

final steps of the segmentation.

Preprocessing:  We rotated all of the training images about their inferior-superior axes to 

align the anteroposterior symmetry axes of the patients parallel to the anteroposterior axes of 

the images. The image intensities of MR images are highly related to the imaging setting 

and can vary from one scan to another. Therefore, to reduce the inter-scan inconsistency 

while preserving the image texture, we applied an intensity normalization that was limited to 

the window and level adjustment within the prostate region. The intensities of the other 

regions were adjusted accordingly. To decrease the effect of image noise we applied a 2D 

3×3 median filter to all the 2D axial slices.

Shape modeling:  For a point distribution shape modeling we need to represent any shape in 

the training set as a series of surface landmarks. To select the landmarks on each prostate 

surface, we defined N equally spaced rays in 3D space, emanating from the centroid point of 

the prostate gland. Then we selected the N contact points between the rays and the surface of 

the prostate as the landmark set. Considering the centroid as the origin of the spherical 

coordinate system, we assumed all the landmarks with the same elevation and azimuth 

angles across the training set corresponding to each other. In our model each prostate shape 

is represented by the N surface point cloud plus the centroid point, yielding a set of N+1 
points in total. Finally, all the shapes were aligned (translating, rotating and scaling) to a 

reference shape, using generalized 3D Procrustes analysis [22] and the mean square distance 

error metric. We built an LD PDM with N=86 and an HD PDM with N = 2056 equally 

spaced casted rays.

Local feature extraction:  For each of the 86 rays (Ri, i = 1,2,3,…,86) casted from the 

prostate centroid point (xc, yc, zc) we selected a set of points (pi) on the ray within a defined 

range around the corresponding prostate border landmark:

pi = (x, y, z) rmin < r < rmax, θ = θi φ = φi , (1)

where r, θ, and φ are radial, elevation, and azimuth coordinates of point (x, y, z) in a 

spherical coordinate system, respectively. rmin = rb – d and rmax = rb + d are the radial 

coordinates of the first and the last selected points on the ray, respectively, where rb is the 

radius of the border landmark on the ray and d is the distance of the first and the last selected 

points from the border landmark. To keep our texture analysis limited to the local image 

textures near the prostate border, d should be relatively small compared to the gland 

dimensions (in this paper we defined d = 5 mm). θi and φi are, respectively, elevation and 

azimuth angles of points on the ith ray (Ri). θi and φi have constant values for all the points 

on the ray. Figure 2a illustrates the details.
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We extracted the texture features within 3D cubic image patches centered on the selected 

points on the rays; see Figure 2b. For any (xp, yp zp) point of the 3D image on ray Ri with 

spherical coordinates of (r,θi,φi) we defined the patch Pi,r of size W × W × W = (2D + 1) × 

(2D + 1) × (2D + 1) as:

Pi, r = P(xp, yp, zp) = (x, y, z) xp − D < x < xp + D, yp − D < y < yp + D,
zp − D < z < zp + D . (2)

To have image patches that are small relative to the prostate gland size but large enough to 

contain 3D image patterns for texture analysis, we chose the fixed value of 5 mm for 

parameter D in this study.

For each of the selected cubic patches, we calculated a vector of 67 texture features that are 

listed in Table I. We assigned “prostate” or “one” label to those patches centered at a point 

inside the prostate gland, and “non-prostate” or “zero” to those patches centered at a point 

outside the prostate. For each patch, we also calculated the percentage of the patch voxels 

that are within the prostate (Lp).

Ray and feature selection:  We collected the feature vectors of all the image patches for all 

the 86 rays across the training images. Then for each of the 67 features, we made a set of 

feature values collected from all the similarly directed rays across the training set. We 

applied the two-tailed t-test [29] to detect the features with statistically significant 

differences (α=0.01) between prostate and non-prostate means (hereafter called 

“discriminative features”). For each of the discriminative features, we defined two threshold 

values (Tb and Tp); Tb was the feature value that all of the values below/above it belong to 

non-prostate patches and Tp was the feature value that all the values above/below it belong 

to prostate patches (see Figure 3).

To select a feature, we measured the monotonic correlation between each discriminative 

feature and Lp using Spearman’s rank-order correlation (ρ). For each ray, those 

discriminative features with high (ρ > 0.65) and statistically significant (p < 0.001) 

correlation coefficients were selected to be used for training a support vector machine [30] 

(SVM) classifier. The SVM classifier was used to classify between the prostate and non-

prostate patches. Those rays with at least one selected feature were used for SVM training.

2.2.2 Testing

Preprocessing:  We applied a preprocessing to the test image similar to that used for the 

training images; i.e., anteroposterior symmetry axis alignment, image intensity 

normalization, and median filtering. For image intensity normalization we used initially 

estimated prostate surface explained below.

Manual initialization:  The operator first selected two points on the prostate tissues at the 

inferior-most slice (apex) and the superior-most slice (base). Then the operator selected 12 

points on the prostate border on three, equally spaced axial slices between the defined apex 

and base slices; four points per slice, approximately at four, different sides (right, left, 
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anterior, and posterior). Therefore, the total number of manually selected points (anchor 

points) is 14. We used the centroid of the anchor point set as an approximation for the 

prostate center. Similar to the training section we casted 86, equally spaced rays emanating 

from the centroid.

Initially estimated prostate surface:  We first find the nearest plausible shape in the LD 

model generated during training to the manually selected anchor points. For this purpose, we 

first used the casted rays to determine the 14 points in the LD PDM correspond to the anchor 

points. Then we used 3D thin-plate spline (TPS) analysis [31] and warp the model mean 

shape to the 14 anchor points to estimate the 72 missing points between the anchor points. 

This process yielded to a set of 86 points. To extract the representative PDM parameters for 

the point set, we aligned the estimated shape to the model mean shape using 3D Procrustes 

analysis. To find the nearest plausible shape within the model, we restricted each parameter 

to the range of − 3λk, 3λk  in which λk is the kth eigenvalue of the model that corresponds 

to kth parameter.

Local classification:  For each of the selected rays during training, we have a trained linear 

kernel SVM classifier that classifies patches to prostate and non-prostate ones, using the 

selected discriminative features for the ray. We searched for the prostate surface point on 

each of the test rays (Ri
S) around the estimated surface point within the range of 

ro − dS, ro + dS  where ro is is the radial coordinate of the surface point in the spherical 

coordinate system, and ds is the distance of the start and stop search points from the 

estimated surface point (Figure 4a). We selected a set of cubic image patches centered at the 

ray points within the defined search range. We measured the features for each patch and 

applied the corresponding threshold levels (Tb and Tp) obtained from the training section to 

the feature values to make obtained from the training section to the feature values to make 

the search range on the ray narrower. Then we apply the SVM classifier to the remaining 

unclassified image patches and classify them into prostate and non-prostate (Figure 4b). We 

shifted the initially estimated surface point to the boundary of prostate and non-prostate 

points after removing potentially singular labels within the search range (Figure 4c). 

Applying this process to all the selected rays yielded a set of candidate surface points.

Shape regularization and surface reconstruction:  To regularize the segmentation, we 

first found surface points for those rays that were excluded during classification by using 

TPS warping of the LD mean shape to the estimated points. Then we applied the HD shape 

model to the estimated surface points followed by a scattered data interpolation [32] to build 

a continuous surface out of the candidate surface points as the final segmentation label.

2.3 Evaluation

We evaluated our segmentation algorithm by comparing the segmentation results against an 

expert observer’s manual segmentations as the reference. We used a set of different types of 

error metrics containing DSC, precision rate (PR), recall or sensitivity rate (SR), MAD, 

HDist, and volume difference (ΔV). See references [13, 20, 21] for more details about metric 

calculations. In this paper, when we compared two manual references with each other, we 

reported the absolute value of the volume difference (|ΔV|). We applied the mentioned error 
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metrics to the entire prostate gland, as well as three separate regions of interest (ROI), i.e., 

superior-most third (base subregion), the inferior-most third (apex subregion), and the 

middle third (mid-gland subregion) of the prostate.

3. RESULTS

3.1 Implementation details

We implemented the proposed segmentation algorithm no MATLAB 9.2.0 platform using a 

64-bit Windows 7 desktop with a 3.0 GHz Intel Xeon central processing unit (CPU) and 

with 64 GB memory. To speed up the execution, we used MATLAB parallel computing 

toolbox to develop a parallel implementation of the algorithm. We ran the code on 12 CPU 

cores.

We used one of the manual segmentation reference (reference #1) for training the algorithm. 

We randomly selected two third of the images, i.e., 29 images, for training the algorithm. 

The remaining 14 images were used for testing the algorithm.

For feature extraction during training, we set d to 5 mm and for the search range during test, 

we set ds to 7 mm. We also used patch size of 11 × 11 × 11 mm.

3.2 Inter-expert observer variability in manual segmentation

We compared the manual segmentation labels of the two expert observers to each other 

using our segmentation error metrics to measure the inter-expert observer variation in 

manual prostate border delineation. Table II shows the results.

3.3 Segmentation algorithm accuracy and computation time

We applied the proposed segmentation algorithm to 14 test images using the first reference 

segmentation (reference #1) for both initialization and evaluation of the algorithm. Table III 

shows the quantitative results of the algorithm accuracy based on the error metrics. We did 

not detect any statistically significant (based on one-tailed t-tests; p < 0.05) error increase 

when the results of the table are compared to the difference between two experts reported in 

Table II. Figure 5 shows the qualitative segmentation results for three sample cases on five 

2D slices per patient. Figure 6 illustrates the segmentation results for the same three sample 

cases in 3D. The average measured segmentation Execution time was 30 ± 9 s. per 3D 

image. We compared the segmentation performance of our algorithm to some of the most 

recent segmentation algorithms presented in the literature in Table IV.

To record the operator interaction time for initialization of the algorithm, we asked a 

radiologist to select the anchor points on all the test images. The average recorded time for 

selecting apex and base slices were 14 ± 4 s. The average recorded time for selecting the 12 

anchor points were 13 ± 2 s. In total, the average operator interaction time (selecting apex 

and base slices, and the 12 anchor points) were 27 ± 5 s.
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4. DISCUSSION AND CONCLUSIONS

4.1 Inter-expert observer variability in manual segmentation

Pairwise comparisons between our two, manual reference segmentations (Table II) show a 

high inter-observer variation in the manual segmentation of the prostate in MRI that is 

consistent with the reported variation in references [5] and [13]. We observed that the 

disagreement between the expert observers for the whole prostate gland segmentation was 

ranging from 71% to 94% in terms of DSC, from 0.8 mm to 2.7 mm in terms of MAD, from 

4.4 mm to 14.8 mm in terms of HDist, and up to 14.7 cm3 (58%) in terms of absolute 

volume difference. This disagreement is lower in the mid-gland region and higher for the 

prostate apex and base. The variation in manual prostate segmentation between expert 

observers makes it challenging to evaluate the segmentation algorithms based on a single-

observer reference segmentation. It also limits the higher meaningful segmentation accuracy 

can be achieved for an algorithm to the measured inter-observer variation. Therefore, any 

segmentation for which the error value reaches the inter-observer disagreement level might 

be as accurate as an expert segmentation. The inter-observer variation, furthermore, 

challenges the comparison between two, segmentation algorithms based on the reported 

segmentation error metrics when each has been tested on a different image dataset with a 

different reference segmentation.

4.2 Segmentation algorithm accuracy and computation time

Concerning the inter-observer variation in manual segmentation, there is no “gold standard” 

defined for prostate segmentation algorithm validation in MR images. Therefore, for a 

computer-assisted segmentation method, the best reasonable and measurable segmentation 

accuracy compared to a manual reference segmentation will be the highest observed 

variation range between every two experts in manual segmentation. For the proposed 

algorithm, a comparison between corresponding mean values of Table II and Table III shows 

that the algorithm reached the observed variation ranged in terms of all the metrics and all 

the ROIs. The results reported based on our test dataset suggest that there is no room left for 

improvement of the algorithm regarding the measured error metrics.

Comparing the proposed algorithm to some of the recently published work listed in Table IV, 

the metric values show that the performance of the proposed method was within the reported 

metric values. Our algorithm outperformed the other algorithms in terms of MAD. The 

performance of the algorithm based on MAD and DSC is comparable to the best-ranked 

results reported in reference [18], and the HDist error metrics are within the reported ranges. 

Although the proposed algorithm’s performance in terms of volume difference is close to the 

higher bound of the reported error range in reference [18], the measured error values are still 

within the range, and it reached the inter-observer variability level we have observed in 

manual segmentation on the same test dataset. Table III shows that we measured PR (i.e., the 

proportion of the segmentation label that covers the reference) of 92% and more for the 

proposed segmentation method at different ROIs. However, the SR values (i.e., the 

proportion of the reference that is covered by the segmentation label) are 80% or less. This 

observation suggests that on average, our algorithm under-segment the prostate. The 

negative volume difference values also support this finding.
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The main part of the proposed segmentation algorithm is run on a set of rays, and the 

algorithm execution on each ray is completely independent of the others. Hence, the 

segmentation part is computationally parallelizable that makes the algorithm capable for 

computation speed up. A parallel implementation on an unoptimized MATLAB research 

platform, using 12 CPU cores yields to about 30 s. of the computation time per 3D image. 

The average operator interaction time was 27 s. per subject. The total segmentation time 

including the operator interaction time was about one min per 3D image which is 

substantially less than fully manual segmentation time reported in the literature (i.e., about 5 

to 20 minutes per 3D image) [6, 19, 35].

4.3 Limitations

This study should be considered in the context of its strengths and limitations. For texture 

extraction, we used a fixed patch size of 11 × 11 × 11 voxels. Optimization on the size of the 

image patches might improve the performance of the segmentation algorithm in terms of 

time and accuracy. For this study, we assumed that prostate has a globular, smooth shape. 

However, in some cases, the prostate shape could be irregular (e.g., in prostates with median 

lobe hyperplasia), and the shape irregularity can affect the performance of the algorithm. 

The small test dataset size (14 test images) is another limitation of this study.

4.4 Conclusions

In this paper, we have proposed a semiautomatic, learning-based technique for 3D 

segmentation of the prostate on T2-weighted MR images. Our algorithm is trained based on 

local texture characteristics and shape variation of the prostate in MRI. The algorithm is 

initialized with a set of points manually selected by the operator. To have a better 

understanding of the algorithm performance, we evaluated our segmentation method against 

manual reference segmentations using a set of error metrics including region overlap-, 

surface-, and volume-based error metrics. We reported the error metrics for the whole gland 

as well as for the three subregions of the prostate (i.e., apex, mid-gland, and base 

subregions). We also evaluated our method robustness to changing the operator and 

reference. The quantitative evaluation of the proposed algorithm shows that our 

segmentation method achieved a segmentation accuracy within the variation range observed 

in manual segmentation and comparable to the recently presented work with better accuracy 

in terms of MAD compared to the previous work.
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Figure 1. 
The schematic framework of the proposed segmentation method.
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Figure 2. 
(a) A schematic illustration of the selected points on a sample ray (Ri) used for feature 

extraction. (b) A sample cubic image patch (P) centered on the ray point (xp, yp, zp) and 

extraction of a vector of K = 67 texture features of the image patch.
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Figure 3. 
Histograms of feature values extracted from prostate and non-prostate image patches. Tb is 

the threshold level that all of the feature values above that belong to non-prostate patches, 

and Tp is the threshold level that the feature values below that belong to prostate patches. 

The feature values between Tb and Tp belong to either prostate or non-prostate patches.
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Figure 4. 

Local classification process. (a) Selected search points on a sample test ray (Ri
S). (xC, yC, zC)

is the estimated prostate center point. (b) A sample cubic image patch centered at one of the 

ray points within the defined search range. The patch is classified based on an extracted 

vector of texture features containing the features selected for the test ray during training. (c) 

A new border point is estimated after classification of all the search points.
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Figure 5. 
Qualitative segmentation results on five, 2D axial slices for three sample prostates. Each row 

shows the results for one patient. For each case, the left image is the inferior-most (apex) 

slices, and the right image is the superior-most (base) slice. The algorithm segmentation is 

shown with solid yellow contours; reference #1 is shown with dotted, blue contours; and the 

reference #2 is shown with dashed, green contours.
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Figure 6. 
Qualitative and quantitative segmentation results in 3D for the three, sample prostates shown 

in Figure 5. First two left columns show the manual segmentations by two radiologists in 

green, the third column shows the algorithm segmentation results in purple, and the fifth 

column compares the algorithm segmentation against the reference #1 (first column) along 

with the error metric values mentioned on the right.
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Table I.

List of tested texture features and their descriptions.

Feature # of 
features

Description

First-order features 10 Intensity of the voxel at the patch center, mean (μp), median (mP), standard deviation (σp), minimum, 
maximum, skewness [23], kurtosis [23], energy [23], and entropy [23] of a 3D patch intensity 
histogram. The first-order texture features are measured based on the histogram of the image, therefore 
the 2D implementations could be easily generalized for 3D input patches.

Histogram of oriented 
gradients (HOG)24

8 The distribution of intensity gradients. In this study, we formed HOG as a histogram of eight, 2D 
orientation bins. To obtain HOG for 3D patches, we calculated one histogram per 2D axial slice and 
measured the average of all the corresponding HOG bins to form one, eight-bin HOG.

Histogram of Local 
binary patterns 
(LBP)25

8 We calculated LBP in 3D within a 3×3×3 mask and formed one, eight-bin histogram per image patch.

Grey-level co-
occurrence, matrices- 
based26 (GLCM)-
based features

32 We defined GLCM for a 3D patch as the average of the GLCMs of all the 2D axial patch slices related 
to the same 2D pixel neighboring. In this study we measured GLCM-based features based on four 2D 
offsets, i.e. (−1,0), (0,−1), (1,−1), (−1,−1). The features consist of entropy, energy, contrast [23], 
homogeneity [27], inverse different moment [23], correlation [23], cluster shade [27], and cluster 
prominence [27] of the four GLCMs.

Mean gradient angle 1 For a 3D patch, we measure mean gradient angle as the average of mean gradient angles of all the 2D 
axial slices.

Edge-based features 8 We formed an eight-bin histogram of edge directions for a 3D patch. The edges are detected using 
Sobel operator [28] as an edge detector for all the 2D slices.

Total 67
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Table II.

The average and range of inter-expert observer variability in manual prostate segmentation across the whole 

and the test dataset. Mean ± standard deviation of difference observed between two experts based on our 

metrics. Since both segmentation labels in each of the pairwise comparisons were from expert observers (i.e., 

lack of reference for MAD and signed ΔV calculation), the bilateral MAD (MADb) and absolute volume 

difference (|ΔV|) are reported in this Table. Npat and NImg are the number of patients and the number of test 

images, respectively.

ROI NPat NImg MADb (mm) HDist (mm) DSC (%) |ΔV| (cm3) |ΔV| (%)

Whole Gland 14 14 1.5 ± 0.6 9.0 ± 3.1 83 ± 8 4.7 ± 3.9 22 ± 19

Apex 1.5 ± 0.6 7.7 ± 2.6 79 ± 11 1.8 ± 1.4 28 ± 24

Mid-Gland 1.3 ± 0.4 6.7 ± 1.8 89 ± 5 1.5 ± 0.6 17 ± 11

Base 1.8 ± 0.9 7.9 ± 3.1 79 ± 11 2.4 ± 1.8 31 ± 24
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Table III.

Quantitative segmentation accuracy of the proposed algorithm. Mean ± standard deviation of the error metrics 

for different ROIs. Twenty-nine images were used for training the algorithm. Npat and NImg are the number of 

patients and the number of test images, respectively.

ROI NPat NImg MAD (mm) HDist (mm) DSC (%) SR (%) PR (%) ΔV (cm3) ΔV (%)

Whole Gland 14 14 1.4 ± 0.4 8.5 ± 2.0 86 ± 3 80 ± 6 93 ± 3 −3.7 ± 3.1 −17 ± 11

Apex 1.5 ± 0.6 7.6 ± 2.1 82 ± 6 76 ± 10 92 ± 6 −1.3 ± 1.8 −23 ± 20

Mid-Gland 1.3 ± 0.4 6.9 ± 2.2 90 ± 3 87 ± 7 93 ± 5 −1.0 ± 1.4 −9 ± 13

Base 1.3 ± 0.4 6.9 ± 2.1 84 ± 3 76 ± 6 94 ± 4 −1.5 ± 1.1 −24 ± 11
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Table IV.

Comparison of the proposed segmentation method to previous work where applicable. Mean ± standard 

deviation of the segmentation error metrics for the whole prostate gland.

Method Year Semiautomatic / 
Automatic

No. test 
images DSC (%) MAD 

(mm)
HDist 
(mm)

ΔV 
(cm3)

ΔV 
(%)

Execution 
Time (min)

Proposed 
algorithm 2018 Semiautomatic 14 86 ± 3 1.4 ± 0.4 8.5 ± 2.0 −3.7 ± 

3.1
−17 ± 

11 0.5 ± 0.15

Jia et al. [9] 2017 Automatic - 91 ± 4 1.6 ± 0.4 4.6 ± 1.8 - - ~40

Tian et al. [16] 2017 Semiautomatic 43 87 ± 2 2.1 ± 0.4 9.9 ± 1.8 - −5 ± 8 0.67

Cheng at al. [7] 2017 Automatic 250 90 ± 3 - 13.5 ± 7.9 - - 0.05

Shahedi et al. [12] 2017 Automatic 42 71 ± 11 3.2 ± 1.2 - −3.6 ± 
10.4

−8 ± 
20 0.28 ± 0.07

Tian et al. [15] 2016 Semiautomatic 43 89 ± 2 1.7 ± 0.4 8.7 ± 2.7 - 1 ± 8 0.58

Korsager et al. 
[10] 2015 Semiautomatic 67 88 1.5 - - 12 > 1

Tian et al. [14] 2015 Automatic 12 83 ± 4 - 9.3 ± 2.6 - - 4

Mahapatra and 
Buhmann [11] 2014 Automatic 30 81 ± 5 - 5.9 ± 2.1 - - 20 to 25

Shahedi et al. [13] 2014 Semiautomatic 42 82 ± 4 2.0 ± 0.5 - −4.6 ± 
7.2

−12 ± 
14 1.88

Liao et al. [33] 2013 Automatic 66 88 ± 3 1.8 ± 0.9 7.7 ± 2.1 - - 2.9

Toth et al. [34] 2012 Semiautomatic 108 88 ± 5 1.5 ± 0.8 - - - 2.57
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